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77 avenue Denfert-Rochereau, F-75014 Paris, France
email: lainey@imcce.fr

3Laboratoire AIM Paris-Saclay, CEA/DSM – CNRS – Université Paris Diderot, IRFU/SAp
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Abstract. Earth-like planets have anelastic mantles, whereas giant planets may have anelastic
cores. As for the fluid parts, the tidal dissipation of these regions, gravitationally perturbed by
a companion, highly depends on its internal friction and thus its internal structure. Therefore,
modeling this kind of interaction presents a high interest to constrain planetary interiors, whose
properties are still quite uncertain. Here, we examine the anelastic tidal dissipation in deep
planetary interiors, in presence of a fluid envelope, and taking into account its dependence on
the rheology.

Taking plausible values for the anelastic parameters, and discussing the frequency-dependence
of the anelastic dissipation, we show how this mechanism may compete with the dissipation in
fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy
giants Uranus and Neptune. Finally, we show how the results may be implemented to describe
the dynamical evolution of planetary systems.
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1. Introduction
Since 1995, a large number of extrasolar planets have been discovered, which display

a wide range of physical parameters (Santos et al. 2007). The question quite naturally
arose of their habitability. Determining factors are the presence of liquid water or a
protective magnetic field, which are closely linked to the values of the rotational and
orbital parameters of planetary systems. These elements strongly depend on the action
of tides, since, once a planetary system is formed, its dynamical evolution is governed by
gravitational interactions between its components, be it a star-planet or planet-satellite
interaction. By converting kinetic energy into heat, the tides pertub their orbital and
rotational properties. The rate at which the system evolves depends on the physical
properties of tidal dissipation. Therefore, to understand the past history and predict the
fate of a binary system, one has to identify the dissipative processes that achieve this
conversion of energy. Studies have been carried out on tidal effects in fluid bodies such as
stars and envelopes of giant planets (see, e.g., Ogilvie & Lin 2004; Remus et al. 2012b).
However, the anelastic planetary regions also contribute to tidal dissipation, be it the
mantles of Earth-like planets, or the cores of giant planets. The purpose of our study is
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to determine the tidal dissipation in the anelastic central regions of giant planets, taking
into account the presence of a fluid envelope.

2. Tidal dissipation of the core of a two-layer planet
2.1. Two-layer model

We will consider a two-body system where the main component A, rotating at the angular
velocity Ω, has an anelastic icy/rocky core of complex shear modulus μ̃, surrounded by
a fluid envelope, such as an ocean, streching out from core’s surface (of mean radius
Rc) up to planet’s surface (of mean radius Rp). Both core and envelope are assumeded
homogeneous, with respective densities ρc and ρo . This model is represented on Fig. 1.

Figure 1. The system is composed by a two-layer main component A, with an homogeneous
and incompressible solid core and an homogeneous viscous-free fluid envelope, and a point–
mass perturber B orbiting around A. The spin axis of A, perpendicular to its equatorial plane
(XE , YE ), is assumed to have an obliquity angle ε with respect to the total angular momentum
of the system (in the direction of ZR ). This latter defines an inertial reference plane (XR , YR ),
perpendicular to it. B is supposed to move on an elliptical orbit (of eccentricity e), inclined with
respect to the inertial plane (by the inclination angle I).

2.2. Tidal dissipation of the core
The tidal perturbation exerted by B on the anelastic core of A results not only in its
deformation (first treated by Dermott 1979 for a two-layer planet), but also in the dissi-
pation of the tidal energy into heat, leading to a lag angle δ between the line of centers
and the tidal bulge.

Acting as an overload on the core, the tidally deformed fluid shell, modifies both the
tidal deformation and dissipation of the core. The quality factor Qc , inversely propor-
tional to core’s tidal dissipation, takes then a different form than in the fully-solid case:

Q2
c = 1 +

9 μ̄ 2
2
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[
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with

μ̄1 + i μ̄2 =
19 μ̃

2 ρc gc Rc
. (2.2)

This expression has been derived by Remus et al. (2012a); it depends on:
• the planet’s internal structure through the quantities α, A, B, C and D which are

functions of the ratios of radii Rc/Rp and densities ρo/ρc ,
• the core’s rheological parameters through the effective shear modulus μ̄ = μ̄1 + i μ̄2 ,
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• the tidal forcing frequency σ through the effective shear modulus μ̄ ≡ μ̄(σ).
One may note that no assumption has been made on the rheology of the core, except
that it is linear under the small tidal perturbations (i.e. the core’s material obeys Hooke’s
law). Hence, it is valid for any linear rheological model.

Before evaluating the tidal dissipation for specific cases, let us introduce the effective
tidal dissipation factor Qeff defined by

Qeff =
(

Rp

Rc

)5

× k2(Rp)
k2(Rc)

× Qc , (2.3)

where k2(Rp) (resp. k2(Rc)) is the potential Love number at the surface of the planet
(resp. core). In the following applications, k2(Rc) is calculated from Eq. (79) of Re-
mus et al. (2012a), and the value of k2(Rp) is taken from Gavrilov & Zharkov (1977)
({0.379, 0.341, 0.104, 0.127}, for Jupiter, Saturn, Uranus and Neptune in this order).

3. Application to giant planets
3.1. The case of the gas giants Jupiter and Saturn

Using astrometric data covering more than a century, Lainey et al. (2009, 2012) succeeded
in determining from observations the effective tidal dissipation in Jupiter
(QJupiter = (3.56±0.56)×104) and Saturn (QSaturn = (1.682±0.540)×103) respectively.
As mentioned in the corresponding reference, such a high dissipation in Saturn is about
10 times the usual value estimated from theoretical arguments, but it may account for
the huge thermal emission of Enceladus and would be compatible with a new model of
satellite formation in which the Saturnian satellites formed at the outer edge of the main
rings (Charnoz et al. 2011). These values of tidal dissipation are higher than predicted
by up-to-date models of tides in fluid planets. For instance Ogilvie & Lin (2004) studied
the tidal dissipation in a rotating giant planet resulting from the excitation by the tidal
potential of inertial waves in the convective upper part of the planet; they found that
the quality factor depends strongly on the tidal frequency, displaying a high number of
resonances, and that it averages around Qeff ≈ 5 × 105. However the core of the planet
was just invoked to provide a reflecting boundary. Similar results were obtained by Wu
(2005), considering a coreless Jupiter.

In the two-layer model that we present here, the core plays an active role in the
dissipation, through its viscoelasticity. Since the composition of giant planets is poorly
constrained (Guillot 2005), we explore the effective tidal dissipation of Jupiter’s and Sat-
urn’s core for a large range of viscoelastic parameters, adopting the Maxwell rheological
model. As shown in Fig. 2, our model predicts quality factors that are compatible with
those observed by Lainey et al. (2009, 2012), for plausible values of the rheological pa-
rameters (η,G) - we refer to Remus et al. (2012a), and references therein, for a discussion
on the rheology of giant planets’ cores. The other parameters (see the legend) are com-
patible with the internal structure models of Guillot (1999) for Jupiter and Hubbard
et al. (2009) for Saturn. Moreover, in the frequency interval of Saturnian satelites, our
model shows the same smooth dependence on tidal frequency than observed (see Fig. 3).

3.2. The case of the ice giants Uranus and Neptune
As in gas giants, the standard three-layer models for the interior structure of ice giants
predict the presence of an anelastic rocky core (e.g., Hubbard et al. 1991; Podolak et al.
1995; Guillot 1999). Recent three-dimensional simulations of Neptune’s and Uranus’ dy-
namos predict that the intermediate “icy” layer, located between the rocky core and the
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Figure 2. Dissipation quality factor Qeff as a function of the viscoelastic parameters G and η,
of a two-layer gas giant, using the Maxwell model. Left: for a Jupiter-like planet at the tidal
frequency of Io. Right: for a Saturn-like planet at the tidal frequency of Enceladus. The red
dashed lines indicate the value of Qeff = {3.56×104 , 1.682×103} (for Jupiter and Saturn, respec-
tively) determined by Lainey et al. (2009, 2012). The blue rectangle corresponds to the reference
values taken by the viscoelastic parameters G and η for an unknown mixture of ice and silicates.
We assume the values of Rp = {10.97, 9.14}R⊕, Mp = {317.8, 95.16}M⊕, Rc = {0.15, 0.26}Rp ,
Mc = {6.41, 18.65}M⊕, and k2 (Rp ) = {0.379, 0.341}, for Jupiter and Saturn in this order.

Figure 3. Dependence of the effective dissipation factor Qeff on the tidal frequency σ for
Jupiter-like (red solid line) and Saturn-like (blue dashed line) giant planets. The dotted lines
(and their corresponding zone of uncertainty) indicate the mean value of Qeff = (3.56±0.56)×104

(Jupiter) and Qeff = (1.682 ± 0.540) × 103 (Saturn) determined by Lainey et al. (2009, 2012).
The blue points correspond to the value of Qeff of Saturn perturbed by the tide-raising satellites
Enceladus, Thetys, Dione and Rhea (Lainey et al. 2012). We assume the same values of Rp ,
Mp , Rc , Mc , and k2 (Rp ) than in Fig. 2, and the value of G = {2.72, 10.51} × 1010 (Pa), and
η = {8.65, 25.0} × 1013 (Pa · s−1 ) for the viscoelastic parameters of Jupiter’s and Saturn’s core
respectively.

convective atmosphere, is a stably stratified conductive fluid (Stanley & Bloxham 2004,
2006). From there, Redmer et al. (2011) studied the electric conductivity of warm dense
water taking into account the phase diagram of water, and concluded that part of this
shell is in the superionic state, i.e. a two-component system of both a conducting proton
fluid and a crystalline oxygen solid, extending to about 0.42-0.56 of the planet radius.
Thus, it seems reasonable to assume for our two-layer model that the solid central region
extends from the rocky core surface up to somewhere in the superionic shell.
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Figure 4. Dissipation quality factor Qeff as a function of the viscoelastic parameters G and
η, of a two-layer ice giant, using the Maxwell model. Top: for a Uranus-like planet at the
tidal frequency of Miranda, with three different core sizes Rc = {0.12, 0.22, 0.32}Rp . Bot-
tom: for a Neptune-like planet at the tidal frequency of Triton, with three different core sizes
Rc = {0.14, 0.26, 0.32}Rp . The orange and red dashed lines indicate, respectively, the lowest
and highest values of Qeff from formation scenarios: Qeff = {5, 72} × 103 for Uranus (Gavrilov &
Zharkov 1977; Goldreich & Soter 1966) and Qeff = {0.9, 33} × 104 for Neptune (Zhang & Hamil-
ton 2008; Banfield & Murray 1992). The yellow dashed line indicates the value of Qeff = 1.7×102

from a study of Neptune’s internal heat (Trafton 1974). The blue rectangle corresponds to
the reference values taken by the viscoelastic parameters G and η for an unknown mixture of
ice and silicates. We assume the values of Rp = {3.98, 3.87}R⊕, Mp = {14.24, 16.73}M⊕ and
k2 (Rp ) = {0.104, 0.127}.

We explore in Fig. 4 the tidal dissipation of Uranus’ and Neptune’s core for a large
range of values of the viscoelastic parameters, considering the Maxwell rheological model,
for different core sizes. The core mass is obtained by integration of the density profiles of
Helled et al. (2011) up to a given core size. We compare our results to the most pessimistic
and optimistic evolution scenarios, in terms of tidal dissipation. In 1966, Goldreich &
Soter derived lower bounds to the effective dissipation factor Qeff of the major planets, by
analyzing the orbital tidal evolution of their nearest satellites. Calculating more realistic
Love numbers k2(Rp) of these planets, Gavrilov & Zharkov (1977) obtained, for Uranus,
a lower limit reduced by one order of magnitude. The case of Neptune’s dissipation has
been examined by Banfield & Murray (1992) from the study of the dynamical history
of its inner satellites. With higher estimations of satelites densities, Zhang & Hamilton
(2008) determined a lower bound of the tidal dissipation in Neptune reduced by less than
half an order of magnitude.

Since much uncertainties remain on the formation of the Uranian and Neptunian sys-
tems, we explore in Fig. 5 the value of Qeff that would be required in Uranus and Neptune
to make evolve the semi-major axis of some of their satellites from an unknown initial
value over any timescale up to the age of the Solar System (ageSS). We use the inte-
grated formula Eq. (31) of Efroimsky & Lainey (2007). This give us lower bounds that
are compatible whith our results obtained from physical considerations (Fig. 4).
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Figure 5. Amplitude of the effective dissipation factor Qeff required by a planet for the evolution
of the semi-major of one of its satellites in function of the initial position (a0 ) and the timescale
of evolution (Δt, in logarithmic scale). From left to right: Qeff of Uranus/Neptune for
the evolution of the semi-major axis of Miranda/Oberon/Triton’s semi-major axis. The brawn
(resp. yellow) dashed line in the left (resp. right) panel indicates the lower bound predicted by
Gavrilov & Zharkov (1977) (resp.Trafton 1974). We assume the same values of Rp and Mp than in
Fig. 2. The satellites’ masses are msat = {0.66, 30.1, 214} × 1020 (kg), and their semi-major axis
are a = {129.39, 583.52, 354.76} × 103 (km), for Miranda, Oberon and Triton in this order.

4. Dynamical evolution
Due to dissipation, the tidal torque has non-zero average over the orbit, and it induces

an exchange of angular momentum between each component and the orbital motion.
This exchange governs the evolution of the semi-major axis, the eccentricity, the incli-
nation of the orbital plane, the obliquity and the angular velocity of each component
(see, e.g., Mathis & Le Poncin-Lafitte 2009; Remus et al. 2012a). Depending on the
initial conditions and on the planet/star mass ratio, the system evolves either to a stable
state of minimum energy (with aligned spins, circular orbits and rotations of each body
synchronized with the orbital motion) or the planet tends to spiral into the parent star.

5. Conclusion
Our evaluations reveal a much higher dissipation in the solid cores of planets than that

found by Ogilvie & Lin (2004) for the fluid envelope of a planet possessing a small solid
core. These results seem to be in good agreement with observed properties of Jupiter’s
and Saturn’s system (Lainey et al. 2009, 2012). To explain the tidal dissipation observed
in the gas giant planets of our Solar System, all processes have to be taken into account.
In the case of the ice giants Uranus and Neptune, too much uncertainties remain on their
internal structure to give an order of magnitude, other than a minimum value, of tidal
dissipation in the solid regions, which constitutes a first step in the study of such planets.
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