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Simulation and feedback control of the
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The present work considers the low-Reynolds-number wake flow behind a squareback
Ahmed body, in close proximity to a ground. At low Reynolds numbers such wakes
are known to undergo a series of bifurcations to a state that breaks reflectional
symmetry. The symmetry breaking of the wake also persists at turbulent high
Reynolds numbers, where it manifests as bi-modal behaviour with random switching
between the asymmetric states. Thus far, it has only been possible to study the
low-Reynolds-number sequence of bifurcations experimentally and mathematically.
The present work presents the first numerical simulations capturing the sequence
of symmetry breaking bifurcations that occur. A study of how the wake topology
changes throughout suggests that interaction between the closer top/bottom pair of
parallel shear layers can only dominate once there is sufficient underbody flow. When
this occurs, the two main vortex structures in the wake switch from being horizontally
to vertically aligned. A linear feedback control strategy, designed to attenuate base
pressure force fluctuations, is then implemented. This causes an accompanying
reduction in drag and re-symmetrisation of the wake. Analysis using the dynamic
mode decomposition confirms that the wake shedding mode is re-symmetrised. This
work motivates future attempts to capture wake symmetry breaking and bi-modality
in numerical simulations, and application of a promising feedback control strategy at
higher, turbulent Reynolds numbers.

Key words: bifurcation, drag reduction, wakes

1. Introduction

The flow around blunt bluff bodies is relevant to many industrial fields, in
particular the aerodynamics of ground vehicles including cars, trucks and trains.
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c© Cambridge University Press 2017. This is an Open Access article, distributed under the terms of the
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re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Developing technology to manipulate such flows so as to reduce their aerodynamic
drag is a rapidly emerging area of interest. For squareback vehicles, the majority of
aerodynamic drag is associated with the boundary layer separating upon passing the
rear edges to create a complex low-pressure wake. Identifying and understanding the
large coherent wake structures and topology of the wake are therefore fundamental
to identifying the main sources of drag and informing drag-reduction strategies.

Recent work has identified symmetry breaking behaviour in the wakes of
three-dimensional (3D) blunt bluff bodies such as disks (Ormières & Provansal
1999; Fabre, Auguste & Magnaudet 2008) and more recently the Ahmed body
(Grandemange, Gohlke & Cadot 2013a,b). The symmetry breaking first occurs at low,
laminar Reynolds numbers – this can be predicted by weakly nonlinear analysis of
the Navier–Stokes equations (Meliga, Chomaz & Sipp 2009) and has been observed
experimentally (Grandemange, Cadot & Gohlke 2012). A very recent finding is that
the asymmetry then persists to high, turbulent Reynolds numbers (Grandemange et al.
2013a,b; Rigas et al. 2014). It appears that the turbulent flow fluctuations cause the
wake to switch between asymmetric states with slow, random time scales, resulting in
multi-stability (Rigas et al. 2014, 2015) or bi-stability (Grandemange et al. 2013a,b),
also known as bi-modality. Thus, the symmetry breaking that occurs at low Reynolds
numbers is highly relevant to the wake dynamics at turbulent Reynolds numbers.

The recent experimental study of Grandemange et al. (2012) investigated the flow
past a simplified vehicle geometry known as the Ahmed body (Ahmed, Ramm
& Faltin 1984), where the authors identified a scenario of symmetry breaking
bifurcations as the Reynolds number based on height, ReH , increases. At ReH = 365,
the Ahmed body wake changes from steady symmetric to unsteady. Then after a
brief transient state, during which the flow is symmetric, the wake flips to one side
and becomes steady and asymmetric. As the Reynolds number is increased past
ReH = 415, the wake again becomes unsteady, but maintains asymmetry.

Investigations into the symmetry breaking of blunt bluff body wakes has, so far,
been primarily experimental, supplemented by modelling. No numerical studies have
thus far identified these symmetry breaking states. The present work performs, we
believe, the first numerical investigation into the sequence of symmetry breaking
bifurcations that occurs at low Reynolds number, successfully reproducing the
experimental results of Grandemange et al. (2012). These simulations provide
access to the full 3D flow field, allowing a more detailed investigation into the
destabilising dynamics associated with symmetry breaking of the wake, and providing
further insight into wake topology. Finally, a practical feedback control strategy to
reduce the form drag of the Ahmed body is implemented. Using the dynamic mode
decomposition (Schmid 2010), the effect of the controller on the wake modes is
studied.

2. Numerical simulations

The Ahmed body (Ahmed et al. 1984) is a commonly used simplified test geometry
for studying road vehicle flows. The squareback version of it in the presence of a
stationary ground was simulated in this work, as shown in figure 1. The specifics of
the geometry exactly replicated the dimensions, aspect ratio and the ground clearance
used by Grandemange et al. (2012).

Large eddy simulations (LES) were performed, at various low Reynolds numbers:
310 < ReH < 435. At these Reynolds numbers the boundary layers and separation
are laminar. All simulations were carried out using an in-house finite-volume
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R0.35

(a) (b)

FIGURE 1. Schematic of squareback Ahmed body: (a) side view; (b) rear view.

Cd Sth Recirculation length

Nominal grid – no SGS 0.288 0.082 1.949H
Nominal grid – with SGS 0.308 0.081 1.949H
Fine grid – with SGS 0.299 0.088 1.951H

TABLE 1. Grid comparison for simulations at ReH = 435. Sth = fH/U is the Strouhal
number based on height, where f is the dimensional frequency and H is body height.

incompressible LES solver StreamLES (Lardat & Leschziner 1998) which has
previously been used for high-fidelity bluff body flow simulations (Dahan, Morgans
& Lardeau 2012). The computational domain was chosen to be consistent with the
ERCOFTAC guide: Ω = (Linlet, Lx, Ly, Lz) = (2L, 8L, 2L, 2L), where L is the body
length. The domain was discretised into a Cartesian structured grid with approximately
5.3 million computational nodes. The majority of the nodes are clustered around the
body and in the wake to ensure the important flow dynamics is resolved. For all
simulations n+, where n is the cell distance in the normal direction from the body,
is within the range of 0.02< n+< 0.8, while the maximum Courant–Friedrichs–Lewy
(CFL) number is 0.08. A wall-adjusted local eddy viscosity (WALE) model was used
for the subgrid-scale (SGS) model (Nicoud & Ducros 1999). It should be noted that
when a simulation at ReH = 435 was performed without the SGS model, there were
few changes to the flow field, as can be seen in table 1. A comparison of body drag,
recirculation bubble length and the dominant unsteady frequency for simulations on
the fine (12.5 million nodes) and nominal (5.3 million nodes) grids in table 1 suggests
that the simulations are sufficiently well-resolved.

The boundary conditions are defined as follows: no slip on the body surface and
the ground, free slip at the sides and top of the domain, and a convective boundary
condition at the outflow. The inflow was left unperturbed. The simulations used 384
cores and ran on Imperial College London’s HPC High-End parallel cluster, CX2, and
on the ARCHER UK National Supercomputing Service. All unforced and open-loop
simulations ran for 800 convective time units, while feedback control simulations ran
for 600 convective time units – these latter simulations requiring a smaller static time
step.

3. Simulation results: reflectional symmetry breaking regimes

The changes in the mean position of the wake Zw in the z-direction, observed in the
numerical simulations as Reynolds number was increased, are shown in the bifurcation
diagram in figure 2, alongside the experimental findings of Grandemange et al. (2012).
Here Zw was measured as the point where the averaged streamlines met in the far
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FIGURE 2. Bifurcation scenario of changes in the mean position of the wake in the z-
direction (Zw) as the Reynolds number is varied between 310 6 ReH 6 435. LES results
(red circles) are compared to experimental results from Grandemange et al. (2012) (blue
crosses). Black and grey lines show steady and unsteady regimes, respectively.

wake to create a trail. The simulations successfully capture the sequence of regimes
identified experimentally, although small differences in the Reynolds numbers of the
state changes are noted. For example, at ReH = 415, the simulated wake is steady
asymmetric, while experiments report an unsteady asymmetric wake. However, once
the simulation Reynolds number is increased to ReH=435 the wake becomes unsteady
asymmetric.

The four states exhibited by the wake at different Reynolds numbers are shown
in figure 3. At ReH = 310, the wake is ‘steady symmetric’ and consists of two
recirculating regions aligned horizontally next to one another, as shown in the 3D
streamlines on the right. The streamlines projected onto the ‘side-view’ slice of the
flow field show that the separated flow travels past the top edge of the Ahmed body
and recirculates back towards the body base, where it interacts with the underbody
flow. This creates some shear, but not enough to also initiate recirculating motion
near the bottom edge. As the Reynolds number is increased to ReH = 415, the wake
becomes ‘unsteady symmetric’. This is a transient state and after a few flow-throughs
the wake flips to the right, becoming ‘steady asymmetric’. It is noteworthy that
compared to ‘steady symmetric’ regime, the ‘unsteady symmetric’ wake visibly shows
a more active bottom shear layer, with recirculating motion beginning to form at the
bottom edge. As the flow settles into the ‘steady asymmetric’ state, two recirculating
regions form, which are now aligned vertically one on top of the other. This suggests
that the initial symmetry breaking occurs once the Reynolds number is sufficiently
high to create enough underbody flow for the top and bottom shear layers to interact
and recirculate back towards the base. This further corroborates observations by
Barros et al. (2016) and Grandemange et al. (2013a) that ground presence affects
the boundary layer development along the body and thus influences the transverse
asymmetry in the wake. It is further postulated that when the wake is symmetric,
the two recirculating regions located horizontally side by side originate from the side
shear layers interacting – a relationship that is broken at higher Reynolds numbers
due to the strong bottom shear layer and the aspect ratio of the base (the top and
bottom shear layers are closer to one another than the side shear layers). As the
Reynolds number is increased further to ReH = 435, the wake becomes ‘unsteady
asymmetric’, with the two recirculating regions maintaining their vertical position.
Within the time horizon of these simulations, the asymmetric wakes at ReH = 365 and
435 did not switch to the other asymmetric state, but remained on the same side.
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FIGURE 3. Visualisations of Ahmed body flow at Reynolds numbers (a) ReH = 310,
(b) and (c) ReH = 415, (d) ReH = 435. For each ReH the top and bottom left-hand pictures
show side view and top view respectively of a 2D slice with streamlines projected onto
it; the right-hand picture shows 3D streamlines in the wake.

ReH State Cd Cl

310 Steady symmetric 0.353 −0.053
365 Unsteady symmetric 0.325 −0.049
415 Steady asymmetric 0.313 −0.042
435 Unsteady asymmetric 0.308 −0.038

TABLE 2. Drag and lift coefficients at different symmetry breaking states.

The drag and lift coefficients associated with each of the simulated Reynolds
numbers are listed in table 2. The drag is higher for the Reynolds numbers associated
with the symmetric wake, while the asymmetric wake yields lower drag coefficients.
The drag coefficient at ReH = 435 is 0.308, falling within the range reported in
the literature of 0.26–0.33 (Ahmed et al. 1984; Grandemange et al. 2015; Volpe,
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FIGURE 4. Q-criterion iso-contour of Ahmed body flow at Reynolds number ReH = 435
when the wake is (a) unsteady symmetric, (b) unsteady asymmetric. For each regime, the
top and bottom left-hand pictures show side view and top view respectively; the right-hand
picture shows the diagonal view from the top. The same Q-criterion iso-contour is plotted
with opaque and transparent parts to reveal the internal structure of the vortex ring in the
wake.

Devinant & Kourta 2015). An increase in lift coefficient is also observed as the
Reynolds number increases, which is consistent with an increased underbody flow
developing. The lift coefficient for ReH = 435 compares well with the value reported
by Grandemange et al. (2015) of Cl =−0.04.

Further insights into the unsteady symmetric and unsteady asymmetric states are
provided by considering the Q-criterion (Hunt, Wray & Moin 1988) of the flow fields
conditionally averaged at the same point in the shedding cycle, as shown in figure 4.
When the flow is symmetric, the internal vortex structure is positioned at the centre of
the bottom edge of the base. As the symmetry breaks, the vortex structure inside the
vortex ring changes its position. Once the wake shifts to the side, the vortex inside
the recirculation bubble moves to the side edge of the base, subsequently affecting the
position of the large recirculating structures further downstream.

3.1. Feedback control for form-drag reduction
A linear single-input, single-output feedback controller is now designed and tested
on the unsteady asymmetric Ahmed body flow at ReH = 435. Body-mounted sensing
and actuation is used for practical applicability. The sensor signal is the unsteady
component of the base pressure force, while actuation takes the form of energy
efficient unsteady synthetic jets acting uniformly around the perimeter of body, just
ahead of the separation. The schematic of the control arrangement is shown in
figure 5(b).

The feedback control strategy has the direct aim of attenuating fluctuations in the
base pressure force. It is envisaged that in suppressing these fluctuations, a mean base
pressure recovery will be achieved, giving a form-drag reduction. This strategy has
been successfully applied to 3D blunt bluff body geometries (Dahan et al. 2012; Dalla
Longa, Morgans & Dahan 2017).

The means by which base pressure force fluctuations are suppressed is explained
in figure 5(a). Denoting s as the Laplace transform variable, fluctuations in the base
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FIGURE 5. (a) Dynamically linear model for feedback control: s denotes the Laplace
transform variable. (b) Schematic of the control arrangement: sensor (light blue) measures
the base pressure force and actuation (red) acts via synthetic jets angled at 10◦ outwards
from the downstream direction.
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FIGURE 6. Amplitude of base pressure force spectrum for the Ahmed body flow at
ReH = 435.

pressure force, Fb(s) are assumed to respond both to the actuation, Uj(s), and to
natural disturbances in the flow, N(s). The Laplace transforms of these fluctuations
in the absence and presence of feedback control take the forms

Fb,no control(s)=Uj(s)G(s)+H(s), Fb,control(s)= Uj(s)G(s)+H(s)
1+G(s)K(s)

. (3.1a,b)

The ratio of the size of these fluctuations with control to those without is then given
by the magnitude of the ‘sensitivity transfer function’;

|S(s)| = |Fb,control(s)|
|Fb,no control(s)| =

∣∣∣∣ 1
1+G(s)K(s)

∣∣∣∣ . (3.2)

For the feedback controller, K(s), to attenuate fluctuations, we require |S(s)|< 1 over
the frequencies where the wake exhibits significant dynamics. For the present flow, the
base pressure force spectrum in the absence of control is shown in figure 6. The main
frequencies present are St= 0.08 and 0.16, and these will be the target frequencies for
feedback control.

Controller design requires a low-order linear model for G(s), which represents how
the sensor signal, Fb(s), responds to actuation, Uj(s). This is obtained by performing
system identification simulations with harmonic open-loop forcing across different
frequencies and amplitudes. (The use of harmonic forcing over broadband permits
examination and, if necessary, quantification, of any nonlinearity present in the
response.) The gain and phase shift from the actuation to the sensor signals was
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FIGURE 7. Frequency response gain and phase for (a) system identification data from
open-loop simulations with harmonic forcing at amplitudes at Aj = 0.1 and Aj = 0.2 and
(b) for the controller K(s) and sensitivity function S(s).

then measured, yielding the open-loop frequency response data shown in figure 7(a).
The forcing level independence confirms dynamic linearity. A second-order model for
G(s) was fitted to the data using the Matlab command fitfrd.

The feedback controller, K(s), was designed by shaping its response in the
frequency domain (‘loop shaping’) to ensure low sensitivity for frequencies of
St∼0.08–0.16 and closed loop stability. The final feedback controller is a combination
of a second-order low-pass and band-pass filters K(s)=Klp(s)Kbp(s) shown in (3.3a,b).

Klp(s)= kω2
co

ω2
co + 2ξsωco + s2

, Kbp(s)= sωh

(ωl + s)(ωh + s)
, (3.3a,b)

where the coefficients for the low-pass filter are: k=−350, ξ = 6 and ωco= 0.13× 2π

and the coefficients for the band-pass filter are: ωh = 5 × 2π and ωl = 0.05 × 2π.
The phase and gain of the controller K(s) along with the resulting sensitivity transfer
function are shown in figure 7(b).

The feedback controller was implemented in the simulations; the unforced and
forced base pressure signals are compared in figure 8, alongside the actuation signal.
Control successfully attenuated base pressure fluctuations, reducing the RMS by 33 %.
This was accompanied by an increase in the mean base pressure of approximately 5 %,
which was achieved quickly, with convergence in approximately 20 convective times,
and with actuation having zero mean throughout. The momentum coefficient was
cµ= 1.37× 10−5, where cµ=U2

jetAjet/AbU2
∞, Ajet is the total area of the synthetic jets

and Ab the base area. The drag coefficient for the controlled flow was Cd = 0.2995,
approximately a 3 % reduction on the unforced value. Note that as the controller
aims to suppress base pressure force fluctuations, it is somewhat limited in what is
achievable at the present low Reynolds number; the flow is not strongly unsteady and
fluctuations are relatively small. Nonetheless, the implementation demonstrates that
the linear feedback control strategy has potential for 3D bluff body geometries.

Figure 9 shows two-dimensional horizontal slices of the wake both in the absence
and presence of feedback control. The controlled wake has been symmetrised
horizontally compared to the uncontrolled flow.
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FIGURE 8. (a) Comparison of converged base pressure coefficient, Cp, with (red) and
without (black) feedback control. (b) Corresponding actuation signal, Ujet.
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FIGURE 9. 2D slice of (a) unforced and (b) controlled instantaneous flow fields coloured
by magnitude of the velocity with streamlines projected onto the ‘top-view’ slices.

3.2. Wake mode analysis
Dimensionality reduction algorithms such as proper orthogonal decomposition (POD)
and dynamic mode decomposition (DMD) are often used to characterise the main
dynamic features of the flow. POD captures the most energetic flow features:
McArthur et al. (2016) used it to characterise the dynamics of a turbulent Ahmed
body wake, while Östh et al. (2014) used the POD modes of a turbulent Ahmed
body flow to construct a reduced order model capable of capturing the full broad
frequency spectrum. DMD extracts oscillatory modes with a specific eigenvalue
representing their growth rate and frequency (Schmid 2010). It has been applied to
the low-Reynolds-number bifurcation regime of a cylinder bluff body flow (Bagheri
2013), but not as yet to the Ahmed body flow.

The apparent symmetrisation of the wake by the action of feedback control leads
us to analyse the wake modes using DMD. To obtain the DMD modes, a time series
of measurement snapshot vectors, vn, each from time step n, are arranged in a matrix
V N

1 ← {v1, v2, . . . , vN}. The data matrix V N
1 is decomposed into two sets: V N−1

1 ←
{v1, v2, . . . , vN−1} and V N

2 ← {v2, v2, . . . , vN}, and the first set orthogonalised using
the singular value decomposition (SVD): [U, Σ,W] = svd(V N−1

2 ), where the matrix U
contains proper orthogonal modes of the first set of data V N−1

1 . It is thus possible to
express the last data vector vN as a linear combination of the previous elements in
the form:

S = UHV N
2 WΣ−1. (3.4)

The eigenvectors of S are the modal structures and the eigenvalues are frequencies and
growth/decay rates. To quantify how much the modes are represented in the original
dataset, the optimum amplitudes are computed using the QR-decomposition of the
product of the original data matrix V , the singular values Σ and the modes, i.e. the
eigenvectors of S.

The results from DMD analysis for the Ahmed body flow without feedback control
and in the presence of feedback control are shown in figure 10(a,c) and 10(b,d),
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FIGURE 10. DMD results for (a,c) the unforced flow and (b,d) the flow with feedback
control. (a,b) Shows the frequencies and growth rates of the DMD modes scaled by
their optimum amplitudes; (c,d) is a top view of the spatial structure of the most
dynamically represented modes (red markers on the frequency versus growth rate figure) at
(a,c) Sth= 0.16 for unforced flow and (b,d) Sth= 0.13 for the flow with feedback control.

respectively. Figure 10(a,b) shows the frequencies and growth rates of the DMD
modes scaled by their optimum amplitudes. The most prominent unsteady mode
in the unforced flow is at St ≈ 0.16, a frequency which was also captured in the
amplitude spectrum of the base pressure signal. The spatial structure of this mode
is shown in figure 10(c), revealing asymmetric shedding from only one side of the
base.

Once the feedback control is applied, the growth rate versus frequency plot in
figure 10(b) shows that most of the low-frequency dynamics seen in the unforced
flow have been attenuated in accordance with the control aim. The most prominent
low-frequency mode shifts to a frequency of St = 0.13, with its spatial structure
revealing horizontally symmetric shedding, which is consistent with the flow
visualisations in figure 9. It is not uncommon for feedback control to shift the
frequency of the main dynamics, and in this case it appears to make the shedding
slower and in-phase horizontally.

The importance of re-symmetrisation of the wake for drag reduction was highlighted
by Evrard et al. (2016), who implemented passive boat tail control to weaken the
reflectional symmetry breaking modes. Further experimental studies by Brackston
et al. (2016) and Li et al. (2016) targeted re-symmetrisation of the wake with
feedback control and also achieved a drag reduction. Since overall perturbations in
the flow are linked to the symmetry breaking behaviour of the wake, it appears that
attenuating the base pressure fluctuations reduced the overall perturbations in the
wake, returning the wake to symmetry and achieving an increase in the mean base
pressure.

4. Conclusions

In this work the low-Reynolds-number bifurcation sequence for the Ahmed body
wake, previously reported only in experiments, was reproduced numerically. The main
flow features were investigated, revealing that as the reflectional symmetry of the wake
is broken, the structure of the recirculation bubble changes from two recirculation
regions positioned side by side, to one on top of the other. The vortex structure within
the wake also moves from a centred position to the side, affecting the position of the
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large recirculating vortices further downstream. It was conjectured that this change in
the flow happens once there is sufficient underbody flow, allowing the shear layers
shed from the top and bottom of the base (which are closer to one another than those
from the sidewalls) to interact.

Linear feedback control, which targeted attenuation of the base pressure force
fluctuations, was then applied. The control was implemented via body-mounted
sensors and unsteady synthetic jet actuation, for practical applicability. The effect of
control was to attenuate the base pressure force fluctuations, increase the base pressure,
reduce the drag and re-symmetrise the wake. DMD analysis of the controlled and
uncontrolled flows at ReH = 435 revealed that the feedback control slightly reduced
the frequency of the shedding mode. The shedding from the sides also became
in-phase when the control was applied.

This work provides motivation for attempting to simulate reflectional symmetry
breaking modes of wake flows at higher Reynolds numbers, where bi-stable or
multi-stable switching at long time scales between asymmetric states can occur. A
linear feedback control strategy for form-drag reduction also holds promise for higher
Reynolds numbers, where increased flow unsteadiness may offer enhanced potential
for control benefits.
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ÖSTH, J., NOACK, B. R., KRAJNOVIĆ, S., BARROS, D. & BORÉE, J. 2014 On the need for a
nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number
flow over an Ahmed body. J. Fluid Mech. 747, 518–544.

RIGAS, G., MORGANS, A. S., BRACKSTON, R. D. & MORRISON, J. F. 2015 Diffusive dynamics
and stochastic models of turbulent axisymmetric wakes. J. Fluid Mech. 778, R2.

RIGAS, G., OXLADE, A. R., MORGANS, A. S. & MORRISON, J. F. 2014 Low-dimensional dynamics
of turbulent axisymmetric wake. J. Fluid Mech. R 755, R5.

SCHMID, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid
Mech. 656, 5–28.

VOLPE, R., DEVINANT, P. & KOURTA, A. 2015 Experimental characterization of the unsteady natural
wake of the full-scale square back Ahmed body: flow bi-stability and spectral analysis. Exp.
Fluids 56 (5), 99.

817 R2-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

11
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.118

	Simulation and feedback control of the Ahmed body flow exhibiting symmetry breaking behaviour
	Introduction
	Numerical simulations
	Simulation results: reflectional symmetry breaking regimes
	Feedback control for form-drag reduction
	Wake mode analysis

	Conclusions
	Acknowledgements
	References




