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Abstract

A continuous selection and a coincidence theorem are proved in //-spaces which generalize
the corresponding results of Ben-El-Mechaiekh-Deguire-Granas, Browder, Ko-Tan, Lassonde,
Park, Simon and Takahashi to noncompact and/or nonconvex settings. By applying the two
theorems, some intersection theorems concerning sets with //-convex sections are obtained
which generalize the corresponding results of Fan, Lassonde and Shih-Tan to //-spaces. Some
applications to minimax principle are given.
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1. Introduction

In our recent papers [7, 9], we have obtained some new matching theorems,
fixed point theorems and minimax inequalities. By applying a minimax in-
equality in [7], some non-convex generalizations of well-known intersection
theorems concerning sets with convex sections were proved in [8], but we
would have to assume that the product space is a //-space.

In the present paper, we shall first show a continuous selection theorem, an
H-KKM theorem and a coincidence theorem which improve and generalize
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12 Xie-Ping Ding [2]

the corresponding results of Ben-El-Mechaiekh-Deguire-Granas [4], Browder
[6], Ding-Tan [10], Ko-Tan [16], Lassonde [17], Park [19], Simon [20], and
Takahashi [23] to noncompact and nonconvex settings. Next by applying our
earlier results, some intersection theorems concerning sets with //-convex
sections are obtained without the assumption that the product space is a H-
space. These theorems generalize those of Fan [10, 12], Lassonde [17] and
Shih-Tan [22] to noncompact and nonconvex settings. Some applications are
given.

2. Preliminaries

Let X be a nonempty set; we shall denote by 2X the family of all subsets
of X and by &~(X) the family of all nonempty finite subsets of X. Also
An is the standard n dimensional simplex with the vertices eo,el, ... , en.
I f / is a nonempty subset of {0, . . . , « } , Ay will denote the convex hull
of the vertices {e : j e J}. Let X and Y be topological spaces and D
be a subset of X. D is said to be compactly closed (open) in X if D n C
is closed (open) in C for each nonempty compact subset C of X. A map
S: D —* 2 is said to be upper semi-continuous (u.s.c.) if for each x € D
and for each open subset U of Y with S(x) c U, there exists an open
neighborhood V of x in X such that for each z € D n V, S(z) c U. S
is said to be compactly valued if for each x € D, S(x) is compact in Y.

The following notions which were introduced by Bardaro-Ceppitelli in [2]
were motivated by an earlier work of Horvath [15].

A pair (X, {FA}) is called an //-space if X is a topological space (which
need not be Hausdorff) and {FA} is a family of nonempty contractible sub-
sets of X indexed by A e ^(X) such that FA c FA , whenever A c A1. A
subset D of X is said to be (i) //-convex if FA c D for each A € ^{D);
(ii) weakly //-convex if FAnD is contractible for each A e ^{D) (this is
equivalent to saying that (D, {FA nD}) is an //-space); (iii) //-compact in
X if, for each A e &{X), there exists a compact, weakly //-convex subset
DA of X such that D U A c DA . A map F: X -» 2X is called H - KKM
if FA c {JxeA F(x) for each A e

3. Selection theorem, H — KKM theorem and coincidence theorem

The proof of the following useful result is contained in the proof of [15,
Theorem 1] (see also [9]).
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[3] Continuous selection theorem 13

LEMMA 3.1. Let X be a topological space. For each nonempty subset J
of { 0 , . . . , n}, let Fj be a nonempty contractible subset of X. If J c J'
imply Fj c Fj>, then there exists a continuous map f'-\ —* X such that
f(Aj) c Fj for each nonempty subset J of {0, ... , n} .

The following lemma is a slight improvement of [15, Corollary I.I] (also
see [8]).

LEMMA 3.2. Let (Y, {FA}) bean H-space, X be a nonempty subset ofY

and G: X -> 2Y be such that

(a) G is an H - KKM map;
(b) for each x G X, G{x) is closed and for some x0 e X, S(x0) is

compact.
Then f]xex G(x) ? 0.

THEOREM 3.1. Let X be a compact topological space and (Y, {FA}) be
an H-space. Suppose that S, T: X —> 2Y are such that

(a) for each xeX, S(x) ^ 0 and FA c T(x) for each A e
(b) for each y<EY, S~l(y) = {x e X : y G S(X)} is open in X.

Then T has a continuous selection g: X -* Y and there exists a finite set
Ae^iY) such that g{X) c FA .

PROOF. By (a), we must have X = Uygr^ 'Cv) • From (b) and the com-
pactness of X it follows that there exists a finite set

such that X = [J"=Q S~' (y). For each nonempty subset / of {0, . . . , n} , we
define Fj = F, , . Since {Y, {FA}) is an //-space, F} is a contractible

subset of Y and Fj c Fj, whenever J c J'. By Lemma 3.1, there is
a continuous map / : An —> Y such that /(Ay) c F} for each nonempty
subset / of {0, . . . , « } . Let {a,}"=o be a continuous partition of unity
subordinate to the open covering {S~\y)}"=0 . Define a map y. X —> An

by

i=0

For each x e X, let J(x) = {i e {0, ... , n} : a,(x) ^ 0} , then we have
y/(x) G AJ{X) so that

foV,(x)ef(AJ(x))cFJ(x)cFA.
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Since x e 5~1(y;) for each j e J(x), it follows that y} e S(x) for all
j e J(x). By (a), we obtain FJ(x) c T(x) so that / o y/{x) e T(x) for each
x e X. Hence g = f o y/ is a continuous selection of T and there exists a
finite set Ae^(Y) such that g(X) c i ^ .

It would be of some interest to compare Theorem 3.1 with [15, Theorem
3].

Now we shall prove the following H - KKM theorem.

THEOREM 3.2. Let X be a nonempty subset of an H-space (Y, {FA}), Z
be a topological space and G: X —> 2 be such that

(a) for each x e X, G(x) is compactly closed in Z ;
(b) there exists a compactly valued u.s.c. map S: Y —> 2 such that the

map F:X->2Y defined by F(x) = S~l{G(x)) is H - KKM;
(c) there exists an H-compact subset L of Y and a nonempty compact

subset of Z such that for each B e &~{X) and for each z € S(LB)\K, there
is an xeLBf)X such that x <£ G(x)nS{LB). Then K n (C\xeX G(x)) / 0 .

PROOF. For each x e X, let Gt(x) = G{x) nK, then G{(x) is closed
in K by (a). We shall prove that the family {G^x) : x e X} has the finite
intersection property. Let B e &~{X) be arbitrary fixed; then by (c), LB is
a compact, weakly //-convex subset of Y with L U B c LB such that for
each z e S(LB)\K, there is an x e LB n X satisfying z £ G(x) n S(LB).
Now we define the map G2' LBn —> 2 fl by

G2(x) - F(x) n L ^ S"1 (G(x) )nL B .

Then we have the following properties.
(1) By the weak .//-convexity of LB , (LB, {FA nL^}) is an //-space.
(2) For each A € 9r{LB n l ) c 9~(X), we have FA C U^6/1 F(x) by (b)

so that FAHLB c L U ^ M n L ^) = {Jx€A
 G2(<x) • T h u s Gi i s a l s o a n

H-KKM map.
(3) Since 5 is compactly valued u.s.c. and LB is compact in Y, it follows

that 5(LB) is compact in Z so that for each x e X, G(x)r\S{LB) is closed
in Z by (a). By the upper semi-continuity of S, 5 - 1 (G(A: ) n S(LB)) is a
closed subset of X. Hence, for each x e LBC\X,

is compact in LR
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[5] Continuous selection theorem 15

By Lemma 3.2, f]x€LBnx G2^x) ? 0 • Take any y e f)x€LBnx Gi(x)> t h e n

we have

S(y)n( p | (G(x)nS(LB))

By (c), we must have

f) (G(x)nS(LB)))cS(y)nl f| (G(x)nK)
\x€LBnX J \x€LBnX

C S(y) n ( f) (G(x) n *)] = S(y) n ( f| Gl (x)) cf]G{ (x).
\x€B I \x€B I x€B

It follows that C\x€B
 Gi(x) ^ 0. By the compactness of K, f\x&xG,(x) ^

0 , that is, K n (D^eA. G(x)) ^ 0 .

REMARK 3.1. If S is a single-valued continuous map, Theorem 3.2 reduces
to [10, Theorem 1] and in turn generalizes [1, Theorem 1]. It is easy to see
that condition (c) of Theorem 3.2 is equivalent to the condition:

(Cj) there exists an //-compact subset L of Y and a nonempty compact
subset K of Z such that for each B e

(G(x)nS(LB))cK.
x€LBnX

We also note that under hypothesis (a) of Theorem 3.2, condition (c,) is
implied by the condition: there exists an //-compact subset L of Y such
that C\xeLnX

 G(x) is compact in Z . Since every convex space is an //-space
[17], Theorem 3.2 generalizes [17, Theorem I] (which is equivalent to [19,
Theorem 6] to an //-space with a weaker assumption.

In the following we shall prove a coincidence theorem.

THEOREM 3.3. Let X be a nonempty subset of an H-space (Y, {FA}), Z
be a topologicalspace and A, B: X —> 2Z be such that

(a) for each z € Z , B~l(z) ^ 0 and FD c A~\z) for each D e

\
(b) for each x e X, B(x) is compactly open in Z;
(c) there exists an H-compact subset L of Y and a nonempty compact

subset K of Z such that for each B e ^(X) and for each z e Z\K, there
is an x e LBnX such that z e B(x).

Then for any compactly valued u.s.c. map S: Y -+ 2 Z , there exists an
x0 G X such that S(x0) c A(x0).
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PROOF. Define a map G: X -»• 2X by

G(x) = Z\B(x) for each xeX.

Then we have the following properties.
(1) For each x e X, G(x) is compactly closed by (b).
(2) By (c), there exist an .//-compact subset L of Y and a nonempty

compact subset K of Z such that for each B e >^(Ar) and for each z e
Z\K , there is an x e LBnX such that z £ G(x) so that z £ G(x)n5(LB)
for any compactly valued u.s.c. map S: Y —> 2Z .

Now for any given compactly valued u.s.c. map S: Y —> 2Z , define a map
F:X^2Y by

F(x) = 5~1(G(x)) for each x e l .

If F is an / / — KKM map, it follows from Theorem 3.2 that

f| G(x) = f| (Z\B(x)) = Z/ U *(*) ^ 0.

But condition (a) implies Z = UX€A- ^(•X) > w e obtain a contradiction so
that F is not an H - KKM map. Therefore there exists D e ^"(^) and
x0 e FD such that x0 $ \JX(ED

F(X) = \JxeDS~\G(x)) • It follows that
Un ( U 6 D <?(^)) = S{x0) n ( U X € / , ( Z \ 5 ( J : ) ) = 0 . Thus, S(x0) C

- ! /for all x e D so that for any given z e S 1 ^ ) , we have D e ̂ {B (z)). By
(a), FD c A~\z). It follows that x0 G v4~'(z) an
arbitrariness of z e S(x0) it follows that S(x0) c
(a), FD c A~\z). It follows that x0 G v4~'(z) and so z e A(x0). From the

REMARK 3.2. We note that condition (c) of Theorem 3.3 is equivalent to
the following condition:

(c') there exists an //-compact subset L of Y and a compact subset K
of Z such that

Z\ |J B(x)cK.

Theorem 3.3 improves and generalizes [4, Theorem 1, 6, Theorem 1, 16,
Theorem 3.1, 17, Theorem 1.1, 19, Theorem 6, 20, Theorem 4.3 and 23,
Theorem 2 and 5].

4. Intersection theorems concerning sets with //-convex sections

In this section, we always assume that every //-space (X, {FA}) has the
following property: for each A e &(X), FA is //-compact in X. Clearly,

https://doi.org/10.1017/S1446788700032833 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700032833


[7] Continuous selection theorem 17

each convex space X is an //-space [17] with the property that FA = co{A)
for each A e &{X).

The following notations are used throughout this section. Let (Xt, {FA }),

/ = 1, ... ,n, be n (> 2) //-spaces and X = U"=iXi- F o r e a c h ' e

{ 1 , . . . , « } , let Xt = Yij^i Xj • Als 0 *i denotes an element of Xi. For each
i - I, ... , n , Xt xXt: = X and (JC,, Jc(-) denotes an element of X (with the
appropriate ordering).

We shall prove the following intersection theorems.

THEOREM 4.1. Let (Xt, {FA }), i = I, ... , n, be n (> 2) H-spacesand

X = n"=1 Xr If Mx,... ,Mn',Nx,...,Nn are In subsets of X such that
(a) for each i e { 1 , . . . , « } and for each xt € Xf, the section Af((;c() =

{yt e X{: (x(, y() e Af.} is compactly open in Xt;
(b) for each i e {1, . . . , n) and for each y{ e Xt, the section A/.(jP() =

{*,. G Xt : (Xi, yt) € M,.} ± 0 and FD c N^t) = {xt € Xt : (*,., yt) e N.}
for each D^^iM,^));

(c) for at least (n - 1) indices i, there exists an H-compact subset Lt of
Xi such that X.\ (Jx € L Af.(x,) is compact in Xt. Then f|"=i N, i1 0 •

PROOF. We may assume without loss of generality that condition (c) holds
for i = 2, ... , n . By (b), we have

(4.1) Xi = ( J Af (*,.) for each i=l, ... ,n.

From (a), (c) and (4.1) it follows that for each i = 2, ... , n, there exists a
finite set Bi = {x],..., jcf'} 6 ^{Xt) such that

,\ U w
Thus, we have

(4.2)

Since L( is //-compact in A^, there exists a compact, weakly //-convex
subset C, of X. with L. U 5 . c C, and (4.2) imply

(4.3) X. c (J A/.(x,.).
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18 Xie-PingDing [8]

Now we define the maps Mx, Nx: Y\"=2C, —> 2Xl as follows: for each

and
JV1O>1) = { j : 1 e ^ 1 : ( j : 1 , > > 1 ) € ^ 1 } .

By (b), for each j / , G n"=2 C / ' Mi(>S) * 0 a n d ^ c NM f o r e a c h

£>, e 3r(Mx (j>,)). For each x, G X, ,

j>, G n C,: (x,, y,) e
i=2

is open in n"=2 ^i by (a). It follows from Theorem 3.1 that there is a
continuous map g: n"=2C,- -> X, and A{ G ̂ ( X , ) such that g(y{) G
A^CP,) for each >>, G Il"=2 C , a n d £(n?=2C/) c FA • By the assumption that
FA is //-compact, there exists a compact weakly //-convex subset Cx of

Xx with F4_ c C, . Hence, we have g(U"=2c,) c C i a n d U(^i)» ^i) e ^i
for each y, G n"=2 C..

Let C = n"=i ci a n d Ci = Uj^i cj • F o r each /' G {2, ... ,n}, we define
C'the maps M. , AT.: C. - • 2C' by

and

for each x( G C(. Then, for each x, G Ci, M^x,) is open in C( by (a) and

for each yi e C,., M7l(y.) = {*. G C. : (x., y,) e M.} = C,.rW,.(y.) ^ 0 and

FD c A^"1^,) for each Dt <E &{M~\yt)) by (b) and (4.3). From Theorem

3.3 with X = Y — C; and Z — Ct = K it follows that for any compactly

valued u.s.c. map S: C( -> 2C' there is an x( G C( such that 5(x() c ^.(x,.).
Now, let /?f: C\ —> C(, / = 2 , ... , n and ^.: C(. —> C,, / = 1 , . . . , « be

the projective maps, then pt, ^. are continuous open maps. We consider the
following map

0 , " 1 ° 8 ° P ~ [ X • Ct - v 2 C ' ' , i = 2 , ... , n .

Since p( and #( are continuous open maps and g is continuous, it is easy
to see that q7l o g o p~l is compactly valued and u.s.c. on C(. Thus for
i = 2, ... , n , there exists x; G C( such that

(4.4) q-'ogop-'ix^cN^).
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[9] Continuous selection theorem 19

Let x, = (x2, ... , xn) and g(xx) = x , , then

x = (xx, ... ,xn)<E W,.

Since, for i = 2, ... , n ,

x, = g(x{) e g(C2 x • • • x C,._, x { x j x Ci x • • • x Cn)

and

?,"' ° S°P~X = g(C2 x • • • x C._, x {x,} x C. x • • • x Cn)

x C2 x • • • x Ct j x Cj x • • • x Cn ,

we must have

x. = flx, e j r ' o g o p : 1 ^ ) c #.(*,.) for i = 2,...,n.

Hence x = ( x , , . . . , xn) e Nt for all i=l, ... ,n so that f l^ i Nt^0.

REMARK 4.1. Theorem 4.1 generalizes [17, Theorem 1.9] to 2« sets and
//-spaces with weaker assumptions. We observe that condition (c) of Theo-
rem 4.1 is implied by the following condition:

(c,) at least (n - 1) of the X('s (say X2,... , Xn) are compact. Indeed,
in the case, (c) is satisfied by Lt — Xt for i = 2, ... , n , because by (b) the
set ^AUx €.*• ^i(xi) ~ 0 • Thus Theorem 4.1 also generalizes [11, Theorem
1] to //-spaces. It would be of some interest to compare Theorem 4.1 with
[3, Theorem 2].

THEOREM 4.2. Let (Xt, {FA}), i = 1 , . . . , n, be (> 2) H-spaces and

^ = Il"=i Xi.IfMl,...,Mn,'Ni,...,Nn are In subsets of X such that
(a) for each i e { 1 , . . . , « } and for each x( € Xt, the section Af^x,-) is

compactly open in Xi;
(b) for each i ' e{ l «} and for each yt e Xt, the section M^y^ ^ 0

and FD c N.fy) for each Dt e ^(M.(j) .));
(c) for at least (« — 1) indices i, there exists an H-compact subset Lt

of X( and a compact subset Kt of Xt such that Lt n A/,(y,) # 0 for each

Then nltN^e.

PROOF. We shall show that condition (c) is equivalent to condition (c) of
Theorem 4.1 and hence Theorem 4.2 follows from Theorem 4.1. Suppose
that condition (c) of Theorem 4.1 holds. Let Xi\\JxeL M(x() = Kt, then

Ki is a compact subset of Xi and for each yt e Xi\Ki, yt e [JxeL A
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20 Xie-Ping Ding [10]

Thus, there exists x, G Z,. such that (xf., y() G Af., that is xt G L, n Af.(y.)
and hence L( n Af,(>>,.) 7̂  0 . Therefore condition (c) of Theorem 4.2 holds.
If condition (c) of Theorem 4.2 holds, then for each y. e Xt\ \JX €L A/(.(x(),
y,. $ Af^x,) for all x. G L. SO that xi g A/.(y.) for all xi G L(.. Thus
L. n A/(.(y(.) = 0 . It follows that y\ e K( and

xfiL,

By (a), Xt\ \JX eL Mt(xt) is closed in Ki so that it is compact in Xt. This
proves that condition (c) of Theorem 4.1 holds.

THEOREM 4.3. Let {Xt, {FA}), i = 1, . . . , n, be n (> 2) H-spaces and

X = n"=1 Xr If Mx, ... ,Mnl Nx, ... , Nn are In subsets of X such that
(a) for each i G { 1 , . . . , « } and for each xt G X ( , r/ie section Mt{xt) is

compactly open in Xt;
(b) for each i G { 1 , . . . , « } and for each yt G X ( , fAe section A/) (>*,•) ^ 0

a«rf F ^ c iV((j;,.) /or eocA D,. e ^{M^));
(c) r/zere exute a compact subset K of X such that for each i = I, ... , n,

the projection Li of K on Xt is H-compact in Xt and such that K n
(n?-i Mfa)) * 0 for each y G X\K.

Then fill ^ 0 -

PROOF. For each / = 1, . . . , n , let Lt and Kt be the projections of K
on Xi and X; , respectively, then Lt is //-compact in X( by the assumption
and Kt is a compact subset of Xi. The condition (c) of Theorem 4.3 imply
that for each i = I, ... ,n, L. n A/^j;.) / 0 for each y. G - ? , \ ^ , . By
Theorem 4.2, f|"=i Ni^z-

REMARK 4.3. Theorem 4.3 generalizes [12, Theorem 11] in several ways.
We note that if condition (b) of Theorem 4.3 is replaced by the following
condition:

(b,) for each i e { l «} and for each yt G Xt, the section Af̂ y,-) / 0
and for at least q (> 2) indices / , FD c Nt(yt) for each Dt e &(Af^y,.))

and for each y. G ^ .
Then at least q of the sets N{, ... , Nn have a nonempty intersection by

applying Theorem 4.3 for the q //-spaces satisfying condition (b,). Thus
Theorem 4.3 also generalizes [13, Theorem 15].
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[11] Continuous selection theorem 21

5. Some applications to the von Neumann Minimax Theorem

For convenience, we state the special case n = 2 of Theorem 4.1.

THEOREM 5.1. Let (X, {FA}) and (Y, {FA}) be two H-spaces and let
Ml, M2, iV,, N2 be subsets of X x Y. Suppose that

(a) for each x € X, the section M, (x) = {y e Y : (x, y) € Mx} is
compactly open in Y, the section M2(x) = {y € Y : (x, y) e M2} ^ 0 and
FA c N2(x) for each A e ^(M2(x));

(b) for each y e Y, the section M2(y) = {x e X : (x, y) € M2} is
compactly open in X, the section M{(y) = {x e X : (x, y) € Af,} ^ 0 and
FA C Nx{y) for each A e ^(M^y));

(c) there exists an H-compact subset Xo of X such that the intersection
C\xex ( A - ^ i M ) w compact in Y.

Then the intersection Nt n N2 is nonempty.

REMARK 5.1. If the coercive condition (c) is replaced by the following
condition:

(c,) there exists an //-compact subset Yo of Y such that the intersection
f]yeY {X\M2{y)) is compact in X, then the inclusion of Theorem 5.1 still
holds. We also note that if at least one of X or Y is compact, then condi-
tion (c) of Theorem 5.1 holds. Theorem 5.1 improves and generalizes [22,
Theorem 2] and Ha's result [14] in several ways.

THEOREM 5.2. Let (X, {FA}) and (Y, {FA}) be two H-spaces and
f,s,t,g:XxY-*R and X e R be such that

(a) s<t on X xY;
(b) for each x e X, y n f(x, y) is lower semi-continuous on each compact

subset of Y and for each y &Y, x >-> g(x, y) is upper semi-continuous on
each compact subset of X;

(c)for each xeX, Ae f({y eY:g(x,y)< X}) imply FA c {y e Y :
t(x,y) < X} and for each y e Y, A e F{{x 6 X : f(x, y) > X}) imply
FAc{xeX:s(x,y)>X};

(d) there exists an H-compact subset Xo of X such that the intersection
C\xex0(

Y\{y £Y:f(x,y)> X}) is compact in Y.
Then either there exists y e Y such that f(x, y) < X for all x e X or

there exists x € X such that g(x, y) > X for all y eY.
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P R O O F . Suppose that the conclusion does not hold. Let

Ml = {(x,y)eXxY:f(x,y)>X},

M2 = {x,y)eXxY:g(x,y)<X},

Nl = {(x,y)eXxY:s(x,y)>X},

N2 = {(x,y)€XxY:t(x,y)<X}.

Then for each x & X,

M2(x) = {yeY:g(x,y)<X}^0

and for each y e Y,

Moreover,
(i) for each x e X, Mx(x) = {y G Y : f(x, y) > X} is compactly open in

Y and for each y e Y, M2(y) — {x € X : g(x, y) < X) is compactly open
in X by (a);

(ii) for each x e l , FA c N2(x) whenever A e ^(M2(x)) and for each
y G Y, FAcNl(y) whenever Ae&'iM^y)) by (c);

(iii) condition (c) of Theorem 5.1 holds by (d).
Thus all hypotheses of Theorem 5.1 are satisfied so that JV, n iV2 / 0 . Take
any (jc, y) G N{ n N2, then s(x, y) > k which contradicts (a). Therefore
the conclusion must hold.

Recall that a real-valued function (p defined on an //-space (X, {FA})
is said to be //-quasi-concave if for each real number t, the set {x e X :
(p(x) > t) is //-convex; cp is said to be //-quasi-convex if —q> is //-quasi-
concave.

COROLLARY 5.1. Let (X, {FA}) and (Y, {FA}) be two H-spaces and
f,s,t,g:XxY^R be such that

(a) / < s < t < g on X x Y;
{b)for each x e X, y H f(x, y) is lower semi-continuous on each compact

subset of Y and for each y e Y, x t-> g{x, y) is upper semi-continuous on
each compact subset of X;

(c) for each xeX, t(x, y) is an H-quasi-convex function ofy on Y and
for each yeY, s{x, y) is an H-quasi-concave function of x on X;

(d) there exists an H-compact subset XQ of X such that for each ( s R ,
the intersection f\x€X (Y\{y e Y : f(x, y) > t}) is compact in Y.

Then for each XeR, either there exists y e Y such that f(x, y) < X for
all x G X or there exists x G X such that g{x ,y)>X for all y G Y.
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REMARK 5.2. Theorem 5.2 and Corollary 5.1 improve and generalize [5,
Theorem 5.4]. It would be of some interest to compare Theorem 5.2 and
Corollary 5.1 with [8, Theorem 4 and Corollary 4].

THEOREM 5.3. Let (X, {FA}) and (Y, {FA}) be two H-spaces and
f,s,t,g:YxY-*Rbe such that

(a) s<t on X xY;
(b) for each x e X, ) » H f(x, y) is lower semi-continuous on each compact

subset of Y and for each y € Y, x i-> g(x, y) is upper semi-continuous on
each compact subset of X;

(c) for each y e R and for each x e X, FA c {y e Y : t(x, y) < y}
whenever A e ^({y 6 Y : g(x, y) < y), and for each y e l and for each
y £ Y, FA c {x G X : s(x, y) > y} whenever A e ^({x € X : f(x, y) >
y});

(d) there exists an H-compact subset L of X and a compact subset K of
Y such that

inf sup f(x, y) < inf sup f(x, y).

Then the following minimax inequality holds,

a= inf sup/(x, y) < sup i
zr xex

PROOF. Without loss of generality, we may assume that a ^ -oo and
P / +oo. Assume to the contrary that a > /?. Choose a real number k such
that a > X > fi . Let

Ml={(x,y)eXxY:f(x,y)>X},

M2 = {(x,y)eXxY:g(x,y)<l},

Nl={(x,y)€XxY:s(x,y)>l},

N2 = {(x, y) e X x Y : t(x, y) < A}.

Then a > X implies that for each y e Y, M{{y) ^ 0 ; and k > /? im-
plies that for each x 6 X, M2{x) ^ 0 . The condition (d) implies that
C\x€L(Y\M\(x)) c K a n d e a c n M\(x) i s compactly open in Y by (b),
thus Ox^iYXM^x)) is compact in Y. The other conditions of Theorem
5.1 are easily verified. By Theorem 5.1, Af, n iV2 / 0 so that there exists
(Jc, y) € X x Y such that s(x, y) > k and t(x, y) < k which contradicts
(a). This completes the proof.

COROLLARY 5.2. Let (X, {FA}) an d(Y, {FA}) be two-H-spaces and
f,s,t,g:XxY^R be such that

(a) f<s<t<g on XxY;
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(b)for each x e X, y •-+ f{x, y) is lower semi-continuous on each compact
subset of Y and for each y e Y, x i-> g(x, y) is upper semi-continuous on
each compact subset of X;

(c) for each xeX, t(x,y) is an H-quasi-convex function of y on Y for
each y e Y, s{x,y) is an H-quasi-concave function of x on X;

(d) there exists an H-compact subset L of X and a compact subset K of
Y such that

inf sup f(x, y) < inf sup f(x, y).
y£Y y€Y\Y

Then the following minimax inequality holds,

a = inf sup/Ox, y) < sup vafg{x,y) = 0.
y£Y xex xex yer

REMARK 5.3. Theorem 5.3 and Corollary 5.2 generalizes [22, Theorem
4(2), 3, Corollary 5.5] and Liu's result [18] in several ways. When / = s -
t — g, the conclusion of Corollary 5.2 (respectively Theorem 5.3) implies the
following minimax equality, which generalizes the minimax principle of the
von Neumann type due to Sion [21]:

inf sup f(x, y) = sup inf f(x, y).
y£Y xex xex ytr

It would be of some interest to compare the minimax equality with the cor-
responding result of Barbaro-Ceppitelli in [3].
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