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Maximal sum-free sets in finite
abelian groups, 11

H.P. Yap

Maximal sum—free sets in groups Zn , Where n 1is any positive

integer such that every prime divisor of n 1is congruent to 1

modulo 3 , are completely characterized.

Let G be an additive group. If S and T are non-empty subsets of
G ,wewrite S*T for {8 t;s €S, t €T} respectively, |S| for
the cardinality of S and S for the complement of S in G . We say
that S5 is sum-free in G if S and S + S have no common element and
that S 1is maximal sum-free in G if S 1is sum-free in (G and

15| 2 || for every T sum—free in G . We denote by A{G) the

cardinality of & maximal sum-free set in G . We say that S is in a.p.
(arithmetic progression) with difference d if S = {s, s+d, ..., s+nd}
for some s, d € G and some integer 7 = 0 . We say that S is

quasi-periodic if there exists a subgroup H , of order =22 , of G such
that S is the disjoint union of a non-empty set S' consisting of
H-cosets and a residue set S" contained in a remaining H-coset. We say

that a prime p is a bad prime if p 1is congruent to 1 modulo 3 .

Erdos [2] gives certain upper and lower bounds for A(G) of finite
gbelian groups G . Exact values A(G) for all finite abelian groups G ,

except when every prime divisor of |G| is bad, were determined by

Diananda and Yap [7]. 1In this exceptional case,
|6](m-1)/3m = A(6) = (|¢|-1)/3

where m 1is the exponent of (G . For elementary abelian p-groups (G of
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order pn , Rhemtulla and Street [5] prove that A(G) = kpn-l , where

p =3 +1 is a prime.

The structure of maximal sum-free sets in the following groups were

completely characterized:

(i) G 1is any abelian group such that |G| has a prime divisor

congruent to 2 moduwlo 3 [71, 71;

(ii) G = Zp where p is a bad prime [§, 5];

(iii) G (abelian and non-abelian) is of order 3p , where p is a
bad prime [9];

(iv) G 1is an elementary abelian p-group where p is a bad prime

[61;
(v) G 1is an elementary abelian 3-group and G = Z3 €)Z3 G)Zp
where p 1is a bad prime [10].

We shall apply a Lemma in [5] and Theorem 2.1 in [3], which are
restated respectively as Lemma 1 and Theorem 1 here, to prove Theorem 2

which generalizes some results in [8] and [5].
LEMMA 1. Let G = Zn » n=3k+1 and S be a sun-free set in G
satisfying |S| =k, -S=5 ad S=85+S . Then

(1) if |(5+g)nS| =1 for some g in G, then [(S+g*)nS| =k - 3
where g* = 3g/2 and *g/2 € S ;

(i1} if |(S+g)nS| = A > 1 for some g # 0 in G , then
g* =g, - 82 , where 81, 85 (# 81) € S and s ,+g, 8,49 € 3,
is such that |(S+g*)nS| = k - (A+1) .

THEOREM 1 (Kemperman). Let G be an abelian group with subsets A
and B such that |a|, |B| 2 2. If |A+B| = |A| + |B| - 1, then either

A+ B is in a.p. or A + B s quasi-periodic.
We first prove the following lemmas.
LEMMA 2. Let G = z, where n is any positive integer such that

every prime divisor p of n is bad. If S is a maximal sum-free set in
G , then
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(i) if -5 #8, |S+S*| = |s| + |s*| - 1, where S*=-Su S ;
(ii) if -5 =6, either |5+S| =2|5| -1 or §=85+5.

Proof. By Kneser's Theorem [4], there exists a subgroup X of G
such that S+ S+ K=S5+5 and [S+S| = 2|s+k| - |k| . It is clear that

K 1is a proper subgroup of G .

Suppose that |K| =g >1 . Let n=3k+1=pg, p=3r+1,
q=3+*1. Then X(G) =k =rg+ s and

l¢] - |s] =2k + 1= |s+5] = 2(k/qlq - ¢
where (x] denotes the smallest positive integer = x .

Thus 2k + 1 = |5+S| = (2r+l)q , which is impossible. Hence
|s+s] z 2|S| -1 .

If -S=35, then |S+5| is odd and from 2k + 1 2 [S+S| = 2k - 1,
it follows that either |S+S| = 2|5| -1 or |[$+S] = 2|S| + 1 and thus
§5=85+5.

If -5 # 8 , then again by Kneser's Theorem there exists a proper
subgroup X of G such that S+ 5% + K =5 + 5% and
|s+s%| = |s+k| + |s*+k| - |K| .

In this case, we can show that |XK| =1 . Thus

2k + 1

v

|s+s*] = |S| + |s*| =12 |S] + (|S]+2) -1 =2k + 1 .

Hence |[S*| = |S| + 2 ana |[S+S*| = |S| + |s*] -1 .

The proof of Lemma 2 is now complete.

LEMMA 3. Let G = Z, where n 18 any positive integer such that
every prime divisor p of n is bad. Let S be a maximal sum-free set
in G.

(I) If -S#S, then S can be mapped onto {k, k+1, ..., 2k-1}

under an automorphism of G .

(II) If -5=5 and |S+S| = 2|S| - 1, then S5 can be mapped onto
{k+1, k+2, ..., 2k} wunder an automorphism of G .

Proof (I). If -S# S , then by Lemma 2, |S+5%| = |5| + |8*] -1 .
By Kemperman's Theorem, we have either S + S* is in a.p. or S + S* is

quasi-periodic.
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Suppose that § + S* is quasi-periodic, then from S = S + S* it
follows that S is also quasi-periodic. Thus &' , which is a subset of
S consisting of H-cosets, will be a maximal sum-free set in G/H while
the non-empty residue set S" which is contained in a remaining H-coset
will violate the sum~free property of S . Hence S + S* cannot be
quasi-periodic.

Let S+ 5% ={a'+id; ¢ =0, 1, ..., 2k} . Since [S§+§*| =2k +1 ,
therefore (d, n) =1 (the g.c.d. of d and »n ). Hence under an
automorphism of G , we can write S + $* = {a+{; ¢ = 0, 1, ..., 2k} .
Then S =05 + 5% = {a+i; ¢ = 2k+1, ..., 3k} . From [S*| = |S]| + 2 , we
have either

(i) 2a + 2k + 3 + 3k

or

"

0 (mod n) , that is a = -(k+1) (mod =) ,

(i1) 2a+ 2k + 1+ 3k ~-2=0 (mod n) , that is g = -(k-1)
(mod n) .

(i) gives the maximal sum-free set S = {k, k+1, ..., 2k-1} .

(ii) gives S = {k+2, k+3, ..., 2k+1} which can be mapped onto
{k, k+1, ..., 2k-1} under an automorphism of G .

Proof (II). Applying similar methods we can show that under an
automorphism of G , S + S can be mapped onto
S+S=Ha+iy £ =0,1, ..., 2k-2} . Since -§ =S , therefore
2a + 2k -2 =0 (mod n) , that is a = -(k-1) '(mod n) .

Then S + S = {-(k-1), -(k-2), ..., k-1} , and

S5cS+ 8 ={k, k1, ..., 2k+1} .
But 2k =k +k § S+ S, therefore k ¢ S . Hence S = {k+l, ..., 2k} .
The proof of Lemma 3 is now complete.
LEMMA 4. Let G = Z,, n= 3k +1 and S be a sum-free set in G

satisfying S| =k, -5=5 and S=S5S+ 5 . Then |(S+tg)nS| > 1 for
every g €8 with (g, n) > 1.

Proof. We first note that (S+tg) n S # @ if and only if g ¢ S .

Suppose that [(S+g)nS| = 1 for some g € § with (g, n) > 1 . Then
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by Lemma 1, [(S+f)nS| = k - 3 where f = 3g/2 .

Now |(S+f}nS| # k , since § cannot be a union of cosets of a

nontrivial subgroup of G . Thus |(S+f)nS| =k -1, k-2 or k-3.

Let H = [f] , the subgroup of G generated by f , where
Bl =p=3r+1>1, pg=n, qg=3s+1, [S|]=sp+r.

(i) 1If |(S+f)nS| =k - 1 , then

S = UH, U {al, al+f, e al+mlf}

where each Hi is a coset of X , 'UHil = sp and m o=r- 1 . In this
case it is clear that S" = {al, a;*fs «evs ay f} CH. But Hc S+ 8§
which contradicts the fact that (S+S) n S =¢ .

(ii) If |[(S+f)nS| = k = 2 , then

5=UH v {al, atfy e al+mlf} U {ae, a2+f, cees a2+m2f} , M. = m, .

Since -5 =5, & 22 , therefore HC S5+ S , and

-{al, atf, .. a +mlf} {ag, ay*fs ooy a2+m2f} .

Hence m, +m, is even. If |UH7:! = (s-1)p , then mo+m,=p+r-2
is odd, which is impossible. Hence [UHiI = gp and m o+ my=r - 2 .
But then

{al, cens a+mlf, oyt a2+m2f} + {ai, ceey a+mlf‘, pr tres a2+m2f}

contains elements from 3 distinct cosets of H , which contradicts the fact
that S=S5+S .

(1ii) If [(S+f)nS]| =k - 3, then
= UHi u {al, e al+mlf‘, Qs vens a2+m2f, azs ees a3+m3f}
m, =m, <m
Suppose that S n H = ¢ . Then from -S =S5 we know that
{al, ceey al+mlf, Aps +o+s a2+m2f, Azs vevs a3+m3f}

is contained in exactly two distinct cosets of H . Without loss of

generality, assume that a2 € al + H . Then
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—{al, cees agtfy ans e, a2+m2f} = {a3, cees, a3+m3f}

which is impossible, because the right hand side is in a.p. with
difference f while the left hand side is not in a.p. with difference
f . Hence S n H # p . But then IUHi] =0 and s =2

s
ml + m2 + m3 =2p +r - 3 . In this case, S + S will contain 5 distinct
full cosets of H which is impossible.

The proof of Lemma 4 is now complete.

THEOREM 2. Let G = Zn where n 1is any positive integer such that

every prime divisor of n = 3k + 1 is bad. If S is a maximal sum-free
set in G , then S can be mapped, under an automorphism of G , to one of

the following:
(£) {k4l, k+2, ..., 2k} ;
(<t) {k, k+1, ..., 2k-1} ;
(ii<) {k, k+2, k+3, ..., 2k-1, 2k+1} .

Proof. By Lemmas 2 and 3, it remains to show that if -S =9 ,
S=8+5, then S can be mapped to {k, k+2, k+3, ..., 2k-1, 2k+1}
under an automorphism of G . The method used here is a modification of a

method due to Rhemtulla and Street [5].

If |(S+g)nS| =1 for some g € G such that (g, n) = 1 , then by
the same method as the proof of Theorem 2 in [5], we can show that under an
automorphism of ¢ , S can be mapped onto
{k, k+2, k+3, ..., 2k-1, 2k+1} .

We are now left with the case where S satisfies the conditions of
Lemma 1 and |(S+g)nS| # 1 for eny ¢ in G satisfying (g, n) =1 . If
|(S+g)nS| is maximal for some g satisfying (g, n) = 1 , then by taking

an automorphism of G if necessary, assume that [(S+1)nS| is maximal.

We write
(1) S = {al, cres @M, ps eees Ayt ens Gys s ah+mh} N
< < + < -] < < < -1 < < and
where 1 al sa ml a2 1 a2+m2 PN a, 1 ah+mh n o,
a., ..., a.+m. denotes a string of 0n.+1) consecutive elements of S .
T T 1 7
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We have
(2) [(s+1)}nS| = k - h = |(S+g)nS| for every g # 0 in G .
Hence h is minimal in (1).

Let X = {a ves ah} . Then

12 %0

Y = {al+ml+l, e ah+mh+1} =1-X,

since -5 =65 .
For each 2 =1, ..., h, a.-14¢5 . Since §=5+5 and

[(5+g)nS| =z 2 for any g (#0) € S (by assumption and Lemma 4),

(# s ) in S such that a. -1 =s, - s
1 7

therefore there exist - 1

§1s 85
and g = -5, - &, # 0 . We have now s, tg, s,*+g ¢ S and

k -h= |(S+g)ﬁS| > 2 , therefore, by Lemma 1, we have

- > - - =
](S+ai 1)nS| =z h -1 . But for any 81,8, €5, sy +a. -1=s,
implies that 81 € X, &5 € ~X and 81 + a; € Y . Hence
(3) Bz I(X+ai}nY| >h-1 forall =1, ..., h .

Suppose that h = 3 .

If for each 4 =1, ..., h , X+ aj =Y=1-X, then

X+ [x-x] =X, h=|x| = |[xX]| = p , which divides # , and
h

(4) 2 Z a, * ha.=h (mod n) for each j =1, ..., h .
i=1 J

Thus

(5) h[ai—aj] 20 (mod n) for every T, J =1, vvu, b .

If »n is a prime, we already get a contradiction here. Otherwise,

X=a+H vwhere H=[q], pg =n . We then have

(6) a, =a, a

1 =atq, ... , a =a+ (p-l)g .

2 p

Substituting (6) into (4) for j =1 , we get (3a-1)p 20 (mod n)
from which it follows that a = 2s + 1 (g = 3s+l) and

S = {28+1, ..., 2s+1l4m

15 e 2s+1+(p-1)q+mp} .
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But 2s + 1+ 28 + 1+ (p-1)g + n% > n which contradicts the fact that
a, + a, + mp =n . Hence, for at least one ¢t ¢ {1, ..., h} ,
| (x+a,)n¥] =k -1 .
If there is only one t € {1, ..., A} such that |(X+at)nY| =h-1,

then there are at least two distinet <, j € {1, ..., A} such that

X + a, = Y=XxX+ aj and thus X + ai - aj = X from which it follows that

X 1is the union of cosets of a nontrivial subgroup of ¢ . (If »n is a

prime, we get a contradiction here.) Thus |(X+at)nY! # h - 1 which
contradicts the hypothesis.

Hence there are at least two tl, t2 € {1, ..., h} such that

|(X+atl]nYI =h-1-= |(X+at2)nY| . Then

(7) {al, ees Gy qs Gpys ees ah} +a, =

1- {al, cees Gy 1s @ygs vees ah} s =t t,o
from which it follows that
h
(8) 2 ‘Z

1=1

1M
B
1

=

a;, + (h—3)at (mod n) , t=t

1’ 72

and thus

(9) (h'3)(at1'at2) 0 (mod n)

Suppose there are also at least two rl, r2
|(X+ar )nY[ =h . Divide {1, ..., h} into the union of two disjoint
7

subsets R = {rl, cees ru} , uz2, T= {tl, vees tv} , V=2 such

€ {1, ..., h} such that

that \(X+ar ]nY = h and
Z

[X+at ]nY‘ = h -1 . Then
i

(10) h(ar—ar,) =0 (mod »n) for every r, r' € R,
(11) (h-3)(at—at,) =0 (mo@ n) for every t, t' €T .

Let
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12 a + a =1 -a mod n

(12) t) ry p1 ( ) )

13) a, +a =1l-a (mod n) .

( t2 r) )

Then a -a za -a (mo@ n) from which it follows that at least

ty ta P2 P1
one of Pys Pp is in T . Suppose that p; = t €T . Let

(14) a, +a =1-a {(mod n)
ps3

Then from (12) and (1), we have a. -a. Za - a (mod =) and thus
r) ry P3 t

py =7 € R . Then h(ar-at) =0 (mod =) , and thus from (10), we have

(15) h(ar—at) =0 (mod n) for every r € R .
Let
16 a, +a,_ =1-a mod n
(16) t2 ry Pu ( )
Then from (14) and (16), we have a, - a, =Za_ - a_ (mod n) from
ty t2 Pu r

which it follows that Py, t' € T . Hence (h—3)(at,—ar) =0 (mod n) .
Then from (11), we have

0 (mod n) for every ¢t € T .

(17) (n-3)(a,-a,)

But (15) and (17) cannot occur at the same time. Hence for at most one
Jge{y, ..., n}, |(X+aj}nY| = h ., But then (9) is true for every

tys t, € {1, 2, ..., g-1, g+1, ..., h} . We have either
(i) h-3=wvwp>0, pln, (v, n)=1 and
|- _— 1]
X' = {al, oo @5y aj+l’ ces ah} =g+ 4

vhere A' € H = [q] , pq =n , which is impossible because
h-1l=vp+2>|G/H| ; or

(ii) A =3 and thus
S5 =1{a, ..., ate-1, k+tc+l, ..., 2k-c, 3k+2-a-c, ..., 3k+l-a}
vhere a <k and e < k/2 .
Then from (8) we get

0 = 3 -1 - 2{atk+e+l-(a+e-1)} (mod n) ,
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that is 1 =k + 2 (mod n) which is impossible.

Thus h =<2 . But h #1 , because S is not in a.p. If A =2,
then S = {#k/2, *(1+k/2), ..., *(k-1)} which maps, under an automorphism
of G , to {k, k+2, k+3, ..., 2k-1, 2k+1} .

Finally, suppose that |(Stg)nS| =2 2 for every g # 0 in G with
(g n) =1 and that |(S+g)nS| is maximal for some g in G with
(g, n) >1 . By taking an automorphism of ( , if necessary, suppose that

g|n . Then we can write
5 =UH, v {al, Q1G> evs QLGs ey Aps Gtg, e, ah+mhg}

where each Hi is a coset of # = [g] ,

no _
s" = {al, a;*gs .o al+mlg, cevs @ GG, -.., ah+mhg}

does not contain a whole coset of # , a, + (mi+l)g E: aj (mod n) for

any 2,4 =1, .., B, 1= a; <a, <o <qy<n, and

[(S+g)nS| = k = B = [(Stg')aS| for every ¢g' 20 in G .
Let X = {al, Ays ones ah} . Then
Y = {ay+(m+1)g, «oos apr(ml)gl =g - x
since -8" = 5" . By a similar method we can show that (3) holds good.
Suppose that % =2 3 . If foreach Jj=1, ..., h , X + aj =Y=g-X,

then k= |X| = |[x-X]} = p , and this divides » , and (6) also holds
good. We have then a = (2s+l)g (mod ¢q) . Now if |UHi| # 0 , then

HNnS =9 . We note that the number of elements of ai in X that
belong to a particular coset Hi of H and the number of a. in X

that belong to -Hi are the same, therefore since p 1is odd, there is at
least one a; € X such that a € H which contradicts the fact that
HnS =19 . Hence in this case, |UHiI =0 and HnS # ¢ . Nowif

(gs q) =d>1, then d|la and thus d divides each element in § which
is impossible. Hence (g, p) =g and ¢ < n/g . It is then clear that

each m. <q -1 . Otherwise for some < with 1 =7 =p ,
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a+ (g+i-1)q € § will be one of the elements of S that belong to
{at(i-1)g*g, ..., a+(i—l)q+mig} or a+ {g+i-1)q = a + (i-1l)g + (mi+l)g ,

which is not true. From this, it can be shown that each of the cosets K{

of K =[ql which is contained in S 1is of the form a + g + X ,

2q if g < g

and g - 3a=xq if g >q where x Z1 (mod 3) . Now since

a+ (g*+2q)/3 - g + K
if g<gq and -a+X=a+ (g-xq)/3-g+ K if g > q . But neither

2 <gq-1. Since 3a =g (mod g¢g) , we have 3a - g

a+ K< S , therefore -a+ K< S . We have -a + KX

(g+2q)/3 nor (g-zq)/3 is of the form ig , 1 <17 =<g-1 , for otherwise
g will divide g .

By a similar method and the proof of Lemma 4, we can show that all the
other possibilities cannot occur. Hence A =<2 . If h =1, 2 , then
using the proof of Lemma 4 again, we can show that these cases cannot occur
also. Hence the possibility that |(S+g)nS| is maximal for some g with

(g, n) > 1 1is excluded.

This is the end of the proof of Theorem 2.

References

[1] Palahenedi Hewage Diananda and Hian Poh Yap, "Maximal sum-free sets

of elements of finite groups", Proe. Japan Acad. 45 (1969), 1-5.

(2] P. Erdos, "Extremal problems in number theory”, Proe. Sympos. Pure
Math. 8, 181-189 (Amer. Math. Soc., Providence, Rhode Island,

1965).

[3] J.H.B. Kemperman, "On small sumsets in an abelian group", Acta Math.
103 (1960), 63-88.

[4] Henry B. Mann, Addition theorems: The addition theorems of group
theory and number theory (Interscience Tracts in Pure and
Applied Mathematics, Number 18, John Wiley, New York, London,
Sydney, 1965).

[5] A.H. Rhemtulla and Anne Penfold Street, "Maximal sum-free sets in
finite abelian groups", Bull. Austral. Math. Soec. 2 (1970),
289-297.

https://doi.org/10.1017/50004972700046864 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046864

54

[6] A.H.
(7] H.P.
{81 H.P.
(91 Hian
(101 H.P.

University
Edmonton,

Canada.

H.P. Yap

Rhemtul la and Anne Penfold Street, "Maximal sum-free sets in

elementary abelian p-groups", Canad. Math. Bull. (to appear).
Yap, "The number of maximal sum-free sets in Cb", Nanta Math.
2 (1968), 68-71.

Yap, "Structure of maximal sum-free sets in Cp"’ Acta Arith.
17 (1970), 29-35.

Poh Yap, "Structure of maximal sum-free sets in .groups of order

3p", Proc. Japan Acad. 46 (1970), T758-762.

Yap, '"Maximal sum-free sets in finite abelian groups", Bull.
Austral. Math. Soe. 4 (1971), 217-223.

of Alberta,

https://doi.org/10.1017/50004972700046864 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046864

