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Let Q(X) denote \\mil"I."(X) and let BT denote the classifying space of the
r-torus. In [8], Segal showed that Q(BTl) is homotopy equivalent to a product BU X F
where BU denotes the classifying space for stable complex vector bundles and Fis a space
with finite homotopy groups. This result has been a very useful one. For example, in [5] it
was used to show that up to a stable homotopy equivalence there is only one loop
structure on the 3-sphere at each odd prime p. (The subsequent work of Dwyer, Miller,
and Wilkerson shows this result is even true unstably, at every prime p.) In [6] it was used
to classify, up to homology, the stable self maps of the projective spaces CP" and HP". In
[5] I asked if a splitting similar to Segal's might exist for Q{BT) when r > 2. In particular,
since the homotopy and homology groups of BU are torsion free it seemed natural to ask
if Q(BT), when r>\, could likewise contain a retract with torsion free homology and
homotopy groups and whose complement is rationally trivial. The purpose of this note is
to show that the answer is no.

THEOREM 1. For r > 2 , the space Q(BT) does not have the homotopy type, at any
prime p, of a product Z X F where the homotopy groups and the {reduced) integral
homology groups of Z are free Z^pymodules, while those of F are finite.

There are two main ingredients in the proof. The first is the Wilson spaces B{n,p).
These spaces were constructed by Wilson in his thesis [9] and later studied by Zabrodsky
in his book [10]. For each prime p and each natural number n there exists a p-local
//-space, B{n,p), with the following properties:

fO if q <n

» itq = n.
(2) Each of the higher homotopy groups and higher integral homology groups of

B{n,p) are free Z(p)-modules of finite rank.
(3) The space B{n,p) is atomic; in other words, any self map of the space which

induces an isomorphism on nnB{n,p) must be a homotopy equivalence.
In Theorem 6.2 of [9], Wilson shows that any p-local //-space of finite type over Z(p),

whose homotopy groups and homology groups are torsion free, is homotopy equivalent to
some product of B(n,p)'s. A relevant example is

>)xB{4,p)x...xB{2p,p).

(1) KqB{n,p)<

Here the first factor can be identified with the Eilenberg-MacLane space K{Z(p), 2) while
the remaining p - 1 factors give a p-local splitting of BSU. This particular splitting was
first obtained by Peterson [7].

In view of Wilson's result, the proof of Theorem 1 amounts to showing that when
r > 2 , there is no product of fi(«,p)'s which has the same rational homotopy type as
Q(BTr) and which also occurs as a p-local retract of Q(BTr). Suppose for the moment
that such a product did exist. Since the B(n,p)ys are atomic, it would follow that each
retract of Q(BTr) would likewise decompose as a product of B(n,p)'s and rationally
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trivial spaces. In particular Q(BT2) is a retract of Q(BTr) when r>2, so to prove the
theorem it suffices to show that no such product exists at any prime when r = 2. To get
started we need to know a little about the higher homotopy groups of a B(n,p).

PROPOSITION 2. Let fn(t) denote the Poincare series for the graded Z( p ) module
2pr -2

and let v{r) = -

t"

Then

fn(t)={

ifv(0)<n<v(l),

( 1 - i

ifv(k)<n<v(k + 1).

Proof Fix p for the moment and let B(n) denote B(n,p). Wilson showed that

£>*(„ +1)-F ( l l ) i f n ^ ( r ) '
V ' \B(v)XB(pv) itn = v = v(r).

It follows that

— = /„ \fn^v(r),

while

Pv— = f +f
( Jv^Jp

— f 4- tpv-(v + \)f
Jv ^ ' Jv +

Now multiply through by t and solve for/u+1 to obtain

Jv+\ ~ ] _

(p)

•
and that

The result then follows by induction on n.

COROLLARY 3. Assume that X is a 2-connected space with finite type over Z
it has the rational homotopy type of a product of B(n,p). If Cn = rankQnnX(S)Q, then for
any m the sequence Cm, Cm+2p-2, Cm+Ap-4, Cm+6p_6, ...is nondecreasing.

It might be instructive to note that, at each prime, Q(BT2) does have the rational
homotopy type of a certain product of B(n,p). Since these spaces are //-spaces, this claim
amounts to showing that their rational homotopy groups are isomorphic. The Poincare
series for n^QiBT^^Q is easily seen to equal the Poincare series for H^BT2, Q), which
is, of course (1 -1 2 ) ' 2 - 1. The claim is then a consequence of the following power series
identity, which is straightforward to verify:

f22k-

Thus to prove Theorem 1 we have to consider more than just the stable rational
homotopy type of BT2. We need to take a closer look at its stable p-local homotopy type.
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To this end we use the results of the Manchester topology group on p-local splittings of
2.BT2 ([1], [2]). They used the modular representation of M{2,p), the semigroup of all
2 x 2 matrices over Zip, to obtain a homotopy equivalence

2(S72)(p) = V dpYp.
p

This decomposition is an interesting one. In it, the wedge summands Yp are indexed by
isomorphism classes of irreducible modular representations of M(2,p). As p varies, the Yp

run through p2 - 1 distinct infinite dimensional homotopy types. The mod p cohomology
of each Yp is indecomposable as a module over the Steenrod algebra and so each Yp is in
fact stably irreducible. The coefficient dp indicates the number of copies of Yp that occur
as summands. It is also the dimension, over Zip, of the module affording the
representation p.

Assume now that Theorem 1 is false for BT2. Then, at some prime p, there must be a
product of B(n,p) which occurs as a retract of Q(BT2) and which also has the same
rational homotopy type as Q(BT2). Since Yp is a p-local retract of YBT2, it is clear that
C1Q(YP) is a p-local retract of Q(BT2). Since the B(n,p) are atomic, it follows that each
QQ{YP) must also have the rational homotopy type of a product of B{n,p).

Let us now take a closer look at some of these wedge summands, bearing in mind
that if p(t) is the Poincare series for the reduced rational homology of Yp then (l/t)p(t) is
the Poincare series for the rational homotopy groups of QQ(YP). At the prime 2, HBT2

breaks up into five pieces

Here Ya — ZCP°°. The summand Ya corresponds to the Steinberg representation and, by
[3], has Poincare series f9/(l -12){\ -16). The remaining piece Ys corresponds to the
determinant representation. Its Poincare series is then seen to be

t5 2t9

— = r- = t5 + if + t9 + higher terms.
(1 - t2)2 (1 - f2)(l - t6) B

In view of Corollary 3, it is then evident that CIQ(YS) does not have the rational
homotopy type of a product of B(n,p).

The determinant representation 8 also provides a counterexample at odd primes. In
[2], it was shown that, at p^3, the Poincare series for the rational homology of the
summand Ys is

p(t) = t2p+3 + t6"'1 + t*"~~3 + higher terms.

Once again this provides a sequence of ranks which fails to meet the conclusion of
Corollary 3. Thus at each prime p there is at least one retract of Q(BT2) that does not
have the rational homotopy type of a product of B(n,p) and so the theorem follows.
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