WILSON SPACES AND STABLE SPLITTINGS OF $B T^{r}$

by C. A. McGIBBON

(Received 16 December, 1992)

Let $Q(X)$ denote $\lim \Omega^{n} \Sigma^{n}(X)$ and let $B T^{r}$ denote the classifying space of the r-torus. In [8], Segal showed that $Q\left(B T^{1}\right)$ is homotopy equivalent to a product $B U \times F$ where $B U$ denotes the classifying space for stable complex vector bundles and F is a space with finite homotopy groups. This result has been a very useful one. For example, in [5] it was used to show that up to a stable homotopy equivalence there is only one loop structure on the 3 -sphere at each odd prime p. (The subsequent work of Dwyer, Miller, and Wilkerson shows this result is even true unstably, at every prime p.) In [6] it was used to classify, up to homology, the stable self maps of the projective spaces $\mathbb{C} P^{n}$ and $\mathbb{H} P^{n}$. In [5] I asked if a splitting similar to Segal's might exist for $Q\left(B T^{r}\right)$ when $r \geq 2$. In particular, since the homotopy and homology groups of $B U$ are torsion free it seemed natural to ask if $Q\left(B T^{r}\right)$, when $r>1$, could likewise contain a retract with torsion free homology and homotopy groups and whose complement is rationally trivial. The purpose of this note is to show that the answer is no.

Theorem 1. For $r \geq 2$, the space $Q\left(B T^{r}\right)$ does not have the homotopy type, at any prime p, of a product $Z \times F$ where the homotopy groups and the (reduced) integral homology groups of Z are free $\mathbb{Z}_{(p)}$-modules, while those of F are finite.

There are two main ingredients in the proof. The first is the Wilson spaces $B(n, p)$. These spaces were constructed by Wilson in his thesis [9] and later studied by Zabrodsky in his book [10]. For each prime p and each natural number n there exists a p-local H-space, $B(n, p)$, with the following properties:
(1) $\pi_{q} B(n, p) \approx \begin{cases}0 & \text { if } q<n \\ \mathbb{Z}_{(p)} & \text { if } q=n .\end{cases}$
(2) Each of the higher homotopy groups and higher integral homology groups of $B(n, p)$ are free $\mathbb{Z}_{(p)}$-modules of finite rank.
(3) The space $B(n, p)$ is atomic; in other words, any self map of the space which induces an isomorphism on $\pi_{n} B(n, p)$ must be a homotopy equivalence.

In Theorem 6.2 of [9], Wilson shows that any p-local H-space of finite type over $\mathbb{Z}_{(p)}$, whose homotopy groups and homology groups are torsion free, is homotopy equivalent to some product of $B(n, p)$'s. A relevant example is

$$
B U \simeq_{p} B(2, p) \times B(4, p) \times \ldots \times B(2 p, p) .
$$

Here the first factor can be identified with the Eilenberg-MacLane space $K\left(\mathbb{Z}_{(p)}, 2\right)$ while the remaining $p-1$ factors give a p-local splitting of $B S U$. This particular splitting was first obtained by Peterson [7].

In view of Wilson's result, the proof of Theorem 1 amounts to showing that when $r \geq 2$, there is no product of $B(n, p)$'s which has the same rational homotopy type as $Q\left(B T^{r}\right)$ and which also occurs as a p-local retract of $Q\left(B T^{r}\right)$. Suppose for the moment that such a product did exist. Since the $B(n, p)$'s are atomic, it would follow that each retract of $Q\left(B T^{r}\right)$ would likewise decompose as a product of $B(n, p)$'s and rationally

Glasgow Math. J. 36 (1994) 287-290.
trivial spaces. In particular $Q\left(B T^{2}\right)$ is a retract of $Q\left(B T^{r}\right)$ when $r \geq 2$, so to prove the theorem it suffices to show that no such product exists at any prime when $r=2$. To get started we need to know a little about the higher homotopy groups of a $B(n, p)$.

Proposition 2. Let $f_{n}(t)$ denote the Poincaré series for the graded $\mathbb{Z}_{(p)}$ module $\pi_{*} B(n, p)$ and let $v(r)=\frac{2 p^{r}-2}{p-1}$. Then

$$
f_{n}(t)= \begin{cases}t^{\prime \prime} & \text { if } v(0)<n \leq v(1) \\ \frac{t^{n}}{1-t^{2 p-2}} & \text { if } v(1)<n \leq v(2) \\ \frac{t^{n}}{\left(1-t^{2 p-2}\right)\left(1-t^{2 p^{2}-2}\right)} & \text { if } v(2)<n \leq v(3) \\ \frac{t^{n}}{\left(1-t^{2 p-2}\right)\left(1-t^{2 p^{2}-2}\right) \ldots\left(1-t^{2 p^{k}-2}\right)} & \text { if } v(k)<n \leq v(k+1)\end{cases}
$$

Proof. Fix p for the moment and let $B(n)$ denote $B(n, p)$. Wilson showed that

$$
\Omega B(n+1) \simeq \begin{cases}B(n) & \text { if } n \neq v(r) \\ B(v) \times B(p v) & \text { if } n=v=v(r)\end{cases}
$$

It follows that

$$
\frac{f_{n+1}}{t}=f_{n} \quad \text { if } n \neq v(r)
$$

while

$$
\begin{aligned}
\frac{f_{v+1}}{t} & =f_{v}+f_{p v} \quad \text { if } n=v=v(r) \\
& =f_{v}+t^{p v-(v+1)} f_{v+1}
\end{aligned}
$$

Now multiply through by t and solve for f_{v+1} to obtain

$$
f_{v+1}=\frac{t f_{v}}{1-t^{p v-v}}
$$

The result then follows by induction on n.
Corollary 3. Assume that X is a 2 -connected space with finite type over $\mathbb{Z}_{(p)}$ and that it has the rational homotopy type of a product of $B(n, p)$. If $C_{n}=\operatorname{rank}_{\mathbb{Q}} \pi_{n} X \otimes \mathbb{Q}$, then for any m the sequence $C_{m}, C_{m+2 p-2}, C_{m+4 p-4}, C_{m+6 p-6}, \ldots$ is nondecreasing.

It might be instructive to note that, at each prime, $Q\left(B T^{2}\right)$ does have the rational homotopy type of a certain product of $B(n, p)$. Since these spaces are H-spaces, this claim amounts to showing that their rational homotopy groups are isomorphic. The Poincaré series for $\pi_{*} Q\left(B T^{2}\right) \otimes \mathbb{Q}$ is easily seen to equal the Poincaré series for $\tilde{H}_{*}\left(B T^{2}, \mathbb{Q}\right)$, which is, of course $\left(1-t^{2}\right)^{-2}-1$. The claim is then a consequence of the following power series identity, which is straightforward to verify:

$$
\frac{1}{\left(1-t^{2}\right)^{2}}-1=\sum_{k=1}^{p}(k+1) f_{2 k}+(p-1) \sum_{k=p+1}^{p^{2}+p} f_{2 k}
$$

Thus to prove Theorem 1 we have to consider more than just the stable rational homotopy type of $B T^{2}$. We need to take a closer look at its stable p-local homotopy type.

To this end we use the results of the Manchester topology group on p-local splittings of $\Sigma B T^{2}$ ([1], [2]). They used the modular representation of $M(2, p)$, the semigroup of all 2×2 matrices over \mathbb{Z} / p, to obtain a homotopy equivalence

$$
\Sigma\left(B T^{2}\right)_{(p)} \simeq \bigvee_{\rho} d_{\rho} Y_{\rho}
$$

This decomposition is an interesting one. In it, the wedge summands Y_{ρ} are indexed by isomorphism classes of irreducible modular representations of $M(2, p)$. As ρ varies, the Y_{ρ} run through $p^{2}-1$ distinct infinite dimensional homotopy types. The $\bmod p$ cohomology of each Y_{ρ} is indecomposable as a module over the Steenrod algebra and so each Y_{ρ} is in fact stably irreducible. The coefficient d_{ρ} indicates the number of copies of Y_{ρ} that occur as summands. It is also the dimension, over \mathbb{Z} / p, of the module affording the representation ρ.

Assume now that Theorem 1 is false for $B T^{2}$. Then, at some prime p, there must be a product of $B(n, p)$ which occurs as a retract of $Q\left(B T^{2}\right)$ and which also has the same rational homotopy type as $Q\left(B T^{2}\right)$. Since Y_{ρ} is a p-local retract of $\Sigma B T^{2}$, it is clear that $\Omega Q\left(Y_{\rho}\right)$ is a p-local retract of $Q\left(B T^{2}\right)$. Since the $B(n, p)$ are atomic, it follows that each $\Omega Q\left(Y_{\rho}\right)$ must also have the rational homotopy type of a product of $B(n, p)$.

Let us now take a closer look at some of these wedge summands, bearing in mind that if $p(t)$ is the Poincaré series for the reduced rational homology of Y_{ρ} then $(1 / t) p(t)$ is the Poincaré series for the rational homotopy groups of $\Omega Q\left(Y_{\rho}\right)$. At the prime $2, \Sigma B T^{2}$ breaks up into five pieces

$$
\Sigma B T^{2} \simeq 2 Y_{\alpha} \vee Y_{\delta} \vee 2 Y_{\sigma} .
$$

Here $Y_{\alpha} \simeq \Sigma \mathbb{C} P^{\infty}$. The summand Y_{σ} corresponds to the Steinberg representation and, by [3], has Poincaré series $t^{9} /\left(1-t^{2}\right)\left(1-t^{6}\right)$. The remaining piece Y_{δ} corresponds to the determinant representation. Its Poincaré series is then seen to be

$$
\frac{t^{5}}{\left(1-t^{2}\right)^{2}}-\frac{2 t^{9}}{\left(1-t^{2}\right)\left(1-t^{6}\right)} \doteq t^{5}+2 t^{7}+t^{9}+\text { higher terms }
$$

In view of Corollary 3 , it is then evident that $\Omega Q\left(Y_{\delta}\right)$ does not have the rational homotopy type of a product of $B(n, p)$.

The determinant representation δ also provides a counterexample at odd primes. In [2], it was shown that, at $p \geq 3$, the Poincaré series for the rational homology of the summand Y_{δ} is

$$
p(t)=t^{2 p+3}+t^{6 p-1}+t^{8 p-3}+\text { higher terms }
$$

Once again this provides a sequence of ranks which fails to meet the conclusion of Corollary 3. Thus at each prime p there is at least one retract of $Q\left(B T^{2}\right)$ that does not have the rational homotopy type of a product of $B(n, p)$ and so the theorem follows.

REFERENCES

1. A. Baker, D. Carlisle, B. Gray, S. Hilditch, N. Ray and R. Wood, On the iterated complex transfer, Math. Z. 199, (1988), 191-207.
2. D. Carlisle, P. Eccles, S. Hilditch, N. Ray, L. Schwartz, G. Walker and R. Wood, Modular

C. A. McGIBBON

representations of $G L(n, p)$, splitting of $\Sigma\left(\mathbb{C} P^{x} \times \ldots \times \mathbb{C} P^{x}\right)$, and the β-family as framed hypersurfaces, Math. Z. 189 (1985), 239-261.
3. D. Carlisle and G. Walker, Poincaré series for the occurrence of certain modular representations of $G L(n, p)$ in the symmetric algebra, Proc. Royal Soc. Edinburgh, 113A (1989), 27-41.
4. W. G. Dwyer, H. R. Miller and C. W. Wilkerson, Homotopical uniqueness of $B S^{3}$, Lecture Notes in Math. 1298 (Springer 1987), 90-105.
5. C. A. McGibbon, Stable properties of rank 1 loop spaces, Topology 20 (1981), 109-118,
6. C. A. McGibbon, Self maps of projective spaces, Trans. Amer. Math. Soc. 271 (1982), 325-346.
7. F. P. Peterson, The $\bmod p$ homotopy type of $B S O$ and $F / P L$, Bol. Soc. Math. Mexicana 14 (1969), 22-28.
8. G. B. Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford 24 (2), (1973), 1-5.
9. W. S. Wilson, The Ω-spectrum for Brown-Peterson cohomology, part II, Amer. J. Math. 97 (1975), 101-123.
10. A. Zabrodsky, Hopf spaces (North Holland, 1976).

Mathematics Department
Wayne State University
Detroit, Michigan, 48202, U.S.A.
Current Address:
Department of Pure Maths.
16 Mill Lane
Cambridge, CB2 1SB
England

