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1. Introduction

Let A be a complex Banach algebra. By an ideal in A we mean a two-sided ideal
unless otherwise specified. As in (7, p. 59) by the strong radical © of A we mean the
intersection of the modular maximal ideals of A (if there are no such ideals we set
© = A). Our aim is to discuss the nature of © and the relation of © to A for a special
class of Banach algebras. Henceforth A will denote a semi-simple modular annihilator
Banach algebra (one for which the left (right) annihilator of each modular maximal
right (left) ideal is not (0)). For the theory of such algebras see (2) and (9).

Our first aim is to describe © in analytic terms. It turns out that © is the
annihilator in A of the set of x G A for which the operation Lx of left multiplication is
a compact linear operator on A.

A more special class of Banach algebras is that of semi-simple Banach algebras
with dense socle. That such an algebra A need not be an annihilator algebra is seen by
an example in (1). For such A it is shown that Al<& is a semi-simple annihilator
algebra and that A is an annihilator algebra if © is an annihilator algebra.

2. Preliminaries

An idempotent e in A is called minimal if eA(Ae) is a minimal right (left) ideal. For
a subset W of A let L(W) (R(W)) denote the left (right) annihilator of W in A. Let K
be an ideal in A. By (4, p. 162) L(K) = R(K). We set K" = L(K) = R(K) and note that
Kaaa - K". As a special case of (10, Lemma 5.1) a minimal idempotent e of A is in one
of the ideals K and K". As a consequence the socle SA of A is a subset of K@K".
Also, see (9, Lemma 3.10), the minimal idempotents of K are the minimal idempotents
of A which lie in K.

Let M be a modular maximal ideal of A. Then AfV (0) so that A = M@M". By (2,
Theorem 6.4), AIM is finite-dimensional. This could also be deduced from results in
(8). Hence M" is a finite-dimensional simple Banach algebra. Note that M = Maa. For
otherwise M°" = A and M" = M""" = (0). Let Wl denote the set of all modular maximal
ideals of A. If M, * M2 in 3ft, then Ml * Mf. As these are simple algebras, M°,M\ =
MIM° = (0). Let Q denote the closure of the algebraic sum of the M", M & 2W. Then

Q" = n{M°° : M £ 2«} = ©.
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In view of (7, p. 106), Q is an annihilator algebra. Also, since Q" = Q""1, we see that
(5 = &". This, in part, motivates our interest in ideals K such that K = K"".

We say that a semi-simple Banach algebra B is a left annihilator algebra if
L(I) * (0) for all closed right ideals I* B.

Proposition 2.1 Let K be a closed ideal in the semi-simple Banach algebra B
where K = Kaa. Suppose that B\K is a semi-simple left annihilator algebra and that K
is a left annihilator algebra. Then B is a left annihilator algebra.

Proof. Let / be a closed right ideal of B, I* B. We consider first the case where /
does not contain K. Then KC\I*K. Hence there exists wGK, w*0, such that
w(Kni) = (0). Then wIK = (0). Since K is semi-simple wl = (0). Therefore
L(I)*(0) in B.

Now we examine the case where / = K. As K = Kau then K"*(0) so that
L(I) * (0). Finally suppose that / D K and / * K. Then UK is a closed right ideal of
BIK. UK* (0) and UK* B/K. By hypothesis there is w£ K such that

Therefore wl C K so that K"w<ZL(I). We see readily, that K"w * (0) for otherwise
wGKaa = K.

Proposition 2.2. Let e be a minimal idempotent in a semi-simple Banach algebra
B. Then eB is finite-dimensional if and only if Be is finite-dimensional.

Proof. BeB is a minimal (two-sided) ideal of B so that its closure is a minimal
closed ideal of B. Following Bonsall and Goldie (5, Theorem 13) we consider,
corresponding to each ey G eB, a bounded linear functional fey G (Be)* defined by the
equation

fey(xe)e = eyxe

for all xe G Be. The mapping G(ey) = fry is shown there to be a continuous one-to-one
linear mapping of eB into (Be)*. Therefore eB is finite-dimensional if Be is finite-
dimensional.

We say that c is a finite-dimensional minimal idempotent in the situation of
Proposition 2.2.

3. On modular annihilator algebras

We investigate the strong radical S of a semi-simple modular annihilator algebra
A.

Lemma 3.1. If p is a minimal idempotent of Q then p lies in some M", M GSJR and
p is finite-diminsional idempotent.

Proof. Let M G SJR. By the Gelfand-Mazur theorem, either pM"p =
{kp : A complex} or pM"p = (0). In the former case p G M". Suppose that p lies in no
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M", Me3R. Then (pM°)2 = (0) so that pM" = (0) for each MG2K. Then pQ = (0)
which is impossible. Hence p lies in some M", pA C M" and therefore p is a
finite-dimensional minimal idempotent.

Lemma 3.2. // e is a finite-dimensional minimal idempotent of A then e E Q.

Proof. First W = AeA is a simple Banach algebra. Consider the ideal P' of (2,
Theorem 6.5). By that result Pe e 3ft. Moreover P'CA(l-e) so that e g P ' . Then
P ' C VV since VVDP' = (0). Therefore P '©W = i4 while e E W.

We consider the operators Lx and /?, on A defined by Lx(y) = xy and /?x(y) = yx.
Let

NL = {x E A : Lx is a compact operator},
NR = {x E A:RX is a compact operator}.

Theorem 3.3. For a semi-simple modular annihilator algebra A, © = N"L = Na
K.

Proof. If e is a finite-dimensional minimal idempotent then, for any x & A, Lex has
finite-dimensional range and so is compact. Consider the collection Z of finite sums of
elements of this form ex. Via Lemmas 3.1 and 3.2 we see that Z is the socle of Q. But
Q is an annihilator algebra so that Z is dense in Q. Since L2 is compact for each zE Z
then Lx is compact for all x E Q. Hence Q C NL.

Consider x E NL, JC#O. By the results of (9, §3) every right ideal # (0) in A
contains a minimal idempotent of A. Suppose Jt© 5* (0). Then x® contains a minimal
idempotent e where, perforce, e G ©. On the other hand N, is an ideal in ,4 so that Lt

is a compact operator. It follows from the Riesz-Schauder theory that eA is finite-
dimensional. By Lemma 3.2, e G Q which is a contradiction. Therefore JC© = (0).
Consequently x G ©" = Q"u.

We now have QcNLC C?"". Therefore

4. On semi-simple Banach algebras with dense socle

Henceforth let A be a semi-simple Banach algebra with dense socle. A is a
modular annihilator algebra by (9, Lemma 3.11). Let K be an ideal in A. As noted in
Section 2, the socle of A is contained in K@K". Hence K@K" is dense in A. In
particular <?©© is dense in A.

Theorem 4.1. A/(B is a semi-simple annihilator Banach algebra.

Proof. Let TT be the natural homomorphism of A onto Al<& and let / be the
radical of Al<5. Now V = n~'(J) (1Q is an ideal of Q which is an annihilator algebra.
Suppose V? (0). Then V contains a minimal idempotent p of Q. As n is one-to-one
on Q, TT(P) is a non-zero idempotent in /. This is impossible and therefore V = (0).
Hence ir'\J)Q = (0) so that ir~l(J)CQ" = ©. Therefore / = (0).

Let / be a closed right ideal of /*/©, I* Al<B. Note that ir~\l) fails to contain Q
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(for TT(Q) is dense in A/©). Then there exists w £ Q such that wi* 0 and WTT~\I)Q =
(0). Obviously, wn~\I) C Q. As Q is semi-simple we get wir~'(I) = (0) so that
ir(w)I = (0) where ir(w) * 0.

Proposition 4.2. / / © is a left (.right) annihilator algebra so is A.

Proof. We see this in two easy ways. First as Q@© is dense in A and Q is an
annihilator algebra this follows from (7, p. 106). The result is also an immediate
consequence of Theorem 4.1 and Proposition 2.1.

Theorem 4.3. The following statements are equivalent

(1) © = (0)
(2) A = NL

(3) A = NR

Proof. Since A has a dense socle, NL©© and NR©© are dense in A by Theorem
3.3. Moreover NL and NR are closed ideals in A. For a related result see (2, Theorem
7.1).

Let B\ be a semi-simple Banach algebra which is a dense ideal in another
semi-simple Banach algebra B2. The embedding is automatically continuous by (3,
Proposition 2.2). We say that Bt is an abstract Segal algebra in B2. There is an
extension literature on this notion of which we cite only (6).

A closed ideal K in a semi-simple Banach algebra with dense socle need not have
dense socle. We see no reason to expect © to have dense socle. Any K and in particular ©
can be described as an abstract Segal algebra in a well-behaved Banach algebra.

Theorem 4.4. Let K be a closed ideal in A. Then K is an abstract Segal algebra in
a semi-simple Banach algebra B with dense socle. If A is an annihilator algebra we
can choose B to be an annihilator algebra.

Proof. We know that K@K" is dense in A. We take B = AlK" and let IT be the
natural homomorphism of A onto A/K". The mapping IT is one-to-one on K and
embeds K as a dense ideal in B. The arguments of Theorem 4.1 show that B is
semi-simple. If e is a minimal idempotent of A, e£K" then ir(e) is a minimal
idempotent of B. Consequently ir(SA) is contained in the socle of B and so B has
dense socle.

Suppose that A is an annihilator algebra. Let / be a closed right ideal of B. IT* B.
ir~\I) is a right ideal of A not dense in A. There exists w G A, w^0 where
wir'\I) = (0). Inasmuch as TT'\I)Z>K\ W G Kaa. Since Kar\Kaa = (0) we see that
7r(w)#0 and ir(w)/= (0).

We say that an algebra is a strong radical algebra if it has no modular maximal
ideal. © is, as an algebra, a strong radical algebra.

Corollary 4.5. © is an abstract Segal algebra in a semi-simple strong radical
algebra B with dense socle.
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Proof. Let B be the algebra associated with © as in the proof of Theorem 4.4.
Suppose that B had a modular maximal ideal M. Since © is dense in B, ©(£ M. But
then @nM is, by (7, Theorem 2.6.6), a modular maximal ideal of ©. This is
impossible. Therefore B is a strong radical algebra.

The following remarks were kindly supplied by the referee. Theorems 3.3, 4.1 and
4.3 suggest various questions for a modular annihilator algebra A such as when is NL

or NR equal to ©"? If NL = NR, is their common value ©"? When is A/© strongly
semi-simple? Theorem 4.3 supplies a partial answer to the first question, and would of
course yield more if the third could be answered. The answer to the second in this
general form is certainly negative.

For let A = fix
a where a G co\l\ (in the notation of (11)). Then A is a Banach algebra

with pointwise multiplication, is an ideal of c0 and so is modular annihilator but does
not have dense socle and so is not an annihilator algebra.

A is a commutative A*-algebra and therefore semi-simple and also strongly
semi-simple. Thus if NL( = NR) were equal to ©° we would have A a completely
continuous (c.c.) algebra. However a commutative /4*-algebra is an annihilator
algebra if and only if it is a c.c. algebra. Thus for this A, A^ ©". This example shows
that Theorem 4.3 cannot be extended to modular annihilator algebras.
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