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A NOTE ON A CLASS OF SLIT CONFORMAL MAPPINGS 

W. E. KIRWAN AND R. W. PELL 

1. Introduction. We denote by 5 the class of functions, f(z), that are 
analytic and univalent in U = {z: \z\ < 1} and have the normalization 

/(s) = z + a2z* + . . . (|*| < 1). 

Of particular interest in studying extremal problems in S is the subclass M, 
consisting of functions that map U onto the complement of a single Jordan arc 
extending from some finite point to oo and along which \w\ is strictly increasing. 
Indeed, L. Brickman [3] has shown that if/ G S is an extreme point of S, then 
/ G M. Furthermore, A. Pfluger [9] (see also L. Brickman and D. Wilken [4]) 
has shown that if /0 G 5 and 

maxReL(J ) = ReL( / 0 ) 
ft s 

for some non-trivial continuous linear functional on 5" (i.e., / 0 is a support 
point of S), then /o satisfies the so-called 7r/4 property which implies in par­
ticular that /o G M. 

Recently, W. Hengartner and G. Schober [5] have shown that extreme 
points, f(z), of 5 have the remarkable property that f(z)/z is 1 — 1 in U. 
In § 3 of this note we generalize this result considerably. We show that for 
each / G M there is a family of linear fractional transformations of the disc, 
Lx(z) (A è 1), such that 

/ x ( s ) = ^ L x ( s ) ( X ^ D 

is 1 — 1 and analytic in U. If X —> +co , L\(z) —» constant, and so we obtain 
as a special case the Hengartner-Schober result. Consideration of the family of 
functions \f\(z)} enables us to embed each / G M in an explicit subordination 
chain (see [10] and [11, chapter 6]). Through an application of C. Pommerenke's 
version of the Lôwner equation, we obtain in § 4 some coefficient relations for 
functions in M which parallel some recent results of Hengartner and Schober 
[5] and [6]. 

Finally, we note that if / G M, then / has a continuous extension to y = 
{z: z = eid,0 ^ 6 ^ 2w} as a mapping from U U y to the Riemann sphere and 

f(y) = boundary/([7). We denote by p and g the points on y which correspond 
under w = f(z) to the finite endpoint oif(y) and oo respectively. 
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2. A u n i v a l e n c e cr i ter ion. A classical criterion for the univalence of a 
function h(z) t h a t is analytic in U s tates t ha t if in addit ion h is continuous in 
t / U ) and h(y) is a Jordan curve, then h is 1 — 1 in U. I t would be natural 
to assume tha t this result remains true if, ra ther than being analytic, one 
a l l o w s / to have a simple pole in U (see [8, p. 139] where in fact such a result 
is s t a ted) . However, the function 

ff(z)=:pii-ILzL5)! ( | e |< i ) 
1 — iz z 

shows t h a t this is not the case. Indeed a simple computat ion shows t h a t -K is 
1 — 1 on 7 but clearly T cannot be 1 — 1 in U since 7r(e) = 0 = 7r(l). A 
correct generalization of the above univalence criterion was proved by L. A. 
Aksent 'ev [1] (see also [2]). We s ta te a special case of Aksent 'ev 's theorem in 
the form we will need it in § 3. 

T H E O R E M 1 (Aksent 'ev). Let g(z) be analytic in U except for a simple pole at 
so G U. Suppose g(z) is continuous in ( [ / W 7 ) — {z0} and 1 — 1 on 7. If the 
Jordan curve g(y) has negative orientation, then g is 1 — 1 in U. 

3. A f a m i l y of u n i v a l e n t f u n c t i o n s . Before proving the main theorem of 
this section, we recall some elementary facts concerning linear fractional t rans­
formations. 

Let p and q be two distinct points on the unit circle. We need to determine 
the family of linear fractional transformations each of which fixes p and q, and 
has p as a repulsive fixed point and q as an attractive fixed point. For this pur­
pose it is convenient to map U onto the upper half-plane sending p to 0 and 
q to 00 . Such a map is given by 

V sfa 

S(z) = A where A = \/qp 
z — q * r 

with the root chosen so tha t Im x^qft"< 0. 
The family of linear fractional transformations tha t fixes 0 and 00 and 

preserve the upper half-plane is given by w —> \w with X > 0. Such a t rans­
formation (w —> \w) has w = 0 as a repulsive fixed point and w = 00 as an 
a t t rac t ive fixed point if and only if X §; 1. Thus the family of linear fractional 
transformations t ha t preserves the disc U, fixes p and q, and has p and q as 
repulsive and a t t rac t ive fixed points respectively is given by 

Lx(Z) = S-*[\S(z)] (X £ 1). 

A simple calculation yields 

pq(\ - 1)~~ 

(3.1) U(z)=P-^-
p\ - q 

z+ * 
P ~ gX 

q - p\ 
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Since 

P - <fr 
p\- q 

pq{\ - 1) 
gX 

ftg - A 
X - qp 

X -

= 1, 

1 

pq{\ - 1) 

\Pq-

Pq(\ 1) 

X -- 1 
X - \Pâ\ 

X -- l 

1, and 

q\ p\ ' p - q\ 

L\(z) is in the s tandard form, 

-r / \ A % "f" € 

with |̂ 41 = 1 and |e| < 1, for linear fractional t ransformations t h a t preserve £/. 
Let 7i be the open arc of y moving counterclockwise from p to q and let 72 

be the open arc obtained by moving counterclockwise from q to p. 
Observe tha t L\(z) moves points on 71 in a counterclockwise direction and 

points on 72 in a clockwise direction. Fur thermore , if we fix %\ on 71 (or 72) and 
let X increase, it is clear t ha t arg L\(zi) increases on 71 and decreases on 72. 

We now s ta te and prove 

T H E O R E M 2. Let f Ç M and let L\(z) be given by (3.1) where p and q are the 
distinct points on the unit circle such that f(p) is the finite endpoint of f(y) and 
f(q) = 00. Assume also that X ^ 1. Then 

is 1 — 1 and analytic in U. 

Proof. The function f\(z) is clearly analyt ic in U. We will show t h a t / \ ( 2 ) is 
1 — 1 on 7 (X ?£ 1) and will then apply Theorem 1 to the function g\(z) = 
l / /x(z) in order to show tha t g\(z) (and therefore f\(z)) is 1 — 1 in U. 

Suppose f\(zi) = f\(z2) with \zi\ = 1 = \z2\ and z\ ^ z2, i.e., we assume 

(3.2) / ( z 2 ) / / ( z i ) = Lx(z1)z2/Lx(z2)z1. 

The right hand side of (3.2) has modulus one and so | / ( z i ) | = \f(z2)\. But , the 
monotonie proper ty oîf(y) then implies t h a t j ( z i ) = f(z2), t h a t neither z\ nor 
z2 can equal p or q, and t ha t zi and z2 cannot both lie on the same arc 71 or 72. 
For definiteness suppose t h a t Zi G 71 and z2 G 72. Then s ince / ( s i ) = f(z2), we 
have from (3.2) 

Lx{Zi)z2 = Lx(Z2)Z! 

and so 

(3.3) arg z2 — arg zx = arg Lx(z2) — arg Lx(zi) 
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where we have chosen a branch of arg tha t is continuous and strictly increasing 
as z moves in the counterclockwise direction on y — {p). However, (3.3) is 
impossible since L\(z) moves points on 71 in a counterclockwise direction and 
points on y2 in a clockwise direction. We have obtained a contradiction to (3.2) 
and so/x is 1 — 1 on 7. 

Next consider g\(z). This function is analytic in U except for a simple pole 
a t z = pq(l — \)/p — gX and is continuous on 7. Therefore, to show tha t 
gx(z) is 1 — 1 in U it is enough by Theorem 1 to show tha t g\(y) is negatively 
oriented. To see tha t the Jordan curve g\(y) is negatively oriented, we consider 
the Jo rdan curve I \ = / X ( T ) which passes through the point a t 00. We show 
tha t for |£| = 1, £ j* p, q, 0 a n d / ( £ ) lie in opposite components of I \ and tha t 
r x is negatively oriented with respect to the p o i n t s / ( J ) . We then obtain upon 
inversion tha t the plane Jordan curve g\(y) has negative orientation with 
respect to the points g(£) = l / / (£ ) which lie in its interior. As noted above, 
an application of Theorem 1 will then complete the proof. 

First note tha t |L\(£)/£| = 1 for £ £ 7 and tha t the end points f(p) a n d / ( g ) 
are fixed under the transformation w = /x(£). Also recall t ha t I>x(£) moves 
points counterclockwise on 71 and clockwise on 72. Now for each £ Ç 7 

and hence/x(£) is obtained f rom/(£) upon multiplication of / (£) by the com­
plex number Lx(£)/£ whose modulus is one. On 71, 

0 < arg Lx(£) - arg £ < arg q - arg p 

and on 72, 

arg q — arg p — 2TT < arg Lx(£) - arg J < 0. 

T h a t is, for £ on 71, points f\(i~) on T\ are obtained by rotat ing the points / (£) 
in a counterclockwise direction by an amount less than arg q — arg p, whereas, 
for J G 72 points/x(£) on I \ are obtained by rotat ing the poin ts / (£) in a clock­
wise direction by an amount less than 2 T — (arg q — arg p). I t follows tha t 
for |£| = 1 , ? ^ p, #>/(£) a n ( i 0 a r e m opposite components of the Jordan curve 
r x and tha t as J traverses 7 s tar t ing say from £ = p, the po in t s / (£ ) lie to the 
right of/x(£)> i-e-> Tx is negatively oriented with respect to the p o i n t s / ( J ) . As 
noted in the previous paragraph, this fact suffices to complete the proof of the 
theorem. 

Note. For future reference we observe tha t 

argLx(É) - a r g j (X ^ 1) 

is monotonically increasing as a function of X for each fixed J Ç 71 and mono-
tonically decreasing in X for each fixed £ G 72- I t follows tha t if 1 ^ Xi < X2, 
hi(U) ~D f\2(U). This observation will be impor tant in the next section. 
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It follows immediately from the definition of L\(z), (3.1), that as X —* oo, 
L\(£) —» g. This observation establishes the following 

COROLLARY. / / / £ if, thenf(z)/z is 1 — 1 in [7. 

As noted above, this result wras first proved by Hengartner and Schober [5]. 

4. Applications. Before applying Theorem 2 we need to recall the definition 
of a subordination chain [10]. 

Definition. Let I be a real finite or semi-finite interval. Then f(z, t), z £ U, 
t (E i", is called a subordination chain if 

(i)/(z, /) is analytic and univalent for z Ç [7 and for each fixed t £ 7; 
(ii) /'(O, /) is continuous as a function of / 6 I\ and 

(iii) /i, /2 (; 7 î = 2̂ implies/(z, /i) is subordinate to f(z, t2). 

Pommerenke [10] introduced the concept of a subordination chain and used 
it to develop the following version of a theorem of K. Lôwner [7]. 

THEOREM 3. (Pommerenke). Let f(z, t) be a subordination chain on I. Then 
there exists a function p(z, t) analytic in z for z G U, t £ I with Re p(z, £) = 0 
for all z 6 U, t Ç 7, measurable for t £ I and such that 

for each z d U and almost all t £ I-

It should be noted here that we are intentionally not assuming that the 
subordination chain is normalized, i.e., tha t / ' (0 , t) = el. For normalized chains 
one knows that p(0, t) = 1 for almost all t Ç I. For general chains, one only 
has Re p(0, t) ^ 0 for almost all t ê I. 

We now show how Theorem 2 enables us to construct an explicit subordina­
tion chain for functions in M. 

As pointed out in the note at the end of Theorem 2 

(4.1) fM(U) D/x2(77) if 1 g Xi < X2. 

Composing f\ (z) with Lx_1(s) we obtain 

fx[U-\z)] = s / ( f % ( y , and/x oZx_1(0) = 0. 
•L\ (z) 

By (4.1) 

/X2 oLxr1 ( £ 0 C / M O L x r 1 (U) (l ^ Xi < x2), 

i.e.,/x2 o Lx2
_1 is subordinate to/xi o Lxi-1. Set t = 1/X and define 

(4.2) f(z,t) =fxoLx~i(z). 

It follows that f(z, t) is a subordination chain. Using the definition of f\(z) 
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we may write (4.2) in the form 

f^=aztwr* <* = 1/o 
where 

zx(2) = ^ ( 0 T - r ^ : (x = iA). l + i(t)z 

A{t) = g-pt 
qt-p' 

g-pt 

j - ' M Â(t)z-t(t) 
U W ~ l - -t(t)'A{t)z-

If we set f(z, t) = f(A(t)z, t), then f(z, t) is also a subordination chain on 
O ^ g l with 

f(z, 0) = Urn}(A (t)z, t) = f-^§z,f(z, 1) = f(z), and 

(4.3) f(z,t) 
l 

g - e(0 
.1 - i(0g-

4 (0z. 

By Pommerenke 's theorem (Theorem 3), 

(4.4) v&à = zp(Ztt)nz,t) 

where p(z, t) is analytic in z with positive real par t for z 6 U and t Ç [0, 1]. 
Comput ing d/(s, /)/d£ from (4.3), solving for p(z, t) in (4.4), sett ing t = 1, 

and using the fact tha t Re (p + q)/(p — q) = 0 we obtain the following 
proper ty of functions in M. 

T H E O R E M 4. Let f(z) Ç Jf. Le/ ^ and q be defined as in Theorem 2. Then 

Rep(z, 1) - Re 
(z - p) (z - q) 

(P ~ q)z 
1 - > o 

/or a// z e U. 

COROLLARY. Letf(z) = z + a2s2 + a3s3 + . . . G AT. Le/ /> awrf q be defined 
as in Theorem 2. Then 

i ) R e ( - * _ ) > 0 > and 

\p - q I 

2) M ^ + q) + 2^g(a2
2 - a , ) | g 2|a2 | . 
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Proof. Let p(z, 1) = po + p\Z + p2z
2 + . . . . Since Re p(z, 1) > 0, a classical 

result of Carathéodory says that Re p0 ^ 0 and \pn\ ^ 2\p0\ for n è 1. We can 
express £>0 and £j in terms of a2 and a3 if we observe that 

m = 1 — a2s + 2(a2 — a3)s + . . . . 

Thus 

£o = ——— , and £ - q 

= ~ai(P + 0) _ 2j?g(a2
2 — a3) 

If we multiply po and pi by (p — q), the corollary follows. We have been 
unable to determine whether or not inequalities 1) and 2) are sharp. 

Notes. 1) Theorem 4 and the Corollary are remarkably similar to recent 
results of Hengartner and Schober [5] and [6] which were obtained by different 
methods. It is hoped that their results may be combined with ours to produce 
further results showing the strong connection between the coefficients of 
functions in M on the one hand and the points p and q on the other. 

2) If a2 > 0j then inequality 1) yields the interesting relation Re q > Re p. 
3) If Re (d2pq)/(P — q) = 0, then p(z, 1) = Ai where A is real and con­

stant. A straightforward integration of (4.4) shows tha t / ( s ) must be a poly­
nomial and therefore not in the class M. In particular this says that a2 ^ 0 
for any function / G M. 

4) We feel that the idea of constructing explicit subordination chains for 
functions in M (or say for support points of S) is potentially quite useful and 
should be explored further. 
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