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A centre of a differential system in the plane R
2 is an equilibrium point p having a

neighbourhood U such that U \ {p} is filled with periodic orbits. A centre p is global
when R

2 \ {p} is filled with periodic orbits. In general, it is a difficult problem to
distinguish the centres from the foci for a given class of differential systems, and also
it is difficult to distinguish the global centres inside the centres. The goal of this
paper is to classify the centres and the global centres of the following class of quintic
polynomial differential systems

ẋ = y, ẏ = −x + a05 y5 + a14 x y4 + a23 x2 y3 + a32 x3 y2 + a41 x4 y + a50 x5,

in the plane R
2.

Keywords: centre; global centre; polynomial differential systems; Lyapunov
quantities; blow up; quintic polynomial
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1. Introduction and statement of the main results

We consider polynomial differential systems

(ẋ, ẏ) = (P (x, y), Q(x, y)), (1.1)

defined in the plane R2. Here, the dot denotes the derivative with respect to the
time t. We are interested in the subclass of these polynomial differential systems
having an equilibrium point whose linear part has eigenvalues purely imaginary.
After an affine change of variables and a rescaling of the time (if necessary) such
polynomial differential systems can be written into the form:

(ẋ, ẏ) = (−y + Pn(x, y), x + Qn(x, y)), (1.2)
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where Pn and Qn are polynomials of degree n, which do not have either constant
or linear termsSão.

The problem of distinguishing whether the equilibrium point at the origin of
system (1.2) is a centre or a focus is a classical problem, known as the centre–focus
problem. Even though this problem was partially solved by Lyapunov (see [22]),
it has been studied for some fixed values of the degree n for more than a century
by many authors. The only family completely investigated is the family of the
polynomial differential systems of degree 2, denoted simply by quadratic systems.
The study of this family was started by Dulac in 1908 in [11], and also performed
by Kaptyen some years later (see [20, 21]). Up to the work of Frommer [13], the
conditions for the existence of a centre in that family were not published. The
correct centre conditions were published by Saharnikov [31] and later by Sibirskĭı
[32]. The centre conditions are simpler and the centre–focus problem is easier to
solve if the system is written in complex coordinates (see [33]). For the complete
cubic family (when in systems (1.2) we have n = 3), the problem remains unsolved.

In 1992, Galeatti and Villarini in [14] proved that if the degree n of a polynomial
differential system (1.2) is even such a system cannot have a global centre. Recently,
Llibre and Valls proved the same in an easier way (see [25]). In [7], Conti proposed
the following problem: To classify all polynomial differential systems of degree odd
having global centres, this is a very difficult problem.

It is well known that all the centres of the polynomial differential systems (1.2)
with n = 1 (i.e. of the linear differential systems) are global.

For n = 3, the global linear centres (i.e. the centres with purely imaginary eigen-
values) and the global nilpotent centres (i.e. the centres having both eigenvalues
zero but its linear part is not identically zero) having only homogeneous nonlinear-
ities of degree 3 are completely classified in [15] and [16], respectively. Moreover,
also for n = 3 in [3] the authors classify the global centres of the Hamiltonian sys-
tems that are reversible with respect to the x-axis, and in [4] the authors classify
the global nilpotent centres of the cubic Hamiltonian systems.

When n = 5 and for systems (1.2) with homogeneous nonlinearities of degree
5, in [26] the authors classify their global linear centres for the subclass of such
systems that are reversible with respect to the x-axis, and in [17] with respect to
the y-axis.

A natural continuation in the classification of the global centres is to consider
another family of polynomial differential systems (1.2) with n = 5. Thus, in this
paper we consider the following class of quintic polynomials differential systems

ẋ = y, ẏ = −x + a05 y5 + a14 x y4 + a23 x2 y3 + a32 x3 y2 + a41 x4 y + a50 x5,
(1.3)

in the plane R2. Then, the main result of this paper is as follows.

Theorem 1.1. The polynomial differential systems (1.3) have a global centre at the
origin of coordinates if, and only if, the following conditions hold: a32 � 0, a50 �
0 and, a14 = a41 = a23 = a05 = 0.

Before starting with the classification of the global centre it is necessary to solve
the centre–focus problem. The classification of the centres has been possible despite
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A class of quintic polynomial differential systems 3

six parameters are appearing. Thus, in the following result we provide the answer
to the centre–focus classification problem.

Theorem 1.2. The polynomial differential systems (1.3) have a centre at the origin
of coordinates and the origin is the unique equilibrium point of the system if, and
only if, the following conditions hold: a50 � 0 and a41 = a23 = a05 = 0.

This paper is structured as follows. In § 2 we provide the necessary definitions,
results, and an algorithm to obtain the coefficients of the return map, the so-called
Lyapunov constants. In § 3 and 4 we prove theorems 1.2 and 1.1, respectively.

2. Preliminaries

In this section, we recall some classical concepts which are necessary to state and
prove the results of this paper.

In § 2.1, we recall how to obtain the coefficients of the return map (i.e. the
Lyapunov constants) near a monodromic equilibrium point (i.e. a focus or a centre).
In § 2.2, we define the Bautin ideal and the centre variety. In § 2.3, we recall the
Poincaré compactification.

Finally, in § 2.4, we recall the result for classifying the global centres.

2.1. The centre conditions

We consider a polynomial differential system of degree n with an equilibrium
point at the origin of coordinates having its Jacobian matrix purely imaginary
eigenvalues, i.e. we consider a system (1.2). So, the origin is a focus or a centre.

A non-constant analytical function defined in a neighbourhood Ω of the origin,
H : Ω ⊂ R2 → R2, is a first integral of system (1.2) if it is constant along any
solution γ or, equivalently,

∂H

∂x
ẋ +

∂H

∂y
ẏ

∣∣∣∣
γ

≡ 0. (2.1)

In order to distinguish whether the origin is a centre we shall use the
Poincaré–Lyapunov theorem (see [19, 23, 28, 29]):

Theorem 2.1. The polynomial differential system (1.2) has a centre at the origin
if and only if it admits a local analytic first integral of the form:

H(x, y) = x2 + y2 +
∞∑

p=3

Hp(x, y), where Hp(x, y) =
p∑

�=0

qp−�,�x
p−�y�. (2.2)

In addition, the existence of a formal first integral H of the above form implies the
existence of a local analytic first integral.

The necessary conditions for the existence of a first integral (2.2) for system (1.2)
are obtained by looking for a formal series (2.2) satisfying (2.1). Although (2.1) is
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not always satisfied, it is always possible to choose coefficients of the formal power
series (2.2) that satisfy the following equation:

∂H

∂x
ẋ +

∂H

∂y
ẏ =

∞∑
j=1

Lj(x2 + y2)j+1 (2.3)

(see [5, 24]). We remark that any non-zero Lj obstructs the origin to be a centre.
Then, when at least one Lj is different from zero, it is a Lyapunov constant in a
neighbourhood of the origin. Hence, system (1.2) has no local analytic first integral
and we say that the equilibrium point is a weak focus of order k if the first non-zero
coefficient in (2.3) is Lk. The coefficient Lj in (2.3) is called the j-th Lyapunov
constant. The stability of the origin is given by the sign of the first non-zero Lj .
Moreover, note that the constants Lj are rational functions whose numerators are
polynomials depending on the coefficients of the polynomial system (1.2).

In order to compute the first N Lyapunov constants, we need to compute the
terms up to order 2N + 2 in the series (2.2), i.e.:

H̃(x, y) =
x2 + y2

2
+

2N+2∑
p=3

p∑
�=0

qp−�,�x
p−�y�. (2.4)

Then, for each i = 3, . . . , 2N + 2, we equate to zero the coefficients of terms of
degree i in the expression:

∂H̃

∂x
ẋ +

∂H̃

∂y
ẏ =

(
−y +

n∑
k=2

Pk(x, y)

)
∂H̃

∂x
+

(
x +

n∑
k=2

Qk(x, y)

)
∂H̃

∂y
.

Hence, starting with i = 3 we solve in a recurrent way each linear system of i + 1
equations with i + 1 variables, qp−�,� for � = 0, . . . , p. All linear systems corre-
sponding to odd degrees, i = 2j + 1, have a unique solution in terms of the previous
values of qp−�,�. As the determinant of the linear system that corresponds to an even
degree, i = 2j + 2, vanishes, we need to add an extra condition so that the linear
system has a unique solution. In fact, in this step, we have one equation more than
the number of variables. We add suitable equations, for the terms (x2 + y2)j+2 for
example, so that the derivative over the associated vector field becomes:

∂H

∂x
ẋ +

∂H

∂y
ẏ =

∞∑
j=1

Lj(x2 + y2)j+2. (2.5)

Therefore, we define the Lyapunov constants associated with the extra conditions
given above. In this context, it is well-known that the first non-vanishing coefficient
of (2.5) has an odd subindex, and L2k+1 is called the kth-order Lyapunov constant
of system (1.2). An interesting property, described in [30] and proved in [6], of
these Lyapunov constant is that for each k we have that the ideals:

〈L2, L4, . . . , L2j〉 ⊂ 〈L3, L5, . . . , L2j−1〉. (2.6)
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2.2. The Bautin ideal and the centre variety

If λ ∈ RM is the parameter of system (1.2), then the Lj ’s are polynomials in
λ. In addition, the set BR = 〈L1, L2, . . .〉 is an ideal in the polynomial ring R[λ].
The importance of the ideal BR follows from the fact that if all the Lj ’s generating
the ideal vanishes, then all the Lyapunov constants vanish and it is not necessary
to compute all of them. Then, we introduce the next definition which recalls the
notion of Bautin ideal and the centre variety.

The ideal defined by the Lyapunov constants BR = 〈L1, L2, . . .〉 ⊂ R[λ] is called
the Bautin ideal. The affine variety VR = V(BR) is called the centre variety of
system (1.2), i.e. V(BR) = {λ ∈ RM : r(λ) = 0, ∀r ∈ BR}.

When we can explicitly determine the centre variety we have the centre–focus
problem solved for system (1.2). However, in most of the cases, this is not a simple
problem. On the contrary, the Hilbert Basis theorem [1, 8, 27] assures that V(BR)
is finitely generated. Then, there exists a positive integer j such that BR = BR

j =
〈L1, . . . , Lj〉. In other words, we know that for j big enough, the above algorithm
provides a necessary set of conditions {Lj = 0 : j = 1, . . . , N} in order that system
(1.2) be a centre. The main difficulty follows from the fact that there is no technique
to obtain j a priori.

We can also say that the polynomials Lj represent obstacles to the existence
of a first integral. In particular, system (1.2) admits a first integral of the form
(2.4) if and only if Lj = 0, for all j � 1. Thus, the simultaneous vanishing of all
focus quantities provides conditions that characterize whether a system of the form
(1.2) has a centre at the origin. Note that the inclusion VR = V(BR) ⊃ V(BR

j )
holds for any j � 1. The opposite inclusion, for a fixed j, is verified by finding the
irreducible decomposition of V(BR

j ) (see [29]), then any point of each component
of the decomposition corresponds to a system having a centre at the origin.

2.3. The Poincaré compactification

Given a planar polynomial differential system (1.1), one crucial problem of the
qualitative theory is to characterize the phase portraits in the Poincaré disc of this
system. First, we must characterize the local phase portraits of the finite and infinite
equilibrium points to reach this challenging goal. In the theory of the Poincaré
compactification the circle of the Poincaré disc represents the infinity of the plane
R2. See more details in [12].

For studying the equilibrium points on the circle at infinity, we need four local
charts U1 = {(x, y) : x > 0}, V1 = {(x, y) : x < 0}, U2 = {(x, y) : y > 0}, and V2 =
{(x, y) : y < 0}.

To study the dynamics at infinity we need the following expressions of the
polynomial system (1.1) of degree n on the Poincaré disc:

(ẋ, ẏ) =
(
yn
(
Q(1/y, x/y) − x P (1/y, x/y)

)
, yn+1P (1/y, x/y)

)
in U1,

(ẋ, ẏ) =
(
yn
(
P (1/y, x/y) − x Q(1/y, x/y)

)
, yn+1Q(1/y, x/y)

)
in U2.

(2.7)

The expressions of system (1.1) in the local charts Vi, for i = 1, 2, are the same for
the local charts Ui, for i = 1, 2, but multiplied by (−1)n.
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For studying the infinite equilibrium points which in all these local charts are of
the form (x, 0) it is sufficient to study the infinite equilibrium points of the local
chart U1 and the origin of the local chart U2; again for more details see Chapter 5
of [12].

2.4. The classification of the global centres

The following result gives the conditions in order that a polynomial differential
system in the plan, R2 has a global centre (see [26]).

Proposition 2.2. A polynomial differential system of degree n in R2 without a
line of equilibrium points at infinity has a global centre if, and only if, it has a
unique finite equilibrium point which is a centre and all the local phase portraits of
the infinite equilibrium points (if they exist) are formed by two hyperbolic sectors
having all of them both separatrices on the infinite circle.

3. The classification of the centres

We devote this section to prove theorem 1.2. As the proof is quite long, we have
divided it into two propositions and a lemma. In proposition 3.1 we prove the nec-
essary conditions for having a centre at the origin of coordinates, and in proposition
3.2 we establish sufficient conditions in order that the centres are global centres.
Finally, in lemma 3.3 we give the conditions in order that the unique equilibrium
point of the system be the origin.

Proposition 3.1. If the origin of the quintic polynomial differential system (1.3)
is a centre, then the parameters aij , with i + j = 5, satisfy the conditions given in
the statement of theorem 1.2.

Proof. The trace and the determinant of the Jacobian matrix at the origin of system
(1.3) are zero and positive, respectively. So, the origin is a focus or a centre. We need
to compute some Lyapunov constants for distinguishing the centres from the foci,
and since the system has six parameters we must compute at least six Lyapunov
constants. Then, we have the following system of equations with six parameters:

S = {L1 = L2 = · · · = L2k = L2k+1 = 0}, and k � 6.

Following the approach described in § 2.1 for the computation of the centre
conditions Li, we have computed the Lyapunov constants Li for i = 1, . . . , 17, and
according to property (2.6) we must solve the following algebraic system composed
only by odd Lyapunov constants:

Q = {L1 = L3 = · · · = L2k+1 = 0}, and k = 8,

where L1 ≡ 0, and these Lyapunov constants are polynomials in the parameters aij ,
with i + j = 5. Due to the huge expressions of these Lyapunov constants, we only
provide in what follows the first four Lyapunov constants, where we have denoted
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aij by ai for i = 0, . . . , 5:

L3 = − 1
16
(
5a0 + a4 + a2

)
,

L5 = − 1
128

(
5a5a4 +

7
5
a4a3 +

1
5
a4a1 +

3
2
a5a2 +

9
10

a3a2 +
7
10

a2a1

)
,

L7 = − 1
2400

(
a3
4 −

9
32

a3
2 −

765
784

a2
3a2 +

165275
3136

a2
5a4 +

825
196

a2
5a2 +

11625
1568

a5a4a3

+
21075
1568

a5a4a1 +
375
196

a5a3a2 −
5
8
a2
4a2 −

155
448

a4a
2
3 +

3825
1568

a4a3a1 −
9
8
a4a

2
2

− 675
448

a4a
2
1

)
,

L9 =
1

36864

(
a3
3a2 −

27665
27

a3
5a4 −

440
9

a3
5a2 −

7493
21

a2
5a4a3 −

2707
9

a2
5a4a1

+
404
63

a2
5a3a2 −

1363574
46305

a5a
3
4 +

388547
46305

a5a
2
4a2 −

4813
108

a5a4a
2
3 −

73
36

a4a
3
3

− 1700
21

a5a4a3a1 +
16031
1470

a5a4a
2
2 +

47
7

a5a
2
3a2 +

517
420

a5a
3
2 −

53482
11025

a3
4a3

− 1388
343

a3
4a1 +

92923
77175

a2
4a3a2 −

85
12

a4a
2
3a1 +

3907
2450

a4a3a
2
2 +

209
700

a3a
3
2

)
, . . . .

Here, we get L2k+1 assuming that L2k+1 ∈ 〈L3 . . . , L2k−1〉 for k = 1, . . . , 8 and
L11, L13, L15 are polynomials of degrees 5, 6, and 7 in the variables a0, a1, . . . , a5,
respectively. Moreover, we get that L17 ≡ 0. Now, we need to solve the algebraic
system of equations Q. However, despite this system has only six variables and
seven equations, the usual mechanisms for solving it failed. Then, we determine the
irreducible components of the variety

V = V(L3, L5, L7, L9, L11, L13, L15), (3.1)

by using the Gianni–Trager–Zacharias algorithm (see [18]), for determining the irre-
ducible components of variety (3.1). The main function used is minAssGTZ, and it
is implemented in the library primdec.lib included in the algebraic computational
system SINGULAR (see [9, 10]). Here, using this algorithm we are able to compute
the decomposition, and obtain the necessary conditions to have a centre finding the
irreducible decomposition of the variety. Working in Q[a0, a1, . . . , a5] the mini-
mal corresponding prime ideal of R = 〈L3, L5, . . . , L2k+1〉 with k = 7 provided by
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SINGULAR is

T1 = 〈a0, a2, a4 + a2 + 5a0〉,

T2 = 〈18a2
3 + 49a2

2, a0, a1, a4 + a2 + 5a0, 7a5 + a3〉,

T3 = 〈a2
2 + 16a2

5 − 20a2a0 + 100a2
0, a3a5 + 6a2

5 − 5a2a0 + 50a2
0, a4 + a2 + 5a0

+ a3a2 + 6a2a5 − 10a3a0 + 20a5a0, a
2
3 − 36a2

5 + 60a2a0

− 200a2
0, 5a5 + a3 + a5〉. (3.2)

The next step is to show that
√
T =

√
R, where T =

⋂3
k=1 Tk in Q[a0, a1, . . . , a5].

We denote by
√

U the radical of the ideal U . In general, it is simpler to verify
the double inclusion instead of computing the radicals. Adding a new artificial
parameter w, this property can be seen by checking that {1} is the Gröbner basis
of the next list of ideals, 〈1 − wL2k+1, T 〉, for k = 1, . . . , 7, and 〈1 − wp, R〉, for
every p ∈ T .

Finally, we study the variety of each minimal prime ideal of (3.2). Frist, for T1: the
variety is given by the solution of the algebraic system {a0 = a2 = a4 + a2 + 5 a0 =
0}, then we get a0 = a2 = a4 = 0. Second, for T2 : we must study the algebraic sys-
tem {18 a2

3 + 49 a2
2 = a0 = a1 = a4 + a2 + 5 a0 = 7 a5 + a3 = 0}, and directly, the

variety belongs to the complex space since the solution is complex. Similarly, for
T3: we get that the variety is complex. Thus, filtering these solutions we obtain
the centre condition given in the statement of theorem 1.2, which is given by the
variety of the minimal corresponding prime ideal T1. �

Proposition 3.2. Under the conditions of theorem 1.2 the quintic polynomial
differential system (1.3) has a centre at the origin.

Proof. Since the origin of system (1.3) is a focus or a centre, and this system is
invariant under the symmetry (x, y, t) → (x, −y, −t), it follows that the origin is
a centre. �

Lemma 3.3. Under the conditions a41 = a23 = a05 = 0 the origin is the unique finite
equilibrium point of the quintic polynomial differential system (1.3) if, and only if,
a50 � 0.

Proof. Assuming that p = (α, β) is an equilibrium point, we have β = 0. So, p =
(α, 0) and it must satisfy the condition α(a50α

4 − 1) = 0. Therefore, α = 0 is the
unique solution, if a50 � 0. �

Proof of theorem 1.2. It follows directly from propositions 3.1 and 3.2, and lemma
3.3. �

4. The global centres

This section is devoted to prove theorem 1.1. The proof of this theorem follows by
proposition 2.2, i.e. we will give sufficient conditions to classify the global centre.
First, we assume the conditions of the statement of theorem 1.2, so the origin of
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system (1.3) is the unique equilibrium point and it is a centre. So, we get the
differential system:

ẋ = y, ẏ = −x + a14 x y4 + a32 x3 y2 − a2 x5, (4.1)

where −a2 = a50 � 0. So, from (2.7) and theorem 1.2, differential system (4.1) in
the local charts U1 and U2 becomes:

ẋ = − y4 x2 + a14 x4 − y4 + a32 x2 − a2, ẏ = − y5 x, (4.2)

and

ẋ = a2 x6 + y4 x2 − a32 x4 + y4 − a14 x2, ẏ = x y (a2 x4 + y4 − a32 x2 − a14),
(4.3)

respectively.
Before proving theorem 1.1 we define the concept of a characteristic direction at

an equilibrium point and how to compute them. Consider a polynomial differential
system of degree n, of the form:

(ẋ, ẏ) = (Pk(x, y) + h.o.t., Qk(x, y) + h.o.t.) , (4.4)

where Pk(x, y) and Qk(x, y) are the terms of lower degree k � 1, of differential
system (1.1). Here, n � k, and h.o.t. denotes higher order terms. If the origin p =
(0, 0) is an equilibrium point of system (4.4), then the characteristic direction of
the orbit γ(t) at p tending to p in positive time (respectively in negative time) is the
limit limt→∞(γ(t) − p)/‖γ(t) − p‖ (respectively limt→−∞(γ(t) − p)/‖γ(t) − p‖), if
such a limit exists. Moreover, consider the homogeneous polynomial:

γk = Pk(x, y) y − Qk(x, y)x. (4.5)

The possible characteristic directions of the orbits starting or ending at the equilib-
rium point localized at the origin of coordinates are given by the real linear factors
of homogeneous polynomial (4.5). For more details on the characteristic directions,
see [2].

Proof of theorem 1.1. We shall use proposition 2.2 in this proof, which gives the
necessary and sufficient conditions for classifying global centres. Thus, we must
determine the local phase portraits of the infinite equilibrium points of system
(4.1). The linear part of the infinite equilibrium point (the origin) in the chart U2

of the system (4.3) is identically zero. Thus, in order to determine its local phase
portrait we must do blow-ups.

Assume that a14 �= 0 in system (4.3). From (4.5) the characteristic directions
at the origin are obtained from γ2 = 0, where P2(x, y) = − a14 x2 and Q2(x, y) =
− a14 x y. So, all directions are characteristic. Then, we do the vertical blow-up
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Figure 1. Here a14 > 0. In the left panel, there is the local phase portrait in a neigh-
bourhood of the y2-axis of systems (4.7). In the middle panel, there is the local phase
portrait in a neighbourhood of the y2-axis of system (4.6). The local phase portrait of the
equilibrium point at the origin of the chart U2 is shown in the right panel.

(x, y) → (x1, y1 x1) to system (4.3), and we get:

ẋ1 = x2
1 (x4

1 y4
1 + a2 x4

1 + x2
1 y4

1 − a32 x2
1 − a14), ẏ1 = −x3

1 y5
1 , (4.6)

and rescaling the time (x2, y2, t) → (x1, y1, t/x2
1) in (4.6), we obtain:

ẋ2 = x4
2 y4

2 + a2 x4
2 + x2

2 y4
2 − a32 x2

2 − a14, ẏ2 = −x2 y5
2 . (4.7)

Going back through the changes of variables the local phase portrait at the equi-
librium point (the origin) is shown in figure 1, if a14 > 0. When a14 < 0, the local
phase portrait of the origin is the one of figure 1, reversing the orientation of the
orbits. So, when a14 �= 0, there are orbits which go or come from the infinity in
system (4.1), and consequently the centre of this system cannot be global. Assume
now that a14 = 0. Then, system (4.2) writes:

ẋ = − y4 x2 − y4 + a32 x2 − a2, ẏ = − y5 x. (4.8)

The infinite equilibrium points of this system are

P±=
(
± a√

a32
, 0
)

, (4.9)

if they exist. When they exist, since differential system (4.8) is invariant under the
symmetry (x, y, t) → (−x, y, −t), we only need to study the local phase portrait
at the infinite equilibrium point P+.

We divide the study of the possible infinite singular points of system (4.8) into
the following six cases:

c1 = {a32 > 0, a �= 0}, c2 = {a32 > 0, a = 0},
c3 = {a32 < 0, a �= 0}, c4 = {a32 < 0, a = 0},
c5 = {a32 = 0, a �= 0}, c6 = {a32 = a = 0}.

• Case c1. Then, translating the equilibrium P+ to the origin, system (4.8)
becomes ẋ = 2a

√
a32 x + · · · , ẏ = · · · , here the dots mean terms of degree higher
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Figure 2. In the left panel, the origin ofsystem (4.12) is a semi-hyperbolic node. Inmiddle,
for system (4.11), all points on the y1-axis are equilibrium points, and by rescaling the
time in the left flow, and changing the direction concerning the previous one, and on the
right the local phase portrait in the neighbourhood of the equilibrium point at the origin
of system (4.10) has a nilpotent elliptic sector.

than one in the variables x and y. Then, this equilibrium, by Theorem 2.15 of [12],
is a semi-hyperbolic saddle, or node, or saddle-node, and consequently some orbit
of system (4.1) goes or comes from the infinity, and system (4.1) cannot have a
global centre.
• Case c2. Then, system (4.3) writes:

ẋ = x2 y4 + y4 − a32 x4, ẏ = y x (x4 − a32 x2). (4.10)

From (4.5) the characteristic direction at the origin is γ4 = y5 = 0, and we can
do the vertical blow-up (x, y) → (x1, y1 x1), without loosing information because
x = 0 is not a characteristic direction. So, system (4.10) goes over the system:

ẋ1 = −x4
1 (−x2

1 y4
1 − y4

1 + a32), ẏ1 = −x3
1 y5

1 , (4.11)

and doing the rescaling of the time (x2, y2, t) → (x1, y1, t/x3
1) in system (4.11), we

get the system:

ẋ2 = −x2 (−x2
2 y4

2 − y4
2 + a32), ẏ2 = −y5

2 . (4.12)

Then, the origin of this system is a stable semi-hyperbolic node (see Theorem 2.15
of [12]), and going back through the changes of variables we obtain that the origin
in the chart U2 has an elliptic sector (see figure 2). Then, there are orbits of system
(4.1) going to infinity. Hence, system (4.1) cannot have a global centre.

• Case c3. Then, there are no infinite singular points in the local chart U1. So, it
is enough to study the origin of the local chart U2. Now, system (4.3) is

ẋ = a2 x6 + x2 y4 + y4 − a32 x4, ẏ = x y (a2 x4 + y4 − a32 x2). (4.13)

Since γ4 = y5 = 0, we do the vertical blow-up (x, y) → (x1, y1 x1), and system
(4.13) becomes

ẋ1 = x4
1 (x2

1 y4
1 + y4

1 + a2 x2
1 − a32), ẏ1 = −x3

1 y5
1 , (4.14)
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Figure 3. Local phase portraits corresponding to the blow-up of the origin in the chart
U2 of system (4.13).

and doing the rescaling (x2, y2, t) → (x1, y1, t/x3
1) to system (4.14) we get:

ẋ2 = x2 (x2
2 y4

2 + y4
2 + a2 x2

2 − a32), ẏ2 = −y5
2 . (4.15)

Thus, the origin of system (4.15) is a semi-hyperbolic saddle (by Theorem 2.15 of
[12]), see the left panel of figure 3. Going back to system (4.14), we obtain the
phase portrait of the middle panel of figure 3. In that panel, the y1-axis is filled
with equilibria. Undoing the vertical blow-up, we obtain the nilpotent hyperbolic
sector at the origin of the local chart U2 corresponding to system (4.13) showing in
the right panel of figure 3. Therefore, by proposition 2.2, in this case system (4.1)
has a global centre.
• Case c4. For this case we have systems (4.13), (4.14), and (4.15) with a = 0,

and as in case c3, the local phase portrait at the origin of the local chart U2 is
shown in the right panel of figure 3. Now, we must study the local phase portrait
at the origin of the local chart U1. So, system (4.2) is

ẋ = (a32 − y4)x2 − y4, ẏ = −y5 x. (4.16)

Since γ6 = −y (y4 − a32 x2) we can do the vertical blow-up (x, y) → (x1, y1 x1) to
system (4.16), and we obtain:

ẋ1 = −x2
1 (x4

1 y4
1 + x2

1 y4
1 − a32), ẏ1 = x1 y1 (x2

1 y4
1 − a32), (4.17)

then with the rescaling (x2, y2, t) → (x1, y1, t/x1), system (4.17) writes:

ẋ2 = −x2 (x4
2 y4

2 + x2
2 y4

2 − a3,2), ẏ2 = y2 (x2
2 y4

2 − a3,2). (4.18)

Therefore, the origin of system (4.18) is a hyperbolic saddle, its phase portrait is
the one of the left panel of figure 3, but with the orbit in the reverse sense. Going
back through the changes of variables, we obtain that the local phase portrait at
the origin of the local chart U1 is the one of the right panel of figure 3, reversing the
orientation of the orbits. So, again from proposition 2.2, in this case system (4.1)
has a global centre.
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• Case c5. From (4.8) it follows that there are no infinite singular points in the
local chart U1. Hence, we must study only the origin of the local chart U2. So,
system (4.3) is

ẋ = a2 x6 + x2 y4 + y4, ẏ = x y (a2 x4 + y4). (4.19)

Since γ6 = y5, we do the vertical blow-up and after the rescaling of the time
(x, y, t) → (x1, y1 x1, t/x3

1), and we obtain:

ẋ1 = x1 (x2
1 y4

1 + y4
1 + a2 x2

1), ẏ1 = −y5
1 . (4.20)

Now, γ5 = a2 x3
1 y1, therefore x1 = 0 is a characteristic direction and, before doing

a vertical blow-up, we do the twist (x1, y1) → (x2 − y2, y2) in system (4.20), and
we get:

ẋ2 = x3
2 y4

2 − 3x2
2 y5

2 + 3x2 y6
2 − y7

2 − 2 y5
2 + x2 y4

2 + a2 x3
2

− a2 (3x2
2 y2 − 3x2 y2

2 − y3
2),

ẏ2 = −y5
2 . (4.21)

Since γ5 = a2 y2 (x2 − y2)3, we do the vertical blow-up and the rescaling of the time
(x2, y2, t) → (x3, y3 x3, t/x2

3) in system (4.21), so we obtain the system:

ẋ3 = −x3 (x4
3 y7

3 − 3x4
3 y6

3 + 3x4
3 y5

3 − x4
3 y4

3 + 2x2
3 y5

3 − x2
3 y4

3 + a2 y3
3

− 3 a2 y2
3 + 3 a2 y3 − a2),

ẏ3 = (x4
3 y6

3 − 2x4
3 y5

3 + x4
3 y4

3 + 2x2
3 y4

3 + a2 y2
3 − 2 a2 y3 + a2)(y2

3 − y3). (4.22)

The equilibria of system (4.22) on the straight line x3 = 0 are the origin and
(0, 1). The origin is a hyperbolic saddle, and the (0, 1) is linearly zero, i.e. the
matrix of the linear part of system (4.22) is identically zero. Then, we will study
the local phase portrait at the point (0, 1) doing blow-up’s. First, we translate
the equilibrium point (0, 1) to the origin of coordinates, so applying in (4.22) the
change (x3, y3) → (x4, y4 + 1), we get:

ẋ4 = −x4(x2
4 + 6x2

4 + 14x2
4 y2

4 + a2 y3
4 + 16x2

4 y3
4 + x4

4 y2
4 + 9x2

4 y4
4 + 4x4

4 y4
4

+ 2x2
4 y5

4 + 6x4
4 y4

4 + 4x4
4 y6

4 + x4
4 y7

4),

ẏ4 = y4(1 + y4)(2x2
4 + 8x2

4 y4 + a2 y2
4 + 12x2

4 y2
4 + x4

4 y2
4 + 8x2

4 y3
4 + 4x4

4 y3
4

+ 2x2
4 y4

4 + 6x4
4 y4

4 + 4x4
4 y5

4 + x4
4 y6

4). (4.23)

For system (4.23), we have γ5 = −x4 y4(3x2
4 + a2 y2

4), then x4 = 0 is a characteris-
tic direction. Therefore, we do the twist (x4, y4) → (x5 − y5, y5) to system (4.23),
and after doing the vertical blow-up and the rescaling of the time (x5, y5, t) →
(x6, y6 x6, t/x2

6), we obtain the system:

ẋ6 = −x6

(
1 − 5 y6 + f(x6, y6, a)

)
,

ẏ6 = y6(1 − y6)
(
3 − 6 y6 + g(x6, y6, a)

)
, (4.24)

where f and g are polynomials of degrees 21 and 20 in the variables x6, y6,
respectively.
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Figure 4. Local phase portrait corresponding to the blow-up of the origin of the chart
U2 of system (4.19). Starting with the top panel on the left column, then going down
one by one in the left column: the local phase portrait of system (4.24), both equilibrium
points the origin and (0, 1) are hyperbolic saddles. In the next one all points on y6-axis
are equilibrium points. Undoing the blow-up we obtain a saddle for system (ẋ5, ẏ5), and
undoing the twist transformation we continue having a saddle for system (ẋ4, ẏ4).
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From (4.24) we obtain that the equilibrium points on y6 = 0 are the origin and
(0, 1). Both equilibria are hyperbolic saddles. Therefore, going back to system
(4.22), we obtain the local phase portrait at the equilibrium (0, 1). The steps on
the blow down from differential system (4.24) up to system (4.22) are given in the
left column of figure 4.

Finally, going back to differential system (4.19), we get the local phase portraits
at the origin of the chart U2. The different steps of this blow down are in the right
column of figure 4. Again, in this case from proposition 2.2 differential system (4.1)
has a global centre.
• Case c6. Then, differential system (1.3) under the conditions of theorem 1.1

becomes the linear differential system ẋ = y. ẏ = −x.
In summary, from cases c3, c4, and c5, it follows the proof of theorem 1.2. �

In the following we get for system (ẋ3, ẏ3) two saddles: one hyperbolic at the
origin and one linearly zero at (0, 1). Now, at the end of the right column, undoing
the time rescaling we obtain the same local phase portrait in a neighbourhood of
y3 = 0 with the exception that the straight line y3 = 0 is filled with equilibrium
points. Undoing the blow-up, the twist transformation, the first rescaling and the
first blow-up we obtain that the origin of U2 is formed by two hyperbolic sectors
having their separatrices on the infinite circle.
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31 N. A. Saharnikov. On Frommer’s conditions for the existence of a center. Akad. Nauk SSSR.
Prikl. Mat. Meh. 12 (1948), 669–670.
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