Canad. Math. Bull. Vol. **55** (4), 2012 pp. 821–829 http://dx.doi.org/10.4153/CMB-2011-133-2 © Canadian Mathematical Society 2011

New Examples of Non-Archimedean Banach Spaces and Applications

C. Perez-Garcia and W. H. Schikhof

Abstract. The study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have *t*-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm $\|\cdot\|$ on c_0 , equivalent to the canonical supremum norm, without non-zero vectors that are $\|\cdot\|$ -orthogonal and such that there is a multiplication on c_0 making $(c_0, \|\cdot\|)$ into a valued field.

1 Preliminaries and Basic Lemmas

Throughout this paper $K := (K, |\cdot|)$ is a non-archimedean non-trivially valued field that is complete with respect to the metric induced by the valuation $|\cdot| : K \rightarrow [0, \infty)$. For fundamentals on non-archimedean valued fields and their valued field extensions, see [1, 3]. Here we only fix some notations and recall some basic concepts which will be involved in the paper.

By K[X] we mean the *K*-vector space of all polynomials with coefficients in *K*. Also, K(X) denotes the (non-necessarily complete) field of rational functions over *K* with the non-archimedean valuation, which extends the valuation on *K*, defined by

$$\left|\frac{\lambda_0 + \lambda_1 X + \dots + \lambda_n X^n}{\mu_0 + \mu_1 X + \dots + \mu_m X^m}\right| := \frac{\max_{0 \le i \le n} |\lambda_i|}{\max_{0 \le j \le m} |\mu_j|},$$

where λ_i , μ_j are in K and not all μ_j equal to 0.

The set $G_K := \{ |\lambda| : \lambda \in K, \lambda \neq 0 \}$ is a multiplicative group of positive real numbers, called the *value group* of *K*. We denote $|K| := G_K \cup \{0\}$.

The closed unit ball in K is $B_K := \{\lambda \in K : |\lambda| \le 1\}$. Similarly, the open unit ball in K is $B_K^- := \{\lambda \in K : |\lambda| < 1\}$. B_K is not only multiplicatively, but, due to the strong triangle inequality $(|\lambda + \mu| \le \max\{|\lambda|, |\mu|\})$ for all $\lambda, \mu \in K$, also additively closed. Thus, B_K is a commutative ring with identity. Further, B_K^- is easily seen to be an ideal in B_K and, since each $\lambda \in K$ with $|\lambda| = 1$ is invertible in B_K , even a maximal ideal. Thus, B_K/B_K^- is a field, called the *residue class field* of K and denoted by k. The canonical map $B_K \rightarrow k$ is written $\lambda \mapsto \overline{\lambda}$.

Received by the editors February 3, 2010.

Published electronically June 29, 2011.

The first author's research was partially supported by Ministerio de Ciencia e Innovación, MTM2010-20190-C02-02.

AMS subject classification: 46S10, 12J25.

Keywords: non-archimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases.

Note All the vector and Banach spaces considered in this paper are over *K*.

The new examples of non-archimedean Banach spaces treated in this paper are complete valued field extensions of K; we will focus on algebraically closed fields K (see the end of this section).

A valued field extension *L* of *K* is a non-archimedean valued field containing *K* as a subfield and such that the valuation of *K* is the restriction of the valuation of *L* (this last one is also denoted by $|\cdot|$).

A valued field extension *L* of *K* is called *immediate* if the value groups of *K* and *L* are the same and their residue class fields are naturally isomorphic, or equivalently, if for each $a \in L$, $a \neq 0$, $\inf\{|a - \lambda| : \lambda \in K\} < |a|$ ([2, Exercise 4.X and comments after Theorem 4.57]).

We call $(K, |\cdot|)$ spherically complete if it has no proper immediate valued field extensions, or equivalently, if each nested sequence of balls $B_1 \supset B_2 \supset \cdots$ in *K* has a non-empty intersection [2, Theorem 4.47].

Now let L_1 and L_2 be two spherically complete immediate valued field extensions of K. Then there is a bijective K-linear isometry $L_1 \rightarrow L_2$ that leaves K pointwise fixed, but we cannot always choose this map to be a field homomorphism [2, Theorem 4.59].

Despite this, we shall denote any spherically complete immediate valued field extension of *K* by K^{\vee} , and even call K^{\vee} *the spherical completion* of *K*.

The field \mathbb{Q}_p of *p*-adic numbers (where *p* is a prime number) is spherically complete (because it is locally compact, [3, Theorem 5.4]) and it is not algebraically closed ([3, Corollary 16.4]). The completion \mathbb{C}_p of the algebraic closure of \mathbb{Q}_p is algebraically closed [3, Corollary 17.2.(i)] and it is not spherically complete [3, Corollary 20.6]. The spherical completion of \mathbb{C}_p is algebraically closed [2, Corollary 4.51] and clearly it is spherically complete.

To give an example of a non-algebraically closed and non-spherically complete field is a more delicate subject. Let $K := \mathbb{C}_p$. Let L be the completion of K(X). Then L is the field of formal Laurent series in K constructed in Exercise 1.K of [2] for $\rho := 1$. It is easily seen that there is no element in L whose square is equal to X, so L is not algebraically closed. Also, as \mathbb{C}_p is separable [3, Corollary 17.2.(iv)], then so is K(X) and hence L is separable [3, Exercise 17.B]. Finally, since the valuation of Lis dense, it follows that L is not spherically complete [3, Theorem 20.5], and we have the desired example.

Now let $E = (E, \|\cdot\|)$ be a (non-archimedean) Banach space. For fundamentals on non-archimedean Banach spaces we refer to [2]. Here we only fix some notations and recall some basic concepts that will be involved in the paper.

By ||E|| we mean $\{||x|| : x \in E\}$. For a set $X \subset E$, $\sharp X$ and [X] are the cardinality and the linear hull of X, respectively; \overline{X} denotes the closure of X with respect to the norm topology on E. For $X, Y \subset E$, $Y \setminus X := \{y \in E : y \in Y, y \notin X\}$. The *distance between two non-empty sets* $X, Y \subset E$ is dist $(Y, X) := \inf\{||y - x|| : y \in Y, x \in X\}$. For $a \in E$, instead of dist $(\{a\}, X)$ we write dist(a, X).

By L(E) we mean the Banach space of all continuous linear maps $E \rightarrow E$ and by E' the Banach space of all continuous linear maps $E \rightarrow K$. As usual E'' := (E')' and E is called *reflexive* if the canonical map $E \rightarrow E''$ is a surjective isometry. E is said to be *of*

countable type if it contains a countable set whose linear hull is dense in E.

Let *I* be a non-empty set, let $s := (s_i)_{i \in I} \in \mathbb{R}^I$ with $s_i > 0$ for all $i \in I$. The space $c_0(I, s) := \{(\lambda_i)_{i \in I} \in K^I : \lim_i |\lambda_i| s_i = 0\}$, equipped with the norm $\|(\lambda_i)_{i \in I}\| := \max_{i \in I} |\lambda_i| s_i$, is a Banach space, which is of countable type if and only if *I* is countable. When $s_i = 1$ for all $i \in I$, we write $c_0(I)$ instead of $c_0(I, s)$; if, additionally, $I = \mathbb{N}$, then $c_0(\mathbb{N})$ is the well-known space c_0 of all sequences in *K* tending to 0.

Two elements x, y of E are *orthogonal* to each other $(x \perp y)$ if dist(x, [y]) = ||x||, or equivalently, if $||\lambda x + \mu y|| = max\{||\lambda x||, ||\mu y||\}$ for all $\lambda, \mu \in K$. For two subspaces D_1, D_2 of E we put $D_1 \perp D_2$ if $x \perp y$ for all $x \in D_1, y \in D_2$. For $D_1 = [a]$, $a \in E$, instead of $[a] \perp D_2$, we write $a \perp D_2$ (observe that $a \perp D_2$ if and only if $dist(a, D_2) = ||a||$). We say that a subspace D_1 is *orthocomplemented* in E if there exists a subspace D_2 such that $D_1 \perp D_2$ and $D_1 \oplus D_2 = E$ (where \oplus means *algebraic direct sum*), or equivalently, if there exists a continuous linear projection $Q: E \rightarrow D_1$ with $||Q|| \leq 1$.

Let $t \in (0, 1]$. A *t*-orthogonal system in *E* is a subset $X = \{e_i : i \in I\}$ of $E \setminus \{0\}$ such that if i_1, \ldots, i_n are distinct elements of *I*, then

(1.1)
$$\|\lambda_{i_1}e_{i_1}+\cdots+\lambda_{i_n}e_{i_n}\| \ge t \max_{1\le k\le n} \|\lambda_{i_k}e_{i_k}\|$$
 for all $n \in \mathbb{N}, \lambda_{i_1}, \ldots, \lambda_{i_n} \in K$.

If in addition $||e_i|| = 1$ for all $i \in I$, then *X* is called a *t*-orthonormal system.

A *t*-orthogonal system *X* is called a *t*-orthogonal base of *E* if in addition [X] = E (or equivalently, if every $x \in E$ can be written uniquely as $x = \sum_{i \in I} \lambda_{xi} e_i, \lambda_{xi} \in K$). All *t*-orthogonal bases in *E* have the same cardinality. When t = 1, we write "orthogonal" instead of "1-orthogonal" and in this case, by the strong triangle inequality for $\|\cdot\|$, we have that (1.1) is equivalent to

$$\|\lambda_{i_1}e_{i_1}+\cdots+\lambda_{i_n}e_{i_n}\|=\max_{1\le k\le n}\|\lambda_{i_k}e_{i_k}\|\quad\text{for all }n\in\mathbb{N},\lambda_{i_1},\ldots,\lambda_{i_n}\in K.$$

Analogously we write "orthonormal" instead of "1-orthonormal".

Each Banach space with an orthogonal base $\{e_i : i \in I\}$ is isometrically isomorphic to $c_0(I, s)$, with $s_i := ||e_i||$ for all *i*, in particular, isometrically isomorphic to $c_0(I)$ in the case in which the base is orthonormal.

1.1 New Examples of Banach Spaces

If *L* is a complete valued field extension of *K*, then the valuation on *L* makes it naturally into a Banach space. This fact generates a new class of examples of Banach spaces. For $a \in L \setminus K$, let K(a) be the smallest subfield of *L* containing *K* and *a* and let $\overline{K(a)}$ be the closure of K(a) in *L*. Clearly $\overline{K(a)}$ is a Banach space with the norm induced by the valuation of *L*.

The main result of this paper, Theorem 2.1, provides an answer when K is algebraically closed to the natural questions whether $\overline{K(a)}$ is of countable type, has a *t*-orthogonal base ($t \in (0,1]$) and, as a consequence, whether $\overline{K(a)}$ is reflexive (Corollary 3.3). An application of this theorem is given in Corollary 3.5. **Note** Unless explicitly stated otherwise, from now on we assume that K is algebraically closed and that L, a, K(a), and $\overline{K(a)}$ are as described above.

The following lemmas will be used in the next section to prove Theorem 2.1.

Lemma 1.1 Let $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_n be elements of *L* such that $|\lambda_i - \mu_i| < |\mu_i|$ for each $i \in \{1, \ldots, n\}$. Then

$$\left|\prod_{i=1}^n \lambda_i - \prod_{i=1}^n \mu_i\right| < \left|\prod_{i=1}^n \mu_i\right|.$$

Proof The proof follows directly from the observation that $|\frac{\lambda_i}{\mu_i} - 1| < 1$ for each $i \in \{1, ..., n\}$ and that $\{\lambda \in L : |\lambda - 1| < 1\}$ is a multiplicative group.

Lemma 1.2 Let $a \perp K$, |a| = 1. Then for each polynomial

$$P = \lambda_0 + \lambda_1 X + \dots + \lambda_n X^n \in K[X]$$

and $\mu \in B_K$ we have $|P(\mu)| \leq \max_{0 \leq i \leq n} |\lambda_i| \leq |P(a)|$.

Proof Only the second inequality needs a proof. We may assume $\lambda_n \neq 0$. By algebraic closedness there are $\omega_1, \ldots, \omega_n \in K$ such that $P = \lambda_n (X - \omega_1) \cdots (X - \omega_n)$ and by assumption we have $|a - \omega_i| \geq |a| = 1$ for all *i*, so that $|P(a)| \geq |\lambda_n|$. By the same token, we obtain $|\lambda_0 + \lambda_1 a + \cdots + \lambda_{n-1} a^{n-1}| \geq |\lambda_{n-1}|$, *i.e.*, $|\lambda_{n-1}| \leq |P(a) - \lambda_n a^n| \leq \max(|P(a)|, |\lambda_n|) = |P(a)|$, and we can proceed inductively.

2 Main Result

The main result of the paper is the following theorem, which provides an answer to the natural questions whether $\overline{K(a)}$ is of countable type and whether $\overline{K(a)}$ has a *t*-orthogonal base ($t \in (0, 1]$).

Theorem 2.1 For the Banach space $\overline{K(a)}$ we have the following.

- (i) If dist(*a*, *K*) is not attained, then $\overline{K(a)}$ is of countable type and has a t-orthogonal base for each $t \in (0, 1)$, but has no orthogonal base.
- (ii) If dist(a, K) is attained, but not in |K|, then K(a) is of countable type and has an orthogonal base, but has no orthonormal base.
- (iii) If dist(*a*, *K*) is attained and in |K|, then $\overline{K(a)}$ has an orthonormal base of cardinality $\sharp k$.

Proof (i) First we show that $\overline{K(a)}$ is of countable type. For that we prove that the ring $K[a] := [1, a, a^2, ...]$ is dense in $\overline{K(a)}$, which will be done in the next three steps.

(a) For every $b \in K[a]$, $b \neq 0$ there is $a \mu \in K$ such that $|b - \mu| < |\mu|$. To see this, let $b = \lambda_0 + \lambda_1 a + \dots + \lambda_n a^n$; we may suppose $n \ge 1, \lambda_0, \lambda_1, \dots, \lambda_n \in K, \lambda_n \neq 0$. By algebraic closedness there exist $\omega_1, \dots, \omega_n \in K$ such that $b = \lambda_n (a - \omega_1) \dots (a - \omega_n)$. Since dist $(a, K) = \text{dist}(a - \omega_i, K)$ is not attained, there are $\mu_1, \dots, \mu_n \in K$ such that $|a - \omega_i - \mu_i| < |\mu_i|$ for each $i \in \{1, \dots, n\}$. By Lemma 1.1 we have $|b - \mu| < |\mu|$, where $\mu := \lambda_n \mu_1 \dots \mu_n$.

(b) For each $b \in K[a]$, $b \neq 0$ we have $b^{-1} \in \overline{K[a]}$. In fact, by (a) there is a $\mu \in K$ such that $|b - \mu| < |\mu|$. Then $|\mu^{-1} b - 1| < 1$, so that

$$\mu b^{-1} = (1 - (1 - \mu^{-1} b))^{-1} = \sum_{n=0}^{\infty} (1 - \mu^{-1} b)^n \in \overline{K[a]}.$$

(c) K[a] is dense in $\overline{K(a)}$. From (b) it follows that $K(a) \subset \overline{K[a]}$. This, together with the obvious inclusion $K[a] \subset \overline{K(a)}$, leads to $\overline{K[a]} = \overline{K(a)}$.

Secondly we show that K(a) has for each $t \in (0, 1)$ a *t*-orthogonal base. This follows from what we have just proved and [2, Theorems 3.15.(iii), 3.16.(ii)].

Finally we show that $\overline{K(a)}$ has no orthogonal base. Suppose it has; we derive a contradiction. This orthogonal base must be countable (because, as we proved before, $\overline{K(a)}$ is of countable type; so apply [2, Theorem 5.2]) and infinite (because, as K is algebraically closed, K(a) and hence $\overline{K(a)}$ are infinite-dimensional vector spaces). Let us denote this orthogonal base by $\{e_1, e_2, \ldots\}$. Then $\overline{K(a)}$ is isometrically isomorphic to $c_0(\mathbb{N}, s)$, with $s_n := ||e_n||$ for all $n \in \mathbb{N}$. By [2, Lemma 4.35.(ii)], [a] is orthocomplemented in $\overline{K(a)}$ and hence in [1, a], which contradicts the hypothesis of (i).

(ii) Let $\lambda_0 \in K$ be such that $|a - \lambda_0| = \text{dist}(a, K)$. Then $K(a - \lambda_0) = K(a)$ and $\text{dist}(a - \lambda_0, K) = \text{dist}(a, K)$, so we may replace a by $a - \lambda_0$; in other words, we may assume that $|a| \notin |K|$. It suffices to show that $\{a^n : n \in \mathbb{Z}\}$ is an orthogonal base of $\overline{K(a)}$.

First observe that $|a|^n \notin |K|$ for $n \in \mathbb{N}$. Indeed, if $|a|^n = |\lambda|$ for some $n \in \mathbb{N}$ and $\lambda \in K$, then by algebraic closedness there is a $\mu \in K$ with $\mu^n = \lambda$, so that $|a| = |\mu| \in |K|$, which is a contradiction. Next we prove orthogonality of $\{a^n : n \in \mathbb{Z}\}$. Let

$$x:=\sum_{i=s}^m\lambda_i\,a^i,$$

where $\lambda_s, \ldots, \lambda_m \in K$, not all 0. From what we have just proved it follows that $|\lambda_i a^i| \neq |\lambda_j a^j|$ for all $i, j \in \{s, \ldots, m\}$ unless i = j or $\lambda_i = \lambda_j = 0$. Then $|x| = \max_{s \leq i \leq m} |\lambda_i a^i|$, and orthogonality follows.

We proceed to show that $x^{-1} \in [a^n : n \in \mathbb{Z}]$, where *x* is as above. There is a unique $j \in \{s, ..., m\}$ with $|x| = |\lambda_j a^j|$. Then

$$(\lambda_j a^j)^{-1} x = 1 + (\lambda_j a^j)^{-1} \sum_{i \neq j} \lambda_i a^i = 1 + \nu,$$

where $v \in \overline{[a^n : n \in \mathbb{Z}]}$, |v| < 1. Thus

$$(\lambda_j a^j) x^{-1} = \sum_{n=0}^{\infty} (-\nu)^n \in \overline{[a^n : n \in \mathbb{Z}]},$$

implying $x^{-1} \in [a^n : n \in \mathbb{Z}]$. Now continuity of the inverse map shows that $[a^n : n \in \mathbb{Z}]$ is a field, hence must be equal to $\overline{K(a)}$. Then we obtain that $\{a^n : n \in \mathbb{Z}\}$ is an orthogonal base of $\overline{K(a)}$.

(iii) The proof here is somewhat more involved. Let $\lambda_0 \in K$ with $|a - \lambda_0| = \text{dist}(a, K) \in |K|$. Then $K(a - \lambda_0) = K(a)$ and $\text{dist}(a - \lambda_0, K) = \frac{\text{dist}(a, K)}{\sigma(u)}$, so we may assume that $a \perp K$ and |a| = 1. Let $\sigma \colon k \to B_K$ be such that $\overline{\sigma(u)} = u$ for all $u \in k$. Let

$$S := \{a^{s} : s \in \mathbb{N} \cup \{0\}\} \cup \{(a - \mu)^{-m} : \mu \in \sigma(k), \ m \in \mathbb{N}\}\$$

Then *S* is a subset of *K*(*a*) and, since *k* is infinite, we have $\sharp S = \sharp k$. We now establish (a)–(d) below, which will show that *S* is an orthonormal base of $\overline{K(a)}$.

- (a) *S* is an orthonormal system.
- (b) $\overline{[S]}$ is a subring of $\overline{K(a)}$.
- (c) For each $\beta \in K$, $(a \beta)^{-1} \in \overline{[S]}$.
- (d) $K(a) \subset \overline{[S]}$.

Proof of (a) Clearly each member of *S* has length 1. Take a linear combination

$$\Phi := \sum_{r=0}^{s} \xi_r \, a^r + \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} \, (a - \mu_i)^{-j}$$

(where $s \in \mathbb{N} \cup \{0\}$, $m, n \in \mathbb{N}$, $\xi_r, \lambda_{ij} \in K$, $\mu_i \in \sigma(k)$). For orthonormality of *S* it suffices to show, assuming $|\Phi| < 1$, that all $|\xi_r|$ and $|\lambda_{ij}|$ are < 1. Via (downward) induction on *n* we only need to prove that all $|\xi_r|$ and all $|\lambda_{in}|$ are < 1 for $r \in \{0, \ldots, s\}$, $i \in \{1, \ldots, m\}$.

To obtain polynomials, we multiply Φ by $L(a) := (a - \mu_1)^n \cdots (a - \mu_m)^n$, which does not change the absolute value, as |L(a)| = 1. The assumption $|\Phi| < 1$ turns into

$$(2.1) |V_1(a) + V_2(a)| < 1,$$

where $V_1, V_2 \in K[X]$. In fact, for $x \in L$,

$$V_1(x) := \left(\sum_{r=0}^s \xi_r x^r\right) L(x), \quad V_2(x) := \sum_{i=1}^m \sum_{j=1}^n \lambda_{ij} L_{ij}(x),$$

where $L_{ij}(x) := (x - \mu_i)^{n-j} \prod_{l \neq i} (x - \mu_l)^n$.

Let $r \in \{0, ..., s\}$. If $\xi_r \neq 0$, the degree of V_1 is $\geq mn$, whereas V_2 has degree < mn. Thus, ξ_r is a coefficient of the polynomial $V_1 + V_2$, so that by Lemma 1.2 we have $|\xi_r| \leq |V_1(a) + V_2(a)| < 1$. So all $|\xi_r|$ are < 1 and $|V_1(a)| < 1$, hence (2.1) reduces to $|V_2(a)| < 1$. Choose $q \in \{1, ..., m\}$. Then since

$$|L_{ij}(\mu_q)| = \begin{cases} 1 & \text{if } q = i, \ j = n \\ 0 & \text{otherwise,} \end{cases}$$

we find by Lemma 1.2 that $1 > |V_2(a)| \ge |V_2(\mu_q)| = |\lambda_{qn}|$, so that $|\lambda_{1n}|, \ldots, |\lambda_{mn}|$ are all less than 1.

Proof of (b) It suffices to show that $S \cdot S \subset [S]$. For $\mu \in \sigma(k)$ and $m \in \mathbb{N}$ the identity

$$a(a-\mu)^{-m} = (a-\mu)^{1-m} + \mu (a-\mu)^{-m}$$

shows that $aS \subset [S]$. Then $a^2S = aaS \subset a[S] = [aS] \subset [S]$, and so on, proving that $a^rS \subset [S]$ for each $r \in \mathbb{N} \cup \{0\}$. It remains to be shown that $(a-\mu_1)^{-m_1}(a-\mu_2)^{-m_2} \in [S]$ for $m_1, m_2 \ge 1, \mu_1, \mu_2 \in \sigma(k)$. If $\mu_1 = \mu_2$, this is clear, so suppose $\mu_1 \ne \mu_2$. We use induction with respect to $n := m_1 + m_2$. If n = 2 (so $m_1 = m_2 = 1$), the formula

(2.2)
$$(a - \mu_1)^{-1}(a - \mu_2)^{-1} = \frac{1}{\mu_1 - \mu_2} ((a - \mu_1)^{-1} - (a - \mu_2)^{-1})$$

does the job. For the step $n - 1 \rightarrow n$, observe that we have, using (2.2),

$$(a - \mu_1)^{-m_1}(a - \mu_2)^{-m_2} = \frac{1}{\mu_1 - \mu_2} \left((a - \mu_1)^{-1} - (a - \mu_2)^{-1} \right) (a - \mu_1)^{-m_1 + 1} (a - \mu_2)^{-m_2 + 1},$$

which is a linear combination of the elements $(a - \mu_1)^{-m_1}(a - \mu_2)^{-m_2+1}$ and $(a - \mu_1)^{-m_1+1}(a - \mu_2)^{-m_2}$, and these are in [S] by the induction hypothesis.

Proof of (c) If $|\beta| > 1$, we have $(a - \beta)^{-1} = -\beta^{-1} \sum_{n=0}^{\infty} (\beta^{-1} a)^n \in \overline{[S]}$, so let $|\beta| \le 1$. Then there is a $\mu \in \sigma(k)$ with $|\beta - \mu| < 1$ and

$$(a-\beta)^{-1} - (a-\mu)^{-1} = (\beta-\mu) (a-\mu)^{-2} \left(1 - \frac{\beta-\mu}{a-\mu}\right)^{-1}$$
$$= (\beta-\mu) (a-\mu)^{-2} \sum_{n=0}^{\infty} (\beta-\mu)^n (a-\mu)^{-n} \in \overline{[S]}.$$

Proof of (d) Every element of K(a) can be written as $P(a)Q(a)^{-1}$ for some polynomials $P, Q \in K[X]$, $Q(a) \neq 0$. By algebraic closedness we can decompose Q into linear factors whose inverses are in $\overline{[S]}$ by (c). Then since $\overline{[S]}$ is a ring by (b), $P(a)Q(a)^{-1} \in \overline{[S]}$.

3 Some Consequences and Final Remarks

As an immediate consequence of Theorem 2.1 we derive the next result.

- **Corollary 3.1** (i) For each $t \in (0, 1)$ $\overline{K(a)}$ has a t-orthogonal base.
- (ii) $\overline{K(a)}$ has an orthogonal base if and only if dist(a, K) is attained.
- (iii) $\overline{K(a)}$ is not of countable type if and only if dist(a, K) is attained and in |K| and k is uncountable.

Remark 3.2 To see that cases (ii) and (iii) of Corollary 3.1 really occur, choose K such that k is uncountable. Let L be the completion of $(K(X), |\cdot|)$, and choose a := X.

Another consequence of Theorem 2.1 concerns reflexivity of $\overline{K(a)}$. Recall that a set is *small* if it has a non-measurable cardinality [2, p. 31].

Corollary 3.3 K(a) is reflexive except when either (i) K is spherically complete, or (ii) K is not spherically complete, dist(a, K) is attained and in |K|, and k is not small.

Proof Suppose *K* is spherically complete (case (i)). Since *K* is algebraically closed, $\overline{K(a)}$ is an infinite-dimensional Banach space, so it is not reflexive [2, Theorem 4.16].

Now suppose that *K* is not spherically complete (case (ii)). If the remaining assumptions of (ii) hold, then by Theorem 2.1(iii), $\overline{K(a)}$ is isometrically isomorphic to $c_0(I)$ with $\sharp I = \sharp k$. As $\sharp I$ is not small, it follows from [2, Exercise 4.M] that $\overline{K(a)}$ is not reflexive.

On the other hand, if K is not spherically complete and some of the remaining assumptions of (ii) fail, then we have that either

• we are in case (i) or (ii) of Theorem 2.1 (so $\overline{K(a)}$ is of countable type, hence reflexive by [2, Corollary 4.18]), or

• we are in case (iii) of Theorem 2.1 with *k* small (so, *K*(*a*) is isometrically isomorphic to $c_0(I)$ with $\sharp I = \sharp k$ and, as $\sharp I$ is small, $\overline{K(a)}$ is reflexive, by [2, Theorem 4.21.(iii)]).

Remark 3.4 To see that case (ii) of Corollary 3.3 really occurs, choose *K* non-spherically complete and such that *k* is small. Then proceed as in Remark 3.2.

Also, as an application of Theorem 2.1 we obtain the following interesting fact.

Corollary 3.5 Suppose that K is not spherically complete. Then on c_0 there exists an equivalent norm $\|\cdot\|$ with $\|c_0\| = |K|$ such that

(i) there is a multiplication on c_0 making $(c_0, \|\cdot\|)$ into a valued field;

(ii) no two non-zero vectors are $\|\cdot\|$ -orthogonal.

Proof Let $L := K^{\vee}$ be the spherical completion of K and let $a \in L \setminus K$. Then dist(a, K) is not attained, since L is an immediate valued field extension of K. So we are in case (i) of Theorem 2.1, showing that $\overline{K(a)}$ is of countable type (and infinite-dimensional, as K is algebraically closed), hence linearly homeomorphic to c_0 ([2, Theorem 3.16.(ii)]).

If $\lambda, \mu \in \overline{K(a)}$, $\lambda \perp \mu$ with respect to the valuation $|\cdot|$ on $\overline{K(a)}$ and $\lambda, \mu \neq 0$, then $\lambda \mu^{-1} \neq 0$, $\lambda \mu^{-1} \perp K$, which is not possible since, as $\overline{K(a)}$ is an immediate valued field extension of K, 0 is the only element of $\overline{K(a)}$ that is orthogonal to K ([2, pp. 57, 162]).

Finally, let $\|\cdot\|$ be the norm on c_0 inherited from $|\cdot|$ through the bijective linear homeomorphism $\overline{K(a)} \rightarrow c_0$. From the facts previously showed in this proof we obtain that $(c_0, \|\cdot\|)$ satisfies the required conditions.

Problem Now let us drop the condition of algebraic closedness of *K*. Again, let *L* be a valued field extension of *K*. Let *a* be in $L \setminus K$, *a* not algebraic over *K*. What conclusions about $\overline{K(a)}$ of Theorem 2.1 and its corollaries remain valid in this more general context?

References

- [1] A. M. Robert, *A Course in p-Adic Analysis*. Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000.
- [2] A. C. M. van Rooij, *Non-Archimedean Functional Analysis*. Monographs and Textbooks in Pure and Applied Math. 51. Marcel Dekker, New York, 1978.
- [3] W. H. Schikhof, *Ultrametric Calculus. An Introduction to p-Adic Analysis*. Cambridge Studies in Advanced Mathematics 4. Cambridge University Press, Cambridge, 1984.

Department of Mathematics, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain e-mail: perezmc@unican.es

Department of Mathematics, Radboud University, 6525 ED Nijmegen, The Netherlands e-mail: w_schikhof@hetnet.nl