(C) Canadian Mathematical Society 2011

New Examples of Non-Archimedean Banach Spaces and Applications

C. Perez-Garcia and W. H. Schikhof

Abstract

The study carried out in this paper about some new examples of Banach spaces, consisting of certain valued fields extensions, is a typical non-archimedean feature. We determine whether these extensions are of countable type, have t-orthogonal bases, or are reflexive. As an application we construct, for a class of base fields, a norm $\|\cdot\|$ on c_{0}, equivalent to the canonical supremum norm, without non-zero vectors that are $\|\cdot\|$-orthogonal and such that there is a multiplication on c_{0} making $\left(c_{0},\|\cdot\|\right)$ into a valued field.

1 Preliminaries and Basic Lemmas

Throughout this paper $K:=(K,|\cdot|)$ is a non-archimedean non-trivially valued field that is complete with respect to the metric induced by the valuation $|\cdot|: K \rightarrow[0, \infty)$. For fundamentals on non-archimedean valued fields and their valued field extensions, see [1,3]. Here we only fix some notations and recall some basic concepts which will be involved in the paper.

By $K[X]$ we mean the K-vector space of all polynomials with coefficients in K. Also, $K(X)$ denotes the (non-necessarily complete) field of rational functions over K with the non-archimedean valuation, which extends the valuation on K, defined by

$$
\left|\frac{\lambda_{0}+\lambda_{1} X+\cdots+\lambda_{n} X^{n}}{\mu_{0}+\mu_{1} X+\cdots+\mu_{m} X^{m}}\right|:=\frac{\max _{0 \leq i \leq n}\left|\lambda_{i}\right|}{\max _{0 \leq j \leq m}\left|\mu_{j}\right|},
$$

where λ_{i}, μ_{j} are in K and not all μ_{j} equal to 0 .
The set $G_{K}:=\{|\lambda|: \lambda \in K, \lambda \neq 0\}$ is a multiplicative group of positive real numbers, called the value group of K. We denote $|K|:=G_{K} \cup\{0\}$.

The closed unit ball in K is $B_{K}:=\{\lambda \in K:|\lambda| \leq 1\}$. Similarly, the open unit ball in K is $B_{K}^{-}:=\{\lambda \in K:|\lambda|<1\} . B_{K}$ is not only multiplicatively, but, due to the strong triangle inequality $(|\lambda+\mu| \leq \max \{|\lambda|,|\mu|\}$ for all $\lambda, \mu \in K)$, also additively closed. Thus, B_{K} is a commutative ring with identity. Further, B_{K}^{-}is easily seen to be an ideal in B_{K} and, since each $\lambda \in K$ with $|\lambda|=1$ is invertible in B_{K}, even a maximal ideal. Thus, B_{K} / B_{K}^{-}is a field, called the residue class field of K and denoted by k. The canonical map $B_{K} \rightarrow k$ is written $\lambda \mapsto \bar{\lambda}$.

[^0]Note All the vector and Banach spaces considered in this paper are over K.
The new examples of non-archimedean Banach spaces treated in this paper are complete valued field extensions of K; we will focus on algebraically closed fields K (see the end of this section).

A valued field extension L of K is a non-archimedean valued field containing K as a subfield and such that the valuation of K is the restriction of the valuation of L (this last one is also denoted by $|\cdot|$).

A valued field extension L of K is called immediate if the value groups of K and L are the same and their residue class fields are naturally isomorphic, or equivalently, if for each $a \in L, a \neq 0, \inf \{|a-\lambda|: \lambda \in K\}<|a|([2]$ Exercise 4.X and comments after Theorem 4.57]).

We call $(K,|\cdot|)$ spherically complete if it has no proper immediate valued field extensions, or equivalently, if each nested sequence of balls $B_{1} \supset B_{2} \supset \cdots$ in K has a non-empty intersection [2, Theorem 4.47].

Now let L_{1} and L_{2} be two spherically complete immediate valued field extensions of K. Then there is a bijective K-linear isometry $L_{1} \rightarrow L_{2}$ that leaves K pointwise fixed, but we cannot always choose this map to be a field homomorphism [2, Theorem 4.59].

Despite this, we shall denote any spherically complete immediate valued field extension of K by K^{\vee}, and even call K^{\vee} the spherical completion of K.

The field $\left(\mathbb{O}_{p}\right.$ of p-adic numbers (where p is a prime number) is spherically complete (because it is locally compact, [3, Theorem 5.4]) and it is not algebraically closed ($\left[3\right.$, Corollary 16.4]). The completion \mathbb{C}_{p} of the algebraic closure of $\left(\mathbb{O}_{p}\right.$ is algebraically closed [3, Corollary 17.2.(i)] and it is not spherically complete [3, Corollary 20.6]. The spherical completion of \mathbb{C}_{p} is algebraically closed [2, Corollary 4.51] and clearly it is spherically complete.

To give an example of a non-algebraically closed and non-spherically complete field is a more delicate subject. Let $K:=\mathbb{C}_{p}$. Let L be the completion of $K(X)$. Then L is the field of formal Laurent series in K constructed in Exercise 1.K of [2] for $\rho:=1$. It is easily seen that there is no element in L whose square is equal to X, so L is not algebraically closed. Also, as \mathbb{C}_{p} is separable [3, Corollary 17.2.(iv)], then so is $K(X)$ and hence L is separable [3, Exercise 17.B]. Finally, since the valuation of L is dense, it follows that L is not spherically complete [3, Theorem 20.5], and we have the desired example.

Now let $E=(E,\|\cdot\|)$ be a (non-archimedean) Banach space. For fundamentals on non-archimedean Banach spaces we refer to [2]. Here we only fix some notations and recall some basic concepts that will be involved in the paper.

By $\|E\|$ we mean $\{\|x\|: x \in E\}$. For a set $X \subset E, \sharp X$ and $[X]$ are the cardinality and the linear hull of X, respectively; \bar{X} denotes the closure of X with respect to the norm topology on E. For $X, Y \subset E, Y \backslash X:=\{y \in E: y \in Y, y \notin X\}$. The distance between two non-empty sets $X, Y \subset E$ is $\operatorname{dist}(Y, X):=\inf \{\|y-x\|: y \in Y, x \in X\}$. For $a \in E$, instead of $\operatorname{dist}(\{a\}, X)$ we write $\operatorname{dist}(a, X)$.

By $L(E)$ we mean the Banach space of all continuous linear maps $E \rightarrow E$ and by E^{\prime} the Banach space of all continuous linear maps $E \rightarrow K$. As usual $E^{\prime \prime}:=\left(E^{\prime}\right)^{\prime}$ and E is called reflexive if the canonical map $E \rightarrow E^{\prime \prime}$ is a surjective isometry. E is said to be of
countable type if it contains a countable set whose linear hull is dense in E.
Let I be a non-empty set, let $s:=\left(s_{i}\right)_{i \in I} \in \mathbb{R}^{I}$ with $s_{i}>0$ for all $i \in I$. The space $c_{0}(I, s):=\left\{\left(\lambda_{i}\right)_{i \in I} \in K^{I}: \lim _{i}\left|\lambda_{i}\right| s_{i}=0\right\}$, equipped with the norm $\left\|\left(\lambda_{i}\right)_{i \in I}\right\|:=\max _{i \in I}\left|\lambda_{i}\right| s_{i}$, is a Banach space, which is of countable type if and only if I is countable. When $s_{i}=1$ for all $i \in I$, we write $c_{0}(I)$ instead of $c_{0}(I, s)$; if, additionally, $I=\mathbb{N}$, then $c_{0}(\mathbb{N})$ is the well-known space c_{0} of all sequences in K tending to 0 .

Two elements x, y of E are orthogonal to each other $(x \perp y)$ if $\operatorname{dist}(x,[y])=\|x\|$, or equivalently, if $\|\lambda x+\mu y\|=\max \{\|\lambda x\|,\|\mu y\|\}$ for all $\lambda, \mu \in K$. For two subspaces D_{1}, D_{2} of E we put $D_{1} \perp D_{2}$ if $x \perp y$ for all $x \in D_{1}, y \in D_{2}$. For $D_{1}=[a]$, $a \in E$, instead of [a] $\perp D_{2}$, we write $a \perp D_{2}$ (observe that $a \perp D_{2}$ if and only if $\left.\operatorname{dist}\left(a, D_{2}\right)=\|a\|\right)$. We say that a subspace D_{1} is orthocomplemented in E if there exists a subspace D_{2} such that $D_{1} \perp D_{2}$ and $D_{1} \oplus D_{2}=E$ (where \oplus means algebraic direct sum), or equivalently, if there exists a continuous linear projection $Q: E \rightarrow D_{1}$ with $\|Q\| \leq 1$.

Let $t \in(0,1]$. A t-orthogonal system in E is a subset $X=\left\{e_{i}: i \in I\right\}$ of $E \backslash\{0\}$ such that if i_{1}, \ldots, i_{n} are distinct elements of I, then

$$
\begin{equation*}
\left\|\lambda_{i_{1}} e_{i_{1}}+\cdots+\lambda_{i_{n}} e_{i_{n}}\right\| \geq t \max _{1 \leq k \leq n}\left\|\lambda_{i_{k}} e_{i_{k}}\right\| \quad \text { for all } n \in \mathbb{N}, \lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \in K \tag{1.1}
\end{equation*}
$$

If in addition $\left\|e_{i}\right\|=1$ for all $i \in I$, then X is called a t-orthonormal system.
A t-orthogonal system X is called a t-orthogonal base of E if in addition $\overline{[X]}=E$ (or equivalently, if every $x \in E$ can be written uniquely as $x=\sum_{i \in I} \lambda_{x i} e_{i}, \lambda_{x i} \in K$). All t-orthogonal bases in E have the same cardinality. When $t=1$, we write "orthogonal" instead of "1-orthogonal" and in this case, by the strong triangle inequality for $\|\cdot\|$, we have that (1.1) is equivalent to

$$
\left\|\lambda_{i_{1}} e_{i_{1}}+\cdots+\lambda_{i_{n}} e_{i_{n}}\right\|=\max _{1 \leq k \leq n}\left\|\lambda_{i_{k}} e_{i_{k}}\right\| \quad \text { for all } n \in \mathbb{N}, \lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \in K
$$

Analogously we write "orthonormal" instead of "1-orthonormal".
Each Banach space with an orthogonal base $\left\{e_{i}: i \in I\right\}$ is isometrically isomorphic to $c_{0}(I, s)$, with $s_{i}:=\left\|e_{i}\right\|$ for all i, in particular, isometrically isomorphic to $c_{0}(I)$ in the case in which the base is orthonormal.

1.1 New Examples of Banach Spaces

If L is a complete valued field extension of K, then the valuation on L makes it naturally into a Banach space. This fact generates a new class of examples of Banach spaces. For $a \in L \backslash K$, let $K(a)$ be the smallest subfield of L containing K and a and let $\overline{K(a)}$ be the closure of $K(a)$ in L. Clearly $\overline{K(a)}$ is a Banach space with the norm induced by the valuation of L.

The main result of this paper, Theorem 2.1, provides an answer when K is algebraically closed to the natural questions whether $\overline{K(a)}$ is of countable type, has a t-orthogonal base $(t \in(0,1])$ and, as a consequence, whether $\overline{K(a)}$ is reflexive (Corollary 3.3). An application of this theorem is given in Corollary 3.5

Note Unless explicitly stated otherwise, from now on we assume that K is algebraically closed and that $L, a, K(a)$, and $\overline{K(a)}$ are as described above.

The following lemmas will be used in the next section to prove Theorem 2.1
Lemma 1.1 Let $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{n} be elements of L such that $\left|\lambda_{i}-\mu_{i}\right|<\left|\mu_{i}\right|$ for each $i \in\{1, \ldots, n\}$. Then

$$
\left|\prod_{i=1}^{n} \lambda_{i}-\prod_{i=1}^{n} \mu_{i}\right|<\left|\prod_{i=1}^{n} \mu_{i}\right|
$$

Proof The proof follows directly from the observation that $\left|\frac{\lambda_{i}}{\mu_{i}}-1\right|<1$ for each $i \in\{1, \ldots, n\}$ and that $\{\lambda \in L:|\lambda-1|<1\}$ is a multiplicative group.

Lemma 1.2 Let $a \perp K,|a|=1$. Then for each polynomial

$$
P=\lambda_{0}+\lambda_{1} X+\cdots+\lambda_{n} X^{n} \in K[X]
$$

and $\mu \in B_{K}$ we have $|P(\mu)| \leq \max _{0 \leq i \leq n}\left|\lambda_{i}\right| \leq|P(a)|$.
Proof Only the second inequality needs a proof. We may assume $\lambda_{n} \neq 0$. By algebraic closedness there are $\omega_{1}, \ldots, \omega_{n} \in K$ such that $P=\lambda_{n}\left(X-\omega_{1}\right) \cdots\left(X-\omega_{n}\right)$ and by assumption we have $\left|a-\omega_{i}\right| \geq|a|=1$ for all i, so that $|P(a)| \geq\left|\lambda_{n}\right|$. By the same token, we obtain $\left|\lambda_{0}+\lambda_{1} a+\cdots+\lambda_{n-1} a^{n-1}\right| \geq\left|\lambda_{n-1}\right|$, i.e., $\left|\lambda_{n-1}\right| \leq\left|P(a)-\lambda_{n} a^{n}\right| \leq$ $\max \left(|P(a)|,\left|\lambda_{n}\right|\right)=|P(a)|$, and we can proceed inductively.

2 Main Result

The main result of the paper is the following theorem, which provides an answer to the natural questions whether $\overline{K(a)}$ is of countable type and whether $\overline{K(a)}$ has a t-orthogonal base $(t \in(0,1])$.
Theorem 2.1 For the Banach space $\overline{K(a)}$ we have the following.
(i) If $\operatorname{dist}(a, K)$ is not attained, then $\overline{K(a)}$ is of countable type and has a t-orthogonal base for each $t \in(0,1)$, but has no orthogonal base.
(ii) If $\operatorname{dist}(a, K)$ is attained, but not in $|K|$, then $\overline{K(a)}$ is of countable type and has an orthogonal base, but has no orthonormal base.
(iii) If $\operatorname{dist}(a, K)$ is attained and in $|K|$, then $\overline{K(a)}$ has an orthonormal base of cardinality $\sharp k$.

Proof (i) First we show that $\overline{K(a)}$ is of countable type. For that we prove that the $\operatorname{ring} K[a]:=\left[1, a, a^{2}, \ldots\right]$ is dense in $\overline{K(a)}$, which will be done in the next three steps.
(a) For every $b \in K[a], b \neq 0$ there is a $\mu \in K$ such that $|b-\mu|<|\mu|$. To see this, let $b=\lambda_{0}+\lambda_{1} a+\cdots+\lambda_{n} a^{n}$; we may suppose $n \geq 1, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{n} \in K, \lambda_{n} \neq 0$. By algebraic closedness there exist $\omega_{1}, \ldots, \omega_{n} \in K$ such that $b=\lambda_{n}\left(a-\omega_{1}\right) \cdots\left(a-\omega_{n}\right)$. Since $\operatorname{dist}(a, K)=\operatorname{dist}\left(a-\omega_{i}, K\right)$ is not attained, there are $\mu_{1}, \ldots, \mu_{n} \in K$ such that $\left|a-\omega_{i}-\mu_{i}\right|<\left|\mu_{i}\right|$ for each $i \in\{1, \ldots, n\}$. By Lemma 1.1 we have $|b-\mu|<|\mu|$, where $\mu:=\lambda_{n} \mu_{1} \cdots \mu_{n}$.
(b) For each $b \in K[a], b \neq 0$ we have $b^{-1} \in \overline{K[a]}$. In fact, by (a) there is a $\mu \in K$ such that $|b-\mu|<|\mu|$. Then $\left|\mu^{-1} b-1\right|<1$, so that

$$
\mu b^{-1}=\left(1-\left(1-\mu^{-1} b\right)\right)^{-1}=\sum_{n=0}^{\infty}\left(1-\mu^{-1} b\right)^{n} \in \overline{K[a]} .
$$

(c) $K[a]$ is dense in $\overline{K(a)}$. From (b) it follows that $K(a) \subset \overline{K[a]}$. This, together with the obvious inclusion $K[a] \subset \overline{K(a)}$, leads to $\overline{K[a]}=\overline{K(a)}$.

Secondly we show that $\overline{K(a)}$ has for each $t \in(0,1)$ a t-orthogonal base. This follows from what we have just proved and [2, Theorems 3.15.(iii), 3.16.(ii)].

Finally we show that $\overline{K(a)}$ has no orthogonal base. Suppose it has; we derive a contradiction. This orthogonal base must be countable (because, as we proved before, $\overline{K(a)}$ is of countable type; so apply [2, Theorem 5.2]) and infinite (because, as K is algebraically closed, $K(a)$ and hence $\overline{K(a)}$ are infinite-dimensional vector spaces). Let us denote this orthogonal base by $\left\{e_{1}, e_{2}, \ldots\right\}$. Then $\overline{K(a)}$ is isometrically isomorphic to $c_{0}(\mathbb{N}, s)$, with $s_{n}:=\left\|e_{n}\right\|$ for all $n \in \mathbb{N}$. By [2, Lemma 4.35.(ii)], [a] is orthocomplemented in $\overline{K(a)}$ and hence in [1,a], which contradicts the hypothesis of (i).
(ii) Let $\lambda_{0} \in K$ be such that $\left|a-\lambda_{0}\right|=\operatorname{dist}(a, K)$. Then $K\left(a-\lambda_{0}\right)=K(a)$ and $\operatorname{dist}\left(a-\lambda_{0}, K\right)=\operatorname{dist}(a, K)$, so we may replace a by $a-\lambda_{0}$; in other words, we may assume that $|a| \notin|K|$. It suffices to show that $\left\{a^{n}: n \in \mathbb{Z}\right\}$ is an orthogonal base of $\overline{K(a)}$.

First observe that $|a|^{n} \notin|K|$ for $n \in \mathbb{N}$. Indeed, if $|a|^{n}=|\lambda|$ for some $n \in \mathbb{N}$ and $\lambda \in K$, then by algebraic closedness there is a $\mu \in K$ with $\mu^{n}=\lambda$, so that $|a|=|\mu| \in$ $|K|$, which is a contradiction. Next we prove orthogonality of $\left\{a^{n}: n \in \mathbb{Z}\right\}$. Let

$$
x:=\sum_{i=s}^{m} \lambda_{i} a^{i}
$$

where $\lambda_{s}, \ldots, \lambda_{m} \in K$, not all 0 . From what we have just proved it follows that $\left|\lambda_{i} a^{i}\right| \neq\left|\lambda_{j} a^{j}\right|$ for all $i, j \in\{s, \ldots, m\}$ unless $i=j$ or $\lambda_{i}=\lambda_{j}=0$. Then $|x|=\max _{s \leq i \leq m}\left|\lambda_{i} a^{i}\right|$, and orthogonality follows.

We proceed to show that $x^{-1} \in \overline{\left[a^{n}: n \in \mathbb{Z}\right]}$, where x is as above. There is a unique $j \in\{s, \ldots, m\}$ with $|x|=\left|\lambda_{j} a^{j}\right|$. Then

$$
\left(\lambda_{j} a^{j}\right)^{-1} x=1+\left(\lambda_{j} a^{j}\right)^{-1} \sum_{i \neq j} \lambda_{i} a^{i}=1+v,
$$

where $v \in \overline{\left[a^{n}: n \in \mathbb{Z}\right]},|v|<1$. Thus

$$
\left(\lambda_{j} a^{j}\right) x^{-1}=\sum_{n=0}^{\infty}(-v)^{n} \in \overline{\left[a^{n}: n \in \mathbb{Z}\right]}
$$

implying $x^{-1} \in \overline{\left[a^{n}: n \in \mathbb{Z}\right]}$. Now continuity of the inverse map shows that $\overline{\left[a^{n}: n \in \mathbb{Z}\right]}$ is a field, hence must be equal to $\overline{K(a)}$. Then we obtain that $\left\{a^{n}: n \in \mathbb{Z}\right\}$ is an orthogonal base of $\overline{K(a)}$.
(iii) The proof here is somewhat more involved. Let $\lambda_{0} \in K$ with $\left|a-\lambda_{0}\right|=$ $\operatorname{dist}(a, K) \in|K|$. Then $K\left(a-\lambda_{0}\right)=K(a)$ and $\operatorname{dist}\left(a-\lambda_{0}, K\right)=\operatorname{dist}(a, K)$, so we may assume that $a \perp K$ and $|a|=1$. Let $\sigma: k \rightarrow B_{K}$ be such that $\overline{\sigma(u)}=u$ for all $u \in k$. Let

$$
S:=\left\{a^{s}: s \in \mathbb{N} \cup\{0\}\right\} \cup\left\{(a-\mu)^{-m}: \mu \in \sigma(k), m \in \mathbb{N}\right\}
$$

Then S is a subset of $K(a)$ and, since k is infinite, we have $\sharp S=\sharp k$. We now establish (a)-(d) below, which will show that S is an orthonormal base of $\overline{K(a)}$.
(a) S is an orthonormal system.
(b) $\overline{[S]}$ is a subring of $\overline{K(a)}$.
(c) For each $\beta \in K,(a-\beta)^{-1} \in \overline{[S]}$.
(d) $K(a) \subset \overline{[S]}$.

Proof of (a) Clearly each member of S has length 1 . Take a linear combination

$$
\Phi:=\sum_{r=0}^{s} \xi_{r} a^{r}+\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j}\left(a-\mu_{i}\right)^{-j}
$$

(where $s \in \mathbb{N} \cup\{0\}, m, n \in \mathbb{N}, \xi_{r}, \lambda_{i j} \in K, \mu_{i} \in \sigma(k)$). For orthonormality of S it suffices to show, assuming $|\Phi|<1$, that all $\left|\xi_{r}\right|$ and $\left|\lambda_{i j}\right|$ are <1. Via (downward) induction on n we only need to prove that all $\left|\xi_{r}\right|$ and all $\left|\lambda_{i n}\right|$ are <1 for $r \in\{0, \ldots, s\}$, $i \in\{1, \ldots, m\}$.

To obtain polynomials, we multiply Φ by $L(a):=\left(a-\mu_{1}\right)^{n} \cdots\left(a-\mu_{m}\right)^{n}$, which does not change the absolute value, as $|L(a)|=1$. The assumption $|\Phi|<1$ turns into

$$
\begin{equation*}
\left|V_{1}(a)+V_{2}(a)\right|<1 \tag{2.1}
\end{equation*}
$$

where $V_{1}, V_{2} \in K[X]$. In fact, for $x \in L$,

$$
V_{1}(x):=\left(\sum_{r=0}^{s} \xi_{r} x^{r}\right) L(x), \quad V_{2}(x):=\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j} L_{i j}(x)
$$

where $L_{i j}(x):=\left(x-\mu_{i}\right)^{n-j} \prod_{l \neq i}\left(x-\mu_{l}\right)^{n}$.
Let $r \in\{0, \ldots, s\}$. If $\xi_{r} \neq 0$, the degree of V_{1} is $\geq m n$, whereas V_{2} has degree $<m n$. Thus, ξ_{r} is a coefficient of the polynomial $V_{1}+V_{2}$, so that by Lemma 1.2 we have $\left|\xi_{r}\right| \leq\left|V_{1}(a)+V_{2}(a)\right|<1$. So all $\left|\xi_{r}\right|$ are <1 and $\left|V_{1}(a)\right|<1$, hence (2.1) reduces to $\left|V_{2}(a)\right|<1$. Choose $q \in\{1, \ldots, m\}$. Then since

$$
\left|L_{i j}\left(\mu_{q}\right)\right|= \begin{cases}1 & \text { if } q=i, j=n \\ 0 & \text { otherwise }\end{cases}
$$

we find by Lemma 1.2 that $1>\left|V_{2}(a)\right| \geq\left|V_{2}\left(\mu_{q}\right)\right|=\left|\lambda_{q n}\right|$, so that $\left|\lambda_{1 n}\right|, \ldots,\left|\lambda_{m n}\right|$ are all less than 1.

Proof of (b) It suffices to show that $S . S \subset[S]$. For $\mu \in \sigma(k)$ and $m \in \mathbb{N}$ the identity

$$
a(a-\mu)^{-m}=(a-\mu)^{1-m}+\mu(a-\mu)^{-m}
$$

shows that $a S \subset[S]$. Then $a^{2} S=a a S \subset a[S]=[a S] \subset[S]$, and so on, proving that $a^{r} S \subset[S]$ for each $r \in \mathbb{N} \cup\{0\}$. It remains to be shown that $\left(a-\mu_{1}\right)^{-m_{1}}\left(a-\mu_{2}\right)^{-m_{2}} \in$ [S] for $m_{1}, m_{2} \geq 1, \mu_{1}, \mu_{2} \in \sigma(k)$. If $\mu_{1}=\mu_{2}$, this is clear, so suppose $\mu_{1} \neq \mu_{2}$. We use induction with respect to $n:=m_{1}+m_{2}$. If $n=2$ (so $m_{1}=m_{2}=1$), the formula

$$
\begin{equation*}
\left(a-\mu_{1}\right)^{-1}\left(a-\mu_{2}\right)^{-1}=\frac{1}{\mu_{1}-\mu_{2}}\left(\left(a-\mu_{1}\right)^{-1}-\left(a-\mu_{2}\right)^{-1}\right) \tag{2.2}
\end{equation*}
$$

does the job. For the step $n-1 \rightarrow n$, observe that we have, using (2.2),

$$
\begin{aligned}
& \left(a-\mu_{1}\right)^{-m_{1}}\left(a-\mu_{2}\right)^{-m_{2}}= \\
& \quad \frac{1}{\mu_{1}-\mu_{2}}\left(\left(a-\mu_{1}\right)^{-1}-\left(a-\mu_{2}\right)^{-1}\right)\left(a-\mu_{1}\right)^{-m_{1}+1}\left(a-\mu_{2}\right)^{-m_{2}+1}
\end{aligned}
$$

which is a linear combination of the elements $\left(a-\mu_{1}\right)^{-m_{1}}\left(a-\mu_{2}\right)^{-m_{2}+1}$ and $\left(a-\mu_{1}\right)^{-m_{1}+1}\left(a-\mu_{2}\right)^{-m_{2}}$, and these are in [S] by the induction hypothesis.
Proof of (c) If $|\beta|>1$, we have $(a-\beta)^{-1}=-\beta^{-1} \sum_{n=0}^{\infty}\left(\beta^{-1} a\right)^{n} \in \overline{[S]}$, so let $|\beta| \leq 1$. Then there is a $\mu \in \sigma(k)$ with $|\beta-\mu|<1$ and

$$
\begin{aligned}
(a-\beta)^{-1}-(a-\mu)^{-1} & =(\beta-\mu)(a-\mu)^{-2}\left(1-\frac{\beta-\mu}{a-\mu}\right)^{-1} \\
& =(\beta-\mu)(a-\mu)^{-2} \sum_{n=0}^{\infty}(\beta-\mu)^{n}(a-\mu)^{-n} \in \overline{[S]}
\end{aligned}
$$

Proof of (d) Every element of $K(a)$ can be written as $P(a) Q(a)^{-1}$ for some polynomials $P, Q \in K[X], Q(a) \neq 0$. By algebraic closedness we can decompose Q into linear factors whose inverses are in $\overline{[S]}$ by (c). Then since $\overline{[S]}$ is a ring by (b), $P(a) Q(a)^{-1} \in \overline{[S]}$.

3 Some Consequences and Final Remarks

As an immediate consequence of Theorem [2.1] we derive the next result.
Corollary 3.1 (i) For each $t \in(0,1) \overline{K(a)}$ has a t-orthogonal base.
(ii) $\overline{K(a)}$ has an orthogonal base if and only if $\operatorname{dist}(a, K)$ is attained.
(iii) $\overline{K(a)}$ is not of countable type if and only if $\operatorname{dist}(a, K)$ is attained and in $|K|$ and k is uncountable.

Remark 3.2 To see that cases (ii) and (iii) of Corollary 3.1 really occur, choose K such that k is uncountable. Let L be the completion of $(K(X),|\cdot|)$, and choose $a:=X$.

Another consequence of Theorem 2.1 concerns reflexivity of $\overline{K(a)}$. Recall that a set is small if it has a non-measurable cardinality [2, p.31].

Corollary $3.3 \overline{K(a)}$ is reflexive except when either (i) K is spherically complete, or (ii) K is not spherically complete, $\operatorname{dist}(a, K)$ is attained and in $|K|$, and k is not small.

Proof Suppose K is spherically complete (case (i)). Since K is algebraically closed, $\overline{K(a)}$ is an infinite-dimensional Banach space, so it is not reflexive [2, Theorem 4.16].

Now suppose that K is not spherically complete (case (ii)). If the remaining assumptions of (ii) hold, then by Theorem 2.1 (iii), $\overline{K(a)}$ is isometrically isomorphic to $c_{0}(I)$ with $\sharp I=\sharp k$. As $\sharp I$ is not small, it follows from [2, Exercise 4.M] that $\overline{K(a)}$ is not reflexive.

On the other hand, if K is not spherically complete and some of the remaining assumptions of (ii) fail, then we have that either

- we are in case (i) or (ii) of Theorem 2.1 (so $\overline{K(a)}$ is of countable type, hence reflexive by [2, Corollary 4.18]), or
- we are in case (iii) of Theorem 2.1 with k small (so, $\overline{K(a)}$ is isometrically isomorphic to $c_{0}(I)$ with $\sharp I=\sharp k$ and, as $\sharp I$ is small, $\overline{K(a)}$ is reflexive, by [2, Theorem 4.21.(iii)]).

Remark 3.4 To see that case (ii) of Corollary 3.3 really occurs, choose K nonspherically complete and such that k is small. Then proceed as in Remark 3.2.

Also, as an application of Theorem 2.1 we obtain the following interesting fact.
Corollary 3.5 Suppose that K is not spherically complete. Then on c_{0} there exists an equivalent norm $\|\cdot\|$ with $\left\|c_{0}\right\|=|K|$ such that
(i) there is a multiplication on c_{0} making $\left(c_{0},\|\cdot\|\right)$ into a valued field;
(ii) no two non-zero vectors are $\|\cdot\|$-orthogonal.

Proof Let $L:=K^{\vee}$ be the spherical completion of K and let $a \in L \backslash K$. Then $\operatorname{dist}(a, K)$ is not attained, since L is an immediate valued field extension of K. So we are in case (i) of Theorem 2.1] showing that $\overline{K(a)}$ is of countable type (and infinitedimensional, as K is algebraically closed), hence linearly homeomorphic to c_{0} ([|], Theorem 3.16.(ii)]).

If $\lambda, \mu \in \overline{K(a)}, \lambda \perp \mu$ with respect to the valuation $|\cdot|$ on $\overline{K(a)}$ and $\lambda, \mu \neq 0$, then $\lambda \mu^{-1} \neq 0, \lambda \mu^{-1} \perp K$, which is not possible since, as $\overline{K(a)}$ is an immediate valued field extension of $K, 0$ is the only element of $\overline{K(a)}$ that is orthogonal to $K([\boxed{2}, \mathrm{pp} .57$, 162]).

Finally, let $\|\cdot\|$ be the norm on c_{0} inherited from $|\cdot|$ through the bijective linear homeomorphism $\overline{K(a)} \rightarrow c_{0}$. From the facts previously showed in this proof we obtain that $\left(c_{0},\|\cdot\|\right)$ satisfies the required conditions.

Problem Now let us drop the condition of algebraic closedness of K. Again, let L be a valued field extension of K. Let a be in $L \backslash K$, a not algebraic over K. What conclusions about $\overline{K(a)}$ of Theorem 2.1 and its corollaries remain valid in this more general context?

References

[1] A. M. Robert, A Course in p-Adic Analysis. Graduate Texts in Mathematics,198. Springer-Verlag, New York, 2000.
[2] A. C. M. van Rooij, Non-Archimedean Functional Analysis. Monographs and Textbooks in Pure and Applied Math. 51. Marcel Dekker, New York, 1978.
[3] W. H. Schikhof, Ultrametric Calculus. An Introduction to p-Adic Analysis. Cambridge Studies in Advanced Mathematics 4. Cambridge University Press, Cambridge, 1984.

Department of Mathematics, Facultad de Ciencias, Universidad de Cantabria, 39071 Santander, Spain e-mail: perezmc@unican.es

Department of Mathematics, Radboud University, 6525 ED Nijmegen, The Netherlands e-mail: w_schikhof@hetnet.nl

[^0]: Received by the editors February 3, 2010.
 Published electronically June 29, 2011.
 The first author's research was partially supported by Ministerio de Ciencia e Innovación, MTM2010-20190-C02-02.

 AMS subject classification: 46S10, 12J25.
 Keywords: non-archimedean Banach spaces, valued field extensions, spaces of countable type, orthogonal bases.

