A CONSTRUCTION OF SUBEQUALIZERS

BY
FRED COPPOTELLI

Given a pair of functors $F, G: \mathbf{A} \rightarrow \mathbf{B}$, Lambek defines [1] the subequalizing category, \mathbf{E} of (F, G) as the category with objects, ordered pairs (A, b) with $A \in|\mathbf{A}|$ and $b: F A \rightarrow G A$ a morphism of \mathbf{B}. The morphisms of \mathbf{E} from (A, b) to $\left(A^{\prime}, b^{\prime}\right)$ are ordered triples (b, a, b^{\prime}) where $a: A \rightarrow A^{\prime}$ is a morphism of \mathbf{A} and $G(a) b=b^{\prime} F(a)$. Lambek obtains the comma category of a pair of functors $F_{0}: \mathbf{A}_{0} \rightarrow \mathbf{B}, F_{1}: \mathbf{A}_{1} \rightarrow \mathbf{B}$ as the subequalizing category of the pair of functors $F_{0} P_{0}, F_{1} P_{1}: \mathbf{A}_{0} \times \mathbf{A}_{1} \rightarrow \mathbf{B}$, where P_{i} is the projection $\mathbf{A}_{0} \times \mathbf{A}_{1} \rightarrow \mathbf{A}_{i}$, and asks for a construction of the subequalizing category in terms of the comma category. The construction follows.

Given $F: \mathbf{A} \rightarrow \mathbf{C}, G: \mathbf{B} \rightarrow \mathbf{C}$, the comma category F / G has "projections" P_{F} : $F / G \rightarrow \mathbf{A}, P_{G}: F / G \rightarrow \mathbf{B}$. (These are the outside arrows in the diagram consisting of three pullbacks used to define F / G.) When $\mathbf{A}=\mathbf{B}$ so that we have a pair of functors $F, G: \mathbf{A} \rightarrow \mathbf{C}$ we have $P_{F}, P_{G}: F / G \rightarrow \mathbf{A}$. The subequalizing category of the pair (F, G) is seen to be the equalizer of P_{F} and $P_{G}, \mathbf{E} \xrightarrow{E} F / G \xrightarrow[P_{G}]{\stackrel{P_{F}}{\longrightarrow}} \mathbf{A}_{\vec{G}}^{\vec{F}} \mathbf{C}$. The functor part of the subequalizer is $P_{F} E=P_{G} E$, and the natural transformation has the same description as in [1].

Reference

[^0]Virginia, Polytechnic Institute and State University, Blacksburg, Virginia

[^0]: 1. J. Lambek, Subequalizers, Canad. Math. Bull. 13 (1970), 337-349.
