A CONSTRUCTION OF SUBEQUALIZERS

BY

FRED COPPOTELLI

Given a pair of functors $F, G: A \rightarrow B$, Lambek defines [1] the subequalizing category, E of (F, G) as the category with objects, ordered pairs (A, b) with $A \in |A|$ and $b: FA \rightarrow GA$ a morphism of B. The morphisms of E from (A, b) to (A', b') are ordered triples (b, a, b') where $a: A \rightarrow A'$ is a morphism of A and G(a)b=b'F(a). Lambek obtains the comma category of a pair of functors $F_0: A_0 \rightarrow B, F_1: A_1 \rightarrow B$ as the subequalizing category of the pair of functors $F_0P_0, F_1P_1: A_0 \times A_1 \rightarrow B$, where P_i is the projection $A_0 \times A_1 \rightarrow A_i$, and asks for a construction of the subequalizing category in terms of the comma category. The construction follows.

Given $F: \mathbf{A} \to \mathbf{C}$, $G: \mathbf{B} \to \mathbf{C}$, the comma category F/G has "projections" P_F : $F/G \to \mathbf{A}$, $P_G: F/G \to \mathbf{B}$. (These are the outside arrows in the diagram consisting of three pullbacks used to define F/G.) When $\mathbf{A} = \mathbf{B}$ so that we have a pair of functors $F, G: \mathbf{A} \to \mathbf{C}$ we have $P_F, P_G: F/G \to \mathbf{A}$. The subequalizing category of the pair (F, G)is seen to be the equalizer of P_F and $P_G, \mathbf{E} \xrightarrow{E} F/G \xrightarrow{P_F} \mathbf{A} \xrightarrow{F} \mathbf{C}$. The functor part of the subequalizer is $P_F E = P_G E$, and the natural transformation has the same description as in [1].

Reference

1. J. Lambek, Subequalizers, Canad. Math. Bull. 13 (1970), 337-349.

VIRGINIA, POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA