ON TWO-DIMENSIONAL BERNSTEIN POLYNOMIALS
P. L. BUTZER

1. Introduction. Let the function of two real variables f(x, y) be given over
the square

S:0<x<1, 0<y< L.

Then the Bernstein polynomial in two variables x and v, corresponding to the
function f(x, y) is defined as

(1) B,{,n,(x, y) = 20 P =0f<;*11 ﬁ)P”hnl(x) p”:-ﬂl(y)'
where

ponti) = (M)t = .
Obviously

;ﬂp,,n(u) =1
The main purpose of this paper will be to prove the following result.

THEOREM. If the function f(x, y) is bounded in the closed square S, then

) o° , 3°
(2) n,l.lr?.:m %’ ayg—-q B;.n, (%0, y0) = 3xd ay5 ¢ f(xo, ¥0)
at every point (xo, ¥o) belonging to the open square 0 < x < 1, 0 <y < 1 where
the pth total differential of f(x, y) exists, provided n., n. tend to infinity in such a
way that

3) 0<r <o <s < 4 .

If, moreover, the partial derivatives of f(x, ¥) of the first  orders exist and
are continuous in S, then the relation (2) holds uniformly in .S as #n;, #2 approach
infinity in any manner whatsoever. This latter result, which is used in estab-
lishing our theorem, was recently proven by Kingsley [1], but we shall deduce
it in a more direct manner.

2. Preliminary results. If § > #,™*, 0 < a < 1 then for every £ > 0 there
is a constant C (depending only on « and &) such that
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Furthermore, for a given v > 0 and any 0 < z < 1,
) 2 v —nul poaw) < Cont
v=0

where C, is a constant depending only on 7.

For the proofs of these inequalities see [2].

We now recall several facts on differentials. By definition, the pth total
differential of f(x, y) exists [3] at the point (xo, Vo) if

(6) flx,y) = P(x,y) +g(x )
where P(x, y) represents a polynomial of degree p, and

? Y4
(7 g063) = 2 aulw, ) — %) = 30)" = X B

for the sake of brevity, where the a;(x, ¥) have zero as a unique double limit as
X — X, Y — Yo
We now define

(?:)f(xr y) = f(x, y)’ (zAhl)f(xr y) =f(x+ h, y) — flx, 3’)

and in general

8) (fjf(x, y) = i (— 1)”"'(‘f>f(x + ik, ¥),

and similarly ' B

9) Alf(x, y) = Zq (— 1)""(q>f(x. y + jk).
(v, k) =1 J

From (8) and (9) it follows that

(10) A A'f(x,y) = A" Af(x, )
@m @E .0 (2.

= Z=0 ;:O (- 1)”*"”"1‘(@) (?.)f(x + ik, y + jk).

If the partial derivatives of f(x, y) of order < p + ¢ all exist at (xo, yo) and
are continuous in .S, it can be shown that

a 2+¢q
(11) aA”  Af f(xo, yo) = B k* w57 f(%o + pO1 b, y + gB:k)
(Zo,h) (Work ax (9
where 0; = 0;(xo, yo; B, k) (0< 8, <1;i=1,2).
Applying (10), by induction we can show forg =0,1,2,...,p,

817
(12) PR B, (%, )

=mm—1)...m—g¢g+ Dn(ma—1)...(ma—p+gqg+1)

n1—q na—p+gq
. Z Z A? A? f(yl >Pv. n—g () Pranapra(¥).

vi=0 v,=0 (z,7.~) (y,ma"1) n' n
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3. The main theorem. We state Bernstein’s Theorem for functions of two
variables.

Lemma 1. If f(x, v) is bounded in the square S, then at every point of continuity
(3,
lm B, a(x, ) = f(x,9);

the result holding uniformly in x and vy if f(x, y) 1s continuous in S.

The proof follows simply by extending the proof of the one-dimensional
Bernstein’s Theorem to two dimensions.

LEMMA 2. If all the partial derivatives of f(x, y) of order < p exist and are
continuous in S, then

P ’ a°
PPV Bi, na(x, y) — Wf(x' ¥)

uniformly in S as ni, ne approach infinity in any manner whatever.

(13)

Proof. Applying the relations (12) and (11) we obtain

i ’
(14) axqayﬂ“a Bﬂ»x N3 (xr y)

=nm—1)...(m—qg+nma—1)...(na—p+qg+1)

1 q(l )D—a mog¢ napte  gp (V_l Q"_&Zl v, qSy‘,')
<n1> s hzzo ;0 axaayp—af " + g 7' ns + (P - Q) 7,
* Drimi—a(%) Prana—pra(¥),
where
0<6,,, <1, 0<¢,,,, <1
Now, in the relation (14), the product of the factors outside the double sum

will approach 1 as 7;, #, approach infinity. We denote 0°f/dx?dy*~? by h(x, y)
and observe that the difference between the double sum in (14) and

B:x“Qvﬂz—ﬂ‘{‘Q(x’ y)
approaches zero uniformly in x and y as #1, #; — «. But by the previous lemma,
the last expression approaches

4

d
oxigy7 flx, y)
uniformly in x and y. Hence the limit relation (13) follows, proving the lemma.

LeMMmA 3.
L — w0 = Q@1 — wy

where
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Qu) = Zn(y—nu)h,(u) ,j>0,2i4+j<!
and the h} ,(u) are polynomials in u independent of v and n.

The proof of this lemma follows by induction, see [2].
We are now in a position to consider the theorem stated in the introduction.

Proof of Theorem. Since the pth total differential of f(x, y) exists at (xo, Vo),
we have the representaion (6) with P(x, y) a polynomial of degree p and g(x, y)
as defined by (7). We therefore obtain

ap s ap ﬂ 0
é}gw Bn,n,(xOy yO) = 5-;%—6}’1(;_ nm, (xOy yO) + aa —4q n.n, (xOy yO)
and by Lemma 2 we only need to show that the second term on the right-hand
side approaches zero. Using the definition of g(x, ) in (7), it is sufficient to show

that
9’ 8
W =] Bﬂ’:ns(x()y yO) __)0; k = 0, 1, 2, c ey p.

(15) dx0dy0

By Lemma 3, we find that

3’ .
b—xgayzé—a Bﬁ.n. (x01 yo)

p—k

= S, 5 (x ta,Ja (Vl V2><ﬂ—x>

21:+ij<q o 0)21,;1;@_ 5 (yo)y‘z_ y,z_o n' na/ \n 0

k
V 1 1 2 “2 n 1= 1— V= n
: (—2 - yo> n (1 — mxe)*ns’ (va — n2y0)’ ( l)xS ‘(1 — xo)™ " “( 2>
/2 V1 Vo

. ysz—pﬂz(l _ y0>n,—h—p+a

and we can rewrite this in the form

(16) qa p—q gfns(xoy yO) = Z 1; ]1(x0) Z hf.,;,(y«))

21+ 7,<¢ 212+ ja<p—¢

p—k k
Vi V2 V2 iy Ja
— — X — — Yo ) M (V1 - nlxo)
»,—o y,_o ny' ny Y2

12" (ve — 1230) " P, . (%0) Poaina (V0)

where the #*,, ,, (x0) are independent of v, and #, and the #*,, ;, (y,) are indepen-
dent of v, and #n,. Hence it is sufficient to show that the inner double sum in
(16), which we denote by ¢, approaches zero under the restriction (3).

Now for any € > 0 there is a § such that

A7) ex(ry, y1)] < €& |x1— xo] <8, |y1— ¥o| < 8; E=0,1,2,...,p

(the choice of 8 is made more precise later on), and there also exists an M such
that |ax(xs, y1)] < Mor 0 <2 < 1,0 <y < 1.
In absolute value the part of ¢ in (16) corresponding to
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V—l——xo < g, V—2——yo <4d
1 2]
does not exceed
N1 Na
n{,—pﬂcn;.—k ezo Zolyl . nlxolp_k-'—j‘ll’z . nzyolkH’Py,,n,(xo)Py..n,(yo)
vi=0»ry=

and by (5), this last expression does not exceed

C2€n{'x—1l+k+‘}(17—k+j;)n;,—k+%(k+:/z)

< Cae V/m)* IO g) Pt

As 26,4+ 51 < ¢, 212+ jo < p — ¢, we have 24, + 215+ j1 +j. — p < 0, and
so this last expression does not exceed Cze for all sufficiently large %4, #n, which
satisfy (3).

In absolute value the part of ¢ in (16) corresponding to

does not exceed

n1 N
n:’_erkn;’_kMZ v — nlxo|p~k+j’1’v,n,(x0) Z vy — nzyo]H]'Py,,n, (¥0)-

10 l;’l: —yo|>

Using (3) and the relations |v - nu] < n and

1

Opl':.ﬂq(xo) = 1’

we conclude that the above expression does not exceed

(18) n;:—I'+kn§z—len127—k+Inn12H—.’iz Z pv,,n, (y())-
5: _llo!>5

Provided #1, ns are sufficiently large and 0 < @ < %, the number § = n,~* 4+
n,~¢ satisfies the condition (17). Using the inequality (4) with this §, we see that
the expression (18) does not exceed

Li—p+k la—k —k- k i1+ 1
n2l ay n2“ Ml n121 + /1 n2+]: C4/112'+ st it st

y

which approaches zero as 7, tends to infinity.
A similar conclusion holds for the part of o corresponding to

no_ v2 _

7 X0 > 5, 7 Yo < 9.
Finally, the part of o corresponding to

14 14

w T W0 | E =y >8

is in absolute value not greater than
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T TMY S o= maxoT T b (0) D e — maye TP (30)

v Va
ﬁ: —Zo >0 ]ﬁ’ Vo >0

and by (4) this does not exceed

. N nlp—k+jl n2k+jz
1P 2=

n na' "MCs PRI e 7 Tatjatly
1 2

which approaches zero as #n;, 7, — «. Hence

aﬂ

B
axgayg—q By, (xo, 3’0)

can be made arbitrarily small by taking #:, n. large enough, satisfying (3).
The theorem is now established.

We shall now show that the limit relation (2) also holds at the four corners
(0, 0), (0, 1), (1, 0) and (1, 1) of the square S. It will be sufficient to discuss the
corner (0, 0).

Writing

P—q

d’ vy =¥y d va
Dh”.(xvy) dxax (1 _x) d —q) (1 y)

7’-:—"’

we have D,,,,(0, 0) =0 for vy, > g+ 1 or vo > p — g+ 1. For v < ¢ and
v, < p — ¢ by Leibniz’s theorem, we have

—_— q ih— dq_h - "o h<p . g>£_z_ Va
DV:”-(Oy O) - <v1>dx"‘ x 41 "x(l x) Ve dy"a y

T .
dy —=r (1 — )

r=y=0

= (- 1)“‘"‘6—3—!75 (m—v)(mr—vi—1)...(m—qg+1)

.( . I)P—q—l’z (?_______)——7 (n2 —_ Vg) e (nZ - p + q + 1)
(19) ~ Coni "ny ", e

Again we have to show that the limit relation (15) holds, but now at the point
(0, 0) instead of (xo, ¥0).
We have

Fle 5
ooy Brin, (%, y) o

A 1'1 V2 141 =k Vo k 1 Mo
=2 2 - - ~—y D,
Vi=0 v, =0 ni' na/ \ny (2 V1 2]

and by (19), this in absolute value is

p—k k !
Z Z (ﬂ fz)(i) <1> T
v,=0»,=0 "y o |

2=y=0

~ Cy
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and since #n; and #, satisfy the inequality (3), the last expression does not

exceed
o\, —, —
"1, (2]

which approaches zero as 71, 7, — o because a;(x, y) =0 as x —> 0, y — 0.
Hence we have the relation

=0 »r,=0

ap

ooy Bia.(x, %)

ap
oﬂmf(x, y)

r=y= z=y=0

if the pth total differential of f(x, y) exists at (0, 0), provided #; and 7, satisfy (3).

We now consider an example to show that the relation (2) does not necessarily
hold at a boundary point of S different from one of the four corners. Consider the
point (xo, 0), 0 < x¢ < 1 and the function

fx, ¥)

where e(y) is defined for 0 <y
yte(y) > + o as y — 0. Take n,

e(y)|x — %o, 0<x<1

Il

1 and has the properties e¢(y) — 0 and
ns = n. Obviously

AN

da _Jn forwve =1,
ay PO = {0 forve =2,3,...,n.
Therefore
LI I0) S LS PRED 1 (Y LN
dy (0,0 im0l ? PSS\ Jdy T (0. 0)
1 1
= ;;VIZ=0 V1 — HBXy py“n(xo)E(;)n

\%

e )

which approaches + ® as #— « because it is known [2] that forevery 0 < x < 1
there exists a constant Cy > 0 such that

Z_:OIV—”xIPv,n(x)>Cs\/n, n— o,

REFERENCES

1. E. H. Kingsley, Bernstein polynomials for functions of two variables of class C®), Proc.
Amer. Math. Soc., 2 (1951), 64-71.

2. G. G. Lorentz, Bernstein polynomials, to be published by the University of Toronto Press.

3. W. H. Young, The fundamental theorems of the differential calculus (Cambridge Tracts,
no. 11, 1910).

University of Toronto

https://doi.org/10.4153/CJM-1953-014-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1953-014-2

