A REMARK ON DIFFERENTIABLE STRUCTURES ON REAL PROJECTIVE (2n-1)-SPACES

KENICHI SHIRAIWA

Dedicated to the memory of Professor TADASI NAKAYAMA

The main objective of this paper is to study the action of the group of differentiable structures Γ_{2n-1} on the (2n-1)-sphere S^{2n-1} on the diffeomorphism classes on the real projective (2n-1)-space P^{2n-1} by connected sum. This is done by considering universal covering spaces of the connected sum $P^{2n-1} \notin \Sigma$, where Σ is an exotic (2n-1)-sphere.

Throughout this paper all the manifolds considered are oriented, compact, and connected. Also the word *differetiable* is meant C^{∞} -differentiable.

1. Let M, N be *n*-dimensional differentiable manifolds. If there exists an orientation preserving diffeomorphism of M onto N, then we shall denote it by $M \approx N$. The manifold M with orientation reversed is denoted by -M.

Let $M_1 \notin M_2$ be the connected sum of two *n*-manifolds M_1 and M_2 . It is known that the connected sum operation is associative and commutative up to orientation preserving diffeomorphism. The sphere S^n serves as identity element (Cf. J. Milnor [2], M. Kervaire- J. Milnor [1]).

Let \sum be a smooth combinatorial *n*-sphere, which is called an exotic sphere. Then $\sum \# (-\sum) \approx S^n$. Thus the set of all the orientation preserving diffeomorphism classes of the exotic spheres forms a group under connected sum, which is denoted by Γ_n . We shall denote the class of \sum by $\{\sum\}$.

Let *M* be a differentiable *n*-manifold. Let Σ be an exotic *n*-sphere such that $M \notin \Sigma \approx M$. Let $\Delta(M)$ be the subset of Γ_n consisting of the classes of such Σ .

PROPOSITION 1. $\Delta(M)$ is a subgroup of Γ_n , and $M \notin \sum_1 \approx M \notin \sum_2$, for exotic spheres \sum_1, \sum_2 , if and only if $\{\sum_1\} - \{\sum_2\} \in \Delta(M)$.

Proof. Let $\{\sum_{1}\}, \{\sum_{2}\} \in \mathcal{A}(M)$. Then

Received June 28, 1965.

$$M \notin (\sum_{1} \# \sum_{2}) \approx (M \# \sum_{1}) \# \sum_{2} \approx M \# \sum_{2} \approx M.$$

Also, $M \notin (-\sum_{i}) \approx (M \notin \sum_{i}) \# (-\sum_{i}) \approx M \# (\sum_{i} \# (-\sum_{i})) \approx M \# S^{n} \approx M$. Thus $\Delta(M)$ is a subgroup of Γ_{n} .

Secondly, let $M # \sum_{1} \approx M # \sum_{2}$. Then $M # \sum_{1} # (-\sum_{2}) \approx M # \sum_{2} # (-\sum_{2})$ $\approx M # S^{n} \approx M$, that is $\{\sum_{1} # (-\sum_{2})\} \in \mathcal{A}(M)$. Conversely, let $\{\sum_{1} # (-\sum_{2})\} \in \mathcal{A}(M)$, then $M \approx M # \sum_{1} # (-\Sigma_{2})$. Adding \sum_{2} from the right, we have $M # \sum_{2} \approx M # \sum_{1}$.

Let [G] be the order of a group G. Then we have the following.

Corollary. The action of Γ_n on the orientation preserving diffeomorphism classes of a manifold M by connected sum is completely determined by $\Delta(M)$. In particular, the number of the orientation preserving diffeomorphism classes of M obtained by connected sum with exotic spheres is equal to $[\Gamma_n/\Delta(M)]$.

2. Let M be a differentiable *n*-manifold such that the fundamental group $\pi_1(M)$ is a finite group of order $p = [\pi_1(M)]$. Let \tilde{M} be the universal covering space of M. Let N be a simply connected differentiable *n*-manifold.

PROPOSITION 2. Under the above assumption and $n \ge 3$, the universal covering manifold of M # N is $\tilde{M} # N \cdots \# N$ (p-factors of N).

Proof. Let D^n be the unit disc in the euclidean n space \mathbb{R}^n . Let $f: D^n \to M$, $g: D^n \to N$ be differentiable imbeddings such that f preserves orientation and g reverses orientation. Then $M \notin N$ is obtained from the disjoint sum

$$(M-f(0)) + (N-g(0))$$

by identifying f(tx) with g((1-t)x) for each $x \in S^{n-1} = \partial D^n$ and each 0 < t < 1, where 0 is the origin of R^n .

Let $\pi: \tilde{M} \to M$ be the natural projection of the universal covering manifold \tilde{M} onto M. We can assume without loss of generality that $f(D^n)$ is contained in an open connected set U of M such that for each connected component U_i $(i = 1, 2, \ldots, p)$ of $\pi^{-1}(U), \pi_i = \pi | U_i : U_i \to U$ is a diffeomorphism onto. Let $f_i = \pi_i^{-1} \circ f : D^n \to U_i \subset \tilde{M}$. Then f_i is an orientation preserving diffeomorphism into.

Let N_1, \ldots, N_p be p copies of N. We shall denote a point of N_i corresponding to $x \in N$ by x_i . Let $g_i : D^n \to N_i$ $(i = 1, 2, \ldots, p)$ be copies of g, that is $g_i(x) = (g(x))_i$. Then $\tilde{M} \notin N_1 \ldots \# N_p$ is obtained from the disjoint sum

$$(\tilde{M} - \bigcup_{i=1}^{p} f_{i}(0)) + (N_{1} - g_{1}(0)) + \cdots + (N_{p} - g_{p}(0))$$

by identifying $f_i(tx)$ with $g_i((1-t)x)$ for each $x \in S^{n-1}$, each 0 < t < 1, and $i = 1, 2, \ldots, p$.

Let $\pi' : M # N_1 # \ldots # N_p \rightarrow M # N$ be the map defined by

$$\pi'(x) = \pi(x) \quad \text{for } x \in (\tilde{M} - \bigcup_{i=1}^{p} f_i(0)) \text{ and}$$

$$\pi'(x_i) = x \quad \text{for } x_i \in N_i - g_i(0), \ (i = 1, 2, \ldots, p).$$

Then π' is well defined and a local diffeomorphism onto M # N. Thus, $\tilde{M} # N_1 #$... $\# N_p$ is a covering manifold of M # N.

On the other hand, $\tilde{M} # N_1 # \ldots # N_p$ is simply connected as is seen by the following lemma. Therefore, the proposition is proved.

Lemma. Let M, N be simply connected n-mani/olds and $n \ge 3$. Then $M \notin N$ is simply connected.

Let $f: D^n \to M$, $g: D^n \to N$ be immbeddings as before. Then the connected sum $M \notin N$ is obtained topologically from the disjoint sum $(M - f(\operatorname{Int} D^n)) + (N - g(\operatorname{Int} D^n))$ by identifying f(x) with g(x) for $x \in S^{n-1}$, where $\operatorname{Int} D^n$ is the interior of D^n . Let K (resp. L) be the image of $(M - f(\operatorname{Int} D^n))$ (resp. $N - g(\operatorname{Int} D^n)$). Then $M \notin N = K \cup L$ and $K \cap L$ is homeomorphic to S^{n-1} by f (or g). Thus $K \cap L$ is simply connected. Since K and M - f(0) have the same homotopy type, K is simply connected by our assumption that M is simply connected and $n \ge 3$. By the same reason L is simply connected. It follows from the van Kampen's theorem that $M \notin N = K \cup L$ is simply connected.

Let S^{2n-1} be the unit sphere in complex *n*-space C^n . That is a point of S^{2n-1} has a form (z_1, \ldots, z_n) , where z_i is a complex number and $\sum_{i=1}^n z_i \overline{z}_i = 1$. Let $\lambda = \exp(2\pi i/p)$, where p is a natural number. Let $T: S^{2n-1} \rightarrow S^{2n-1}$ be transformation defined by $T(z_1, \ldots, z_n) = (\lambda^{g_1} z_1, \ldots, \lambda^{g_n} z)$, where q_1, \ldots, q_n are integers prime to p. Then T is a fixed point free transformation of period p. The orbit space $S^{2n-1}/T = L_p(q_1, \ldots, q_n) = L_p$ is an oriented differentiable manifold in a natural way. The natural projection $\eta: S^{2n-1} \rightarrow L_p$ is the universal covering. If p = 2, $L_2 = P^{2n-1}$, the real projective (2n-1)-space. It is well known that $\pi_1(L_p) = Z_p$, the group of integers modulo p.

COROLLARY. The universal covering space of $L_p # \sum_{i=1}^{n}$, where $\sum_{i=1}^{n}$ is an exotic

sphere, is $S^{2n-1} # \sum # \cdots # \sum \approx \sum # \cdots # \sum (p\text{-factors of } \sum) (n \ge 2)$. In particular, the universal covering space of $P^{2n-1} # \sum is S^{2n-1} # \sum # \sum \approx \sum # \sum$.

In conclusion, we have the following theorem.

THEOREM. There exist at least $[2\Gamma_{2n-1}]$ distinct differentiable structures on P^{2n-1} up to orientation preserving diffeomorphism, where $[2\Gamma_{2n-1}]$ is the order of $2\Gamma_{2n-1}$.

Also, there exist at least $[p\Gamma_{2n-1}]$ distinct differentiable structures on a lens space L_p .

Proof. Let Σ be an exotic sphere such that $P^{2n-1} # \Sigma \approx P^{2^{-1}}$. Then the universal covering spaces must be diffeomorphic, that is $\Sigma # \Sigma \approx S^{2n-1}$. Thus $\Delta(P^{2n-1}) \subset {}_2\Gamma_{2n-1}$, where ${}_2\Gamma_{2n-1}$ is the subgroup of Γ_{2n-1} consisting of the elements of order two. Thus

$$[\Gamma_{2n-1}/\Delta(P^{2n-1})] \ge [\Gamma_{2n-1}/_2\Gamma_{2n-1}] = [2\Gamma_{2n-1}].$$

Our theorem follows from the fact that $P^{2n-1} \# \sum$ is homeomorphic to P^{2n-1} and the Corollary of Proposition 1.

The same argument shows the latter half of the theorem.

According to the work of Kervaire-Milnor [1], Γ_{4m-1} $(m \ge 2)$ contains a cyclic group of order 2^{2m-2} $(2^{2m-1}-1)$ numerator $(4B_m/m)$, where B_m denotes the *m*-th Bernoulli number. Therefore, there exist at least 2^{2m-3} $(2^{2m-1}-1)$ numerator $(4B_m/m)$ distinct differentiable structures on P^{4m-1} $(m \ge 2)$. For example, 14 on P^7 , 496 on P^{11} , 4064 on P^{15} , and etc..

References

- [1] M. Kervaire-J. Milnor, Groups of homotopy spheres, I, Ann. of Math., 77 (1963), 504-537.
- [2] J. Milnor, Sommes de variétés differentiables et structures différentiables des sphères, Bull. Soc. Math. France 87 (1959), 439-444.
- [3] M. Hirsch-J. Milnor, Some curious involutions of spheres, Bull. A.M.S. 70 (1964), 372-377.

Nagoya University

360