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Abstract

The order topology is compact and T2 in both the scale and retracted scale of any uniform space
(S, 6li). If (S, %) is T2 and totally bounded, the Samuel compactification associated with (S, %) can
be obtained by uniformly embedding (5, %) in its order retracted scale (that is, the retracted scale
with its order topology). This implies that every compact T2 space is both a closed subspace of a
complete, infinitely distributive lattice in its order topology, and also a continuous, closed image of a
closed subspace of a complete atomic Boolean algebra in its order topology.

1980 Mathematics subject classification (Amer. Math. Soc): 54 E 15, 54 F 05.

Introduction

The scale (P, T ) and retracted scale (Po, % ) of a uniform space were introduced
in 1967, and subsequently the uniform and topological properties of these spaces
have been studied fairly extensively (see [2], [3], [6], [8], [9], [10], and [11]). The set
P is the lattice of "semifilters" (formerly called "prefilters") which are subsets of
%; the uniformity T o n P is derived from % in a natural way. The retracted scale
is also a uniform lattice obtained via a "Hausdorffization" of (P, CY). Applica-
tions of the scale, both inside and outside the realm of topology, are discussed by
its originator, D. Bushaw, in [3].

The order scale (order retracted scale) refers to the lattice P (Po) in either its
order topology or the unique compatible uniformity. The reason no systematic
study of the order scales was undertaken sooner is, perhaps, that it seemed
unlikely that they would reflect in any meaningful way the properties of the
original uniform space. On the contrary, it turns out that every T2, totally
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bounded uniform space is uniformly embedded in its order retracted scale. This
theorem and its corollaries constitute the main results of the paper. Another
conclusion which emerges from this study is that the order scales give every
indication of being as useful as the orginal scales in various applications. Finally,
our results add weight to the consensus that the retracted scale is more applicable
than the scale.

1. Order convergence

In this section, we define the relevant lattice concepts, and summarize some
known results about order convergence which will be needed later in this paper.
Throughout this section, L will represent a complete lattice.

If x G L, A C L, and f i s a filter on L, then let:

x* = {yGL:y>x}, A* = D {x*: x G A}, f * = U { P : f E f } .

The symbols x+ , A+ , ?F+ designate the corresponding sets of lower bounds. If
x < y, then [x, y] — x* D y+ denotes the closed interval spanned by x and y. A
filter ^ on L order-converges to x if x = sup ^F+ = inf '5*. The order topology on L
has for its closed sets those sets A which contain all of their order-convergence
limit points. Order convergence does not always coincide with convergence in the
order topology; when they do coincide, order convergence is said to be topologi-
cal, and the resulting order topology is T3. We shall see later that order
convergence in the scale and retracted scale of any uniform space is always
topological.

An element x of L is compact if A C L and x < sup A implies that there is a
finite subset B of A such that x < sup B. An element with the dual property is
said to be cocompact. L is compactly (cocompactly) generated if each element of L
is the supremum (infimum) of a set of compact (cocompact) elements; if L is both
compactly and cocompactly generated, then L is said to be bicompactly generated.

An element y in L is said to be an unavoidable lower (upper) bound of an
element x if y belongs to every ideal / (dual ideal D) such that sup I = x (inf D —
x). The set of all unavoidable lower (upper) bounds of x is a (dual) ideal denoted
byI(x)(D(x)).

The first proposition follows from the results of [7].

PROPOSITION 1.1 If L is bicompactly generated, then I(x) — U {y+ : y compact,
y < x) and D(x) = U [y*: y cocompact, x < y ) .

The next result follows from Proposition 2, [4].
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PROPOSITION 1.2 If order convergence in L is topological, then x — supl(x) —
inf D(x), for all x 6 L, and the neighborhood filter at x is generated by closed
intervals of the form [a, b], where a G I(x), b G D(x).

A subset A of L with the inherited order is called a subcomplete lattice of L if,
for every nonempty subset B of A, sup ,̂ B = sup£ B and inf̂  B = infL B. The
next proposition is proved in [7].

PROPOSITION 1.3 (a) If L is bicompactly generated, then order convergence in L is
topological, and if x £ L, then the neighborhood filter at x has an open base
consisting of sets of the form [a, b], where a is a compact lower bound of x and b is a
cocompact upper bound of x. The order topology is totally disconnected.

(b) / / L is a subcomplete lattice of an atomic Boolean algebra, then L is
bicompactly generated and the order topology is, in addition, compact.

Let Lo be a subset of L with, the inherited order relation which satisfies the
followng conditions:

(c,) Lo contains the least element of L.
(c2) If A C Lo, A =£ 0 , then supLA = supL A.
(c3) For x G L, let x0 — sup(x+ DL0). If A C L, A ^ 0 , and x = sup A, then

x0 - sup{j>0:;> EA}.
Assuming that Lo has the properties described above, define \p: L -» Lo by

\p(x) = x0, all x E L, where x0 = sup(x+ n i 0 ) . The final proposition in this
section is proved in [4].

PROPOSITION 1.4 Let L be a subcomplete lattice of an atomic Boolean algebra, let
Lo and \p: L' -* Lobe as described in the preceding paragraph.

(a) For each x G Lo, ^"'C*) = [x0, x°], where x° — sup{^ G L: x0 =>'o}-
(b) Order convergence in Lo is topological, the order topology on Lo is compact,

and, at each point x G Lo, the neigborhood filter is generated by sets of the form
[a0, b0] n Lo, where a is a compact element in L, a *G x, and b is cocompact in L,
x°^b.

(c) \p: L -> Lo is continuous relative to the respective order topologies.

2. The order scale

A semifilter a on a set 5 is a nonempty collection of subsets of S such that
A G a and A C B implies B G a. Given a uniform space (S, 3li), let P be the set
of all semifilters on S X S which are subsets of %; P is partially ordered by the
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dual of set inclusion ( a < /S if and only if /} C a ) . P is a complete lattice with

least element % (which we shall denote by 0) and greatest element { S X 5 }

(denoted by 1); infima and suprema in P are set unions and intersections,

respectively, and from this it follows that P is infinitely distributive. Indeed, P is a

subcomplete lattice of the power set of the power of S X S, with the dual of its

usual ordering, which means that P is a subcomplete lattice of an atomic Boolean

algebra, and thus bicompactly generated.

For the remainder of this paper, (S, % ) will represent an arbitrary uniform

space unless otherwise indicated. With each U G %, we associate two prefilters

av and p ^ as follows:

Pu= {Ve%:V<£U},
au= { C 6 % : U Q V).

PROPOSITION 2.1 (a) a £ P is compact if and only if there are entourages
£/,,...,£/„ in Qllsuch that a — p ^ V • • • Vp^.

(b) a G P is cocompact if and only if there are entourages Ui,..., Un in % such
that a = au A • • • A ou.

PROOF, (a) If pu < sup^l for A C P, then some a G A must exclude U, and so
Pu is compact. It is easy to check that the supremum of a finite set of compact
elements is always compact. To see that all compact elements have the specified
form, let 0 G P and observe that /? = sup{pv: U G % } , U $ ft. If P is compact,
then fi must be the supremum of a finite number of the p^'s, which completes the
proof of (a). The proof of (b) is similar.

By Proposition 1.3, order convergence in P is topological; we denote the order
topology by 6. Properties of (P, 6) which follow from Proposition 1.3 and 2.1 are
summarized in the next theorem.

THEOREM 2.2 For any uniform space (S, Gli), (P, 6) is a compact, T2, totally
disconnected topological space. If a =£ 0, the 0-neighborhood filter %e(a) at a has an
open subbase of sets of the form [pu, av], where U (£ a and V G a. %(0) has an
open subbase of the form [0, av], F G t .

Since (P,0) is compact and T2, there is a unique uniformity 6 for P which
induces 0. We shall call 0 the order scale topology and 0 the order scale uniformity;
the term order scale will be used ambiguously to mean either (P, 0) or (P,Q).

THEOREM 2.3 For any (S, %.), (P, 0) is a uniform lattice.
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PROOF. Since 8 is the filter of neighborhoods of the diagonal in (P, 8) X (P, 8),
it is sufficient to check that the lattice operations are continuous relative to order
convergence in any infinitely distributive lattice. Since order convergence coin-
cides with 8, the result follows.

The description of %(a ) in Theorem 2.2 might lead one to conjecture that the
order scale is at least first countable whenever ( 5 , % ) is metrizable. This is
incorrect, however, as we shall show after first restating a useful lemma proved in
[11].

LEMMA 2.4 If(S, 6ll) is neither finite nor indiscrete, S is the cardinality of S, and
a G S, then there « K £ % such that the cardinality of S - V(a) is S.

THEOREM 2.5 (P, 8) is first countable (second countable, metrizable) in its order
topology if and only if(S,Gli) is either finite or indiscrete.

PROOF. If (S, %) is finite or indiscrete, then (P, 8) is finite and discrete, and so
has the three indicated properties. If (S, %) is neither finite nor indiscrete, then
let a G S and V G % be as in Lemma 2.4. Let <$ be the set of all subsets of
(S - V(a)) X {a}, and for each B G <&, let VB = V U B. Let a = inffa^: B G
<$}. By a straightforward argument, one can verify %(a ) has no countable filter
base. Consequently, (P, 0) is not first countable, second countable, or metrizable.

We next show that a uniformly continuous function between two uniform
spaces can be "lifted" to a uniformly continuous function between their order
scales. If / : (S, °il) -> (S', %') is uniformly continuous, then define / : P -* P'
(where (P', 6') denotes the order scale of (S', %')) as follows: if a E P, / ( a ) =
[/(a)] n %', where [/(a)] is the smallest semifilter on S' X S' containing {f(A):
A Ga}.

THEOREM 2.6 / / / : (S, %) -> (5", %') is uniformly continuous, then f: (P, ©) ->
(/", 0') is also uniformly continuous.

PROOF. It is sufficient to show that / : (P,0) -> (P',8') is continuous. Let
a G P, and let [pw,ov] be a subbasic 0'-open neighborhood of/(a), where
W £ / ( a ) and KG/(a) . Let T-f~\W)and U = f \V). One can easily verify
that [pT, av] is a neighborhood of a which maps under/ into [pw, ov], establish-
ing the continuity of / at a.
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3. The scale uniform space

In this section, we review some basic properties of the scale uniform space
(P, T ) introduced by Bushaw in [2], and make comparisons with the order scale
(p,e).

Starting with an arbitrary uniform space (S, %), one associates with each
entourage U G % the set U' = {(a, ft) G P X P: A £ a implies UA £ /? and
B6j8 implies UB G a}; the collection {Ur: U G %} is the base for a uniformity
on P which is called the scale uniformity *Y. The sca/e topology r is the completely
regular topology on P induced by T. The term "scale of (5, % ) " will be used
ambiguously to mean P, (P, T), (P, T) ; it should be clear from the context which
is intended.

Like the order scale (P, 0), the scale (P, T ) is a uniform lattice which is
complete both as a lattice and as a uniform space (see [6]). Unlike the order scale,
(P, T ) is rarely T2, compact, or totally disconnected. For (P, T) , the properties
T2, discrete, and totally disconnected are equivalent to each other and to the
condition that (S, %) is discrete [8]; also, (P, T ) is compact if and only if (5, <3L)
is either finite or indiscrete (see [6], [11]). The relationship between the scale and
order scale uniformities is summarized in the next proposition, which is an easy
consequence of preceding remarks and Theorem 2.2.

PROPOSITION 3.1 (a) 0 < "Yif and only if(S, %) is discrete.
(b) T < (3 // and only if (S, %-) is finite or indiscrete.

It is useful to compare the neighborhood filters %(a) for the scale topology
with those described in Theorem 2.2 for the order scale topology. It is shown in
[8] that %(a) is generated by the "closed" lattice intervals of the form [a^, au],
U G %, where au= {V & %: UV G a}, au = {V G %: UA C V for some A G
a}. Thus both %(a) and \{a) have filter subbases of "closed" lattice intervals; it
should be noted, however, that the intervals [pv, ov\ which generate %(a) are
both open and closed relative to 6, while the intervals [aty, au] which generate
%(o) are, in general, neither open nor closed relative to T.

Given a G P, define a0 = supfa^: U G%] and a0 = inf{au: U G %}. The
lattice interval (a>= [a0, a

0] is the equivalence class containing a relative to the
equivalence relation: a ~ (i if and only if a0 = /?0; %(a) converges to each
element of (a) (see [6]). On the other hand, it is easy to check that the net
(ff(y)(/e% ^-converges upward to a0, whereas the net (otu)UEsiL ^-converges down-
ward to a0. It follows that %(£*) ^-converges to a if and only if ( a ) = {a}. Thus
we have

PROPOSITION 3.2 For any a G P, %(a) > %(a) if and only if a0 — a0.
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For any uniform space (S, % ) , there is at least one element a G P such that
a0 = a0, namely a = 0. For this element, one can say more.

PROPOSITION 3.3 For any uniform space (S,%), %(0) = %(0).

PROOF. By Theorem 2.2, %(0) has a filter subbase of the form [ 0 , ^ ] , F G l
Since 0^ = 0 for all U G %, %(0) has a filter subbase of the form [0,0^],
U G %.. A simple computation shows that V2 C U implies Qv C av C0u, and the
conclusion follows.

In at least two applications of the scale, the construction of generalized
Liapunov functions [1] and generalized metrization ([2] and [9]), the behavior of
the scale in the vicinity of 0 is of crucial importance. Proposition 3.3 suggests that,
at least for these applications, the order scale may be as useful as the scale.

A related result is due to O. C. Ramsey, [9].

PROPOSITION 3.4 For any uniform space %, the following statements are equiva-
lent.

(a) (S, %) is metrizable.
(b) %(0) has a countable filter base.
(c) %(0) has a countable filter base.
(d) (P, T) is first countable.
(e) (P, T ) is metrizable.

Richardson and Wolf, [11], showed that the scale (like the order scale) is second
countable if and only if (S, %) is either finite or indiscrete.

4. The order retracted scale

The retracted scale uniform space is constructed in [6] via the standard
"Hausdorffization" process in order to replace (P, T ) by a uniform space which
is T2. In [6], the underlying set for the retracted scale is taken to be PR = {(a):
a G P), where a = [a0, a0] is defined in Section 3. However Bushaw [2] chose to
replace PR with the set Po = {a0: a G P} and to order Po by the order relation
inherited from P. We shall use Bushaw's definition of the retracted scale, which is
equivalent to the one used in [6].

Let \p: P ^ PQ be defined by ip(a) = a0; then it turns out (see [2]) that
iKT) = % is a uniformity on Po which coincides with the uniformity that Po

inherits as a subspace of (P, "{). Thus (Po, % ) is a uniform retract of (P, °V). Let
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T0 denote the associated retracted scale topology. By Proposition 6, [6], the

operations sup and inf are preserved by \p, and it follows easily that Po satisfies

the conditions (c , ) , (c 2 ) , (c3) of Section 1 relative to P. Let 80 denote the order

topology on Po. By Proposition 1.4, \p: (P, 6) - » ( P o , 0o) is continuous.

THEOREM 4.1 For any uniform space (S, % ) , (P0,60) is compact, T2 and

coincides with order convergence in PQ. At a point a E Po, the neighborhood filter

% (a ) has a filter subbase of intervals in Po of the form [(Pu)0, (<v)0]> where U & a

and V E a0.

PROOF. The first assertion follows directly from Proposition 1.4; it also follows

from Lemma 1, [6] and Corollary 2.6, [5]. The second assertion follows from

Proposition 1.4 and Theorem 2.2.

(P0,60) has a unique compatible uniformity which we denote by 0O; the term

order retracted scale will be applied to either (Po, 60) or (Po, 0O).

THEOREM 4.2 For any uniform space (S, % ) , 00 =£ T0 on Po.

PROOF. This follows immediately from Proposition 3.2 and the fact that \p

preserves sups and infs.

In [6], it is shown that for an arbitrarily chosen a £ S, the function va(x):

(S, %) - (Po, %), defined by va(x) - {U £ %: (a, x) £ U), is a uniform em-
bedding of a T2 uniform space (5, 6)i) into its retracted scale. The next theorem

and its corollaries are the main results of this paper.

THEOREM 4.3 If(S, %) is T2 and totally bounded, then va: (S, %) -> (Po, 60) is a

uniform embedding.

PROOF. Let A be the r0-closure of the range of va in Po. Since (PQ, % ) is

complete by Theorem 2 [6] our assumptions about (S, %) along with Lemma 4 [6]

imply that A is a compact T2 subspace of (Po, T0). The unique uniformity for A

relative to this inherited topology must be a subuniformity of % . But, by

Theorem 4.2, it must also be a subuniformity of 0O.

COROLLARY 4.4 For a Tychonoff topological space S, the Samuel compactification

of S associated with the totally bounded uniformity % can be obtained by embedding

(S, %) in its order retracted scale.
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The scale is an infinitely distributive lattice because its lattice operations are set
unions and set intersections; the retracted scale is infinitely distributive because ^
preserves sup's and inf s.

COROLLARY 4.5 Each compact T2 topological space is a closed subspace of a
complete, infinitely distributive lattice in its order topology.

COROLLARY 4.6 Let (S,6ll) be a T2, totally bounded uniform space whose induced
topology is not totally disconnected. Then:

(a) i/>: (P, 8) -> (Po, 60) is not neither a retraction nor an open map.
(b) The lattice Po is not bicompactly generated.
(c) Po is not a subcomplete lattice of P.

PROOF. The proofs of these three assertions all depend on the fact that (P0,80)
cannot be totally disconnected because this property is hereditary. Since (P,6) is
totally disconnected by Theorem 2.2, i|/ cannot be a retraction or an open map,
otherwise total disconnectedness would extend to (Po, d0). Po cannot be bicom-
pactly generated; otherwise (Po, 60) would be totally disconnected by Proposition
1.3. Po cannot be a subcomplete lattice of P; otherwise, Po would be compactly
generated.

Since (P, 6) and (Po, 60) are both compact, T2 spaces, \p: (P, 0) -»(Po, 80) is a
closed map; and (Po, 60) is a topological (and uniform) quotient space of (P, 6).
Recalling that the scale is a subcomplete lattice of a complete atomic Boolean
algebra, we obtain our final corollary to Theorem 4.3.

COROLLARY 4.8 Every compact T2 topological space is the image under a closed,
continuous map of a closed subspace of a complete atomic Boolean algebra in its
order topology.
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