ON AN ELEMENTARY PROBLEM IN NUMBER THEORY

Paul Erdbs
(received October 26, 1957)

A question which Chalk and L. Moser asked me
vseveral years ago led me to the following problem:
Iet 0 < x y. Estimate the smallest f(x) so that
there should exist integers u and v satisfying

(1) 0 L u,v < f(x), and (x+u,y+v) =1,

I am going to prove that for every € > O there
exist arbitrarily large values of x satisfylng

(2) f(x) > (1—€)(log x/loglog x)l/z,
but that for a certain ¢ > 0 and all x
(3) f(x) < ¢ log x/loglog x.

A sharp estimation of f(x) seems to be a difficult
problem. It is clear that f(p) = 2 for all primes p.
I can prove that f(x)->w and f(x)/loglog x —=> 0 if we
neglect a sequence of integers of density 0, but I
will not give the proof here.

First we prove (2). Let P; <Py <.ee... be the
sequence of consecutive primes. ILet k > 0 be an arbi-
trary integer. Put (1 < 1 < k)

Ay = [lpyy (A-1)k < J < 1k,
and B, = an’ J=1 (mod k), 0 < J < k°.

vek 1=K J=K
Clearly Miva, = Nymy = Tl ey
il 12 11 12 il’ 12
Thus the system of congruences (1 < 1 < k)
Can. Math. Bull., vol. 1, no 1, Jan, 1958

S

https://doi.org/10.4153/CMB-1958-002-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-002-9

X+1-1=0 (mod Ai)’ 0 < x < ﬂ‘\ Py
y+i-1=0 (mod B,), ﬂdﬂpj <y < 2HJ 1P
has a unique solutlion in integers x and y. Clearly,
if 0 £ 11,12 < k, then
(x+1,,y+1;) = P(1,-1)k+1, 7 1.
Thus f(x) > k. From the prime number theorem we have

= (1+0(1))n log n. Thus

hence (2) follows.

To prove (3) let n be such that for all 0<u,v<n,
(x+u,y+v) > 1. We first remark that if p ( n, then
the number of pairs 0 < u,v < n, for which
(x+u,y+v)=0 (mod p),1is less than

(n/p + 1)2 £ ng/p2 + 3n/p .

Thus the number of palrs 0 < u,v < n, for which
(x+u,y+v) has a prime factor not exceeding n,is less

25> 2
than n :‘,,:.L 1/p° + 3ny_

= (1+o(1))n22;,11/p < 3n°/a

pent

for sufficiently large n.
(Z.l/p < 1/4 +L.

Thus for at least n /4 pairs 0 L u,v < n ,
(x+u,y+v) must have a prime factor greater than n.
But if p > n then there is at most one 0 < u,v < n
with (x+u,y+v)=0 (mod p). Thus {\2:2 (x+1) must have
at least n2/4 distinct prime factors greater than n.
Hence (n < x)

1/k(k+l) = 3/4).

K=l

n 2
(2x)? >l (x+1) >0 /4
thus log 2x > n/4 log n, or n < ¢ log x/loglog X,

which proves (3). By a slightly more careful computa-
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tation it is easy to show that for sufficlently large
x, f(x) < (n2/12 + €)log x/loglog x, and by a little
more sophisticated but still elementary reasoning 1
can show that f(x) < (1/2 + €)log x/loglog x. Any
further improvement of the estimation of f(x) from
above or below seems difficult.

It can be remarked that to every x and n there
exists a y so that (x+i,y+1i) > 1 for 0 1 < n. To
see this it suffices to put y = x + n!. On the other
hand one can show by using Brun's method that there
exists a constant ¢ so that, for some 0 1 < (log y)c,
(x+1,y+1) = 1. To see this observe that every common
factor of x+1 and y+i must divide y—x. Thus if 1 is
chosen so that (x+i,y-x) = 1, then (x+i,y+i) = 1.

Now 1t follows from Brun's method that there exists a

constant ¢ so that, for every n, (log n)c consecutive

integers always contain an integer relatively prime to
n, Putting n = y-x we obtain our result.

By similar methods as used in the proof of (3)
we can prove the following

THEOREM. Let g(x)(log x/loglog x)—l->w, 0<x<KYy.
Then the number of pairs 0 < u,v < g(x) satisfying
(x+u,y+v) = 1 equals (l+0(l))(6/x2)ga(x).

To outline the proof of our theorem we split the
pairs u,v satisfying

(4) 0 < u,v < gl(x), (x+tu,y+v) > 1

into three classes. In the first class are those for
which (x+u,y+v) has a prime factor not exceeding | I
where k tends to infinity sufficlently slowly. In
the second class are those for which (x+u,y+v) has a
prime factor in the interval (pk,g(x)), and in the
third class are those where all prime factors are
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greater than g(x).

As can be easily seen by a simple sieve process,
the number of pairs in the first class is

(s) (1+40(1))(1-x%/6)g"(x) .

As in the proof of (3) we show that the number of pairs
in the second class is less than

() (240(2))8%(x) Ly, 1/p% = 0(87(x)).

Denote by t the number of pairs in the third class.
As in the proof of (3) we have

g(x)-1
(7) (2x)8F) 5 17707 (xe1) > 800",
or t < g(x)log 2x/log &(x) = 0(g%(x))

since g(x)(log x/loglog x)—l o, (5), (8) and (7)
imply that the number of pairs u and v satisfying (4)
is of the form (1+0(1))(n2/6)(g2(x), which proves the
theorem,

We can show by methods used in the proof of (2)
in our theorem that we cannot have g(x) less than
c¢(log x/loglog x)l/e,i.e., g(x)(log x/loglog x)"1/2—>u>
is necessary for the truth of our theorem. An exact

estimation of g(x) seems difficult.

University of Toronto

* L., Moser informs me that he independently obtained
this result and its generalization to an m—dimensional
lattice.
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