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A question which Chalk and L. Moser asked me 
several years ago led me to the following problem: 
Let o < x £ y. Estimate the smallest f(x) so that 
there should exist integers u and v satisfying 

(1) 0 <1 u,v < f(x), and (x+u,y+v) * 1, 

I am going to prove that for every € > 0 there 
exist arbitrarily large values of x satisfying 

(2) f(x) > (l-€)(iog x/loglog x ) 1 / 2 , 

but that for a certain c > 0 and all x 

(3) f(x) < c log x/loglog x. 

A sharp estimation of f(x) seems to be a difficult 
problem. It is clear that f(p) « 2 for all primes p. 
I can prove that f (x)-><*> and f(x)/loglog x -^ o if we 
neglect a sequence of integers of density o, but I 
will not give the proof here. 

First we prove (2). Let p x < p 2 <...... be the 
sequence of consecutive primes. Let k > o be an arbi­
trary integer. Put (1 £ i £ k) 

Ai « (I»j' t 1- 1^ < 3 ̂  ik> 
and B± - JlPj, j5i (mod k), o < j i k2. 

ni*K rv*< nJsKl> 

Clearly I lu* A± - 1 1.̂  B± « | |.̂  p y 

(A. ,k± y » (B, ,B. ) « i, (A. ,B. ) i 1. 
"'"I x2 xl x2 Xl X2 

Thus the system of congruences (1 £ i £ k) 
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x + i - l ~ 0 (mod A. ) , 0 < x < | \ . p . j 

y + l - l H O (mod B ± ) , n i - B lPj < y <1 2 l " \ s l P j 

has a unique solution in integers x and y. Clearly, 

i f 0 £ i j i j i g < k> t h e n 

( x + i ^ y + i ^ - P ( i i _ 1 ) k + l 2 > 1 . 

Thus f(x) i. k. From the prime number theorem we have 

p « (1+0(1) )n log n. Thus 

x < n^iPj < exp(2(l+€)k2log k)i 

hence (2) follows. 

To prove (3) let n be such that for all o^u,v<n, 

(x+u,y+v) > 1. We first remark that if p £ n, then 

the number of pairs 0 £ u,v < n, for which 

(x+u,y+v)^ 0 (mod p),is less than 

(n/p + l) 2 £ n2/p2 + 3n/p . 

Thus the number of pairs 0 £ u,v < n, for which 
(x+u,y+v) has a prime factor not exceeding n,is less 

than n 2 ^ T ^ VP 2 + 3n^P-n X/P 

* ( 1+0(1) )n2Z^l/p2 < 3n2/4 

for sufficiently large n, 

(£ l/p2 < 1/4 +I^1/k(k+l) =* 3/4). 
p 

Thus for at least n /4 pairs 0 £ u,v < n , 

(x+u,y+v) must have a prime factor greater than n. 

But if p > n then there is at most one 0 £ u,v < n 
Uo (x+i) must have 

P 
at least n /4 distinct prime factors greater than n. 

Hence (n < x) n, n 2 / 4 

(2x)n >nUe)(x+i) > n
n /4 ; 

thus log 2x > n/4 log n, or n < c log x/loglog x, 
which proves (3). By a slightly more careful computa-
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tation it is easy to show that for sufficiently large 

x, f(x) < (it2/12 + €)log x/loglog x, and by a little 

more sophisticated but still elementary reasoning I 

can show that f(x) < (1/2 + e)log x/loglog x. Any 

further improvement of the estimation of f(x) from 

above or below seems difficult. 

It can be remarked that to every x and n there 

exists a y so that (x+i,y+i) > 1 for o £ i £ n. To 

see this it suffices to put y * x + ni. On the other 

hand one can show by using Brun's method that there 

exists a constant c so that, for some 0 <£ i < (log y) c, 

(x+i,y+i) « 1. To see this observe that every common 

factor of x+i and y+i must divide y-x. Thus if i is 

chosen so that (x+i,y-x) « l, then (x+i,y+i) » 1. 

Now it follows from Brun1s method that there exists a 

constant c so that, for every n, (log n) c consecutive 

integers always contain an integer relatively prime to 

n. Putting n » y-x we obtain our result. 

By similar methods as used in the proof of (3) 
we can prove the following 

THEOREM. Let g(x)(log x/loglog x)""1-»», 0 < x < y. 

Then the number of pairs 0 £ u,v < g(x) satisfying 

(x+u,y+v) » 1 equals (1+0(1))(6/a2)g2(x). 

To outline the proof of our theorem we split the 
pairs u,v satisfying 

U ) 0 £ u,v < g(x), (x+u,y+v) > l 

into three classes. In the first class are those for 

which (x+u,y+v) has a prime factor not exceeding p., 

where k tends to infinity sufficiently slowly. In 

the second class are those for which (x+u,y+v) has a 

prime factor in the interval (pk,g(x)), and in the 

third class are those where all prime factors are 
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greater than g(x). 

As can be easily seen by a simple sieve process, 

the number of pairs in the first class is 

(5) (l+0(l))(l~*2/6)g2(x). 

As in the proof of (3) we show that the number of pairs 

in the second class is less than 

(6) U+0(l)}g2(x)Ip>fK 1/p
2 * 0(g2{x)). 

Denote by t the number of pairs in the third class. 

As in the proof of (3) we have 

(?) (2x)g(x} > n ^ o 1(x*^ > e(x)t> 
or t < g(x)log 2x/log g(x) « o(g2(x)) 

since g(x)(log x/loglog x)~" -~>oo . (5), (6) and (7) 

imply that the number of pairs u and v satisfying (4) 

is of the form (l+o(l) )(*2/6)(g2(x), which proves the 

theorem. 

We can show by methods used in the proof of (2) 

in our theorem that we cannot have g(x) less than 
l/2 —1 /2 

c(log x/loglog x ) ' ,l.e., g(x)(log x/loglog x) ' ->oo 
is necessary for the truth of our theorem. An exact 
estimation of g(x) seems difficult» 

University of Toronto 

* L. Moser informs me that he independently obtained 

this result and its generalization to an m-dimensional 

lattice. 
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