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ON PRESERVING THE KOBAYASHI PSEUDODISTANCE

L. ANDREW CAMPBELL AND ROY H. OGAWA

§0.

If X is a complex space, the Kobayashi pseudo-distance dy is an
intrinsic pseudometric on X defined as follows. If p and ¢ are points
of X, a chain « from p to ¢ consists of intermediate points p,, ---,p,
with p, = p and p, = q together with maps f; of the unit disc D =
{ze C'||2] < 1} into X and points a; and b; in D such that fi(a;) = v,
and f;(b;)) =p; for i =1,..-.,7. If dp(a,db) denotes the hyperbolic dis-
tance between the points ¢ and b in the unit disc, then the length of
the chain « is defined as |a| = dp(a, b) + dp(@,, b,) + -+ + dy(a,,b,).
The pseudo-distance between p and ¢ is then defined as the infimum of
the lengths of all chaini from p to q: dy = inf {{«||« a chain from p to q¢}.
It is easy to establish that dx(p, q) is jointly continuous in p and q and
that holomorphic maps are distance decreasing—i.e. if f: X' — X is
holomorphic and f(»") = p, f(¢') = q then dx(p,q) < dx.(¥’,q¢). If dy is
an actual distance—i.e. if dx(p, q) # 0 for p # g—then X is said to be
hyperbolic and in that case the metric topology induced by dy coincides
with the original topology of X ([1]). A general reference for this sub-
ject is Kobayashi’s book [4].

If A is a closed subset of X, then the inclusion map X — A - X is
holomorphie, so that dx(»,q) < dx_.(»,q) for p and g not in A. Remov-
ing an analytic set of codimension 1 often changes the pseudo-distance
radically. For instance, the pseudo-distance on C* = {ze C|z # 0} is
identically zero, but, if we remove a single point from C*, what is left
is a hyperbolic space. The same sort of phenomenon generally does not
occur if A is an analytic set of codimension at least 2. For instance,
Kobayashi proves ([4]) that if A is closed and nowhere dense in some
hyperplane section of D® (the unit polydisc in n-space), then removing
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A does not affect the distance between points not in A—i.e. dp._4(p,q)
= dp.(p,q) for p and ¢ not in A. The principal results of this paper
(Proposition 2 and Theorems 1 and 2) are generalizations of that prop-
osition. That is, theorems to the effect that the pseudo-distance is pre-
served if a “small” set (generally one of codimension 2) is removed.
Such a result does not hold without some restriction on the space, as is
shown by the following

EXAMPLE: Let Y be a hyperbolic projective algebraic manifold (for
instance, a nonsingular curve of genus greater than 1) embedded in P~
(complex projective n-space). Let x: C"*' — {0} — P" be the map which
takes a point to the line containing it, and let X be the cone over Y—
ie. X =z7%(Y) U {0}. Then the pseudo-distance on X is identically zero,
since X is a union of lines intersecting at the origin. Let A = {0}.
The space X — A has non-trivial pseudo-distance since dx_,(p,q) >
dy(n(p), n(@)) > 0 if p and ¢ do not belong to the same line through the
origin. Note that X is singular with singular locus A. By choosing Y
to be of large dimension, we can make the codimension of 4 in X as
large as we wish.

The methods we use to attack the problem are different from those
used by Kobayashi, and essentially consist of showing that Hol (D, X — A)
is dense in Hol(D, X) by using the flows of vector fields to push maps
D — X away from A.

§1
For a complex space X we will denote by Hol (D,X) the set of
holomorphic maps of D into X. Note that Hol (D, X) depends only on
the reduction of X. We equip Hol (D, X) with the compact-open topology.
We will use the notation U C C X to indicate that U is a compact sub-
set of X. We wish to consider the following three properties which a
closed subset A of X may have:
I. The Kobayashi pseudo-distance on X restricts to that on X — A
—i.e., dx_.(D,q) = dx(p,q) for p,ge X — A.
II. Hol(D,X — A) is dense in Hol (D, X).
III. Every feHol(D,X) with f(D) c © X can be connected to a
geHol(D,X — A) by a curve in Hol(D,X) which lies entirely in
Hol (D, X — A) except for its initial point—i.e., there is a homotopy
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H(d,t): D X I - X such that H is holomorphic in d for each fixed ¢,
H(d,0) = f(d) and H(d,t) 2 A except for ¢ = 0.

Remark. It is easy to verify that the two slightly different defini-
tions of III are equivalent.

PropPOSITION 1. III= 11 1.

Proof. III=>II. Let M ={feHol(D,X)|f(D)c C X}. We need
only show that M is dense in Hol (D, X). But if fe Hol (D, X) then f,
(defined by fi(x) = f(tx)) belongs to M for every 0 <t <1 and f,— f
in the topology of Hol (D,X) as t — 1.

II=> 1. Let p and g be two points of X not in 4. Let » = dx(p, 9).
Choose ¢ > 0, and let f;: D - X,i =1, --.,m be holomorphic maps such
that £,(0) = p, fi(a;) = f:,,(0), fnla,) = q for points a,, - --,a, € D satisfy-
ing >, dy0,a;) <r +e (We are using a reformulation of the defini-
tion given in the introduction. The reformulation is obtained by using
hyperbolic translations to map half the points involved to the origin.)
Suppose that ¢, is a map of D into X — A,i=1,--.,m and we put
Yi = 9:(0), 20 = 9:(0:), Yo = D5 Ymsr = O T = [i(@:) = [1,,(0), 2, = p. Then
Ax 40, ) < 20 Ax_aWi, Vi) < D070 ldx a(Wiy 20) + dx_a(2e, ¥, )] < 270 dp
0,a) + 270 dx_a®is Vi) <7+ e+ 2o dx_4(2:,Yiy). Now, if the g, are
chosen close to the f; in Hol (D, X), then the points z; = g;(a;) and ¥,
= ¢;,,(0) will both be close to x; = fi(a;) = f;..(0) and hence close to each
other. Since dy_, is continuous, dy_.(2;, ¥;,,) will be small. Choose the
g; so close to the f; in Hol (D, X) that > ", dx_4(2:,¥:.) <e. We obtain
dx_ (0,9 < 7 + 2 = dg(p,q) + 2. Finally, letting ¢ - 0 we obtain
dx_4(p,q) < dx(p,q). Since the other inequality dx_.(p,q) > dx(p,q) is
always satisfied, we obtain dy_,(p,q) = dx(p,q). End of proof.

§2

In this section we obtain results for open subsets of C*. Some of
these could have been deduced as corollaries of later results but the proofs
are easier to follow here and the results somewhat more detailed.

We recall that a subset A of a topological space B is said to be of
first category in B if it is contained in a countable union of closed,
nowhere dense subsets. We omit the (easy) proof of

LEMMA 1: Let f: X —Y be a holomorphic map between complex
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spaces, and let A be of the first category in X. If X is a countable
union of compact sets and dim;,, Y > dim, X (respectively, dim;,, Y >
dim, X) for every xze X, then f(A) (respectively, f(X)) is of the first
category in Y.

PROPOSITION 2. Let U be an open subset of C*. Let A be a
closed subset of U which is of the first category in o mowhere dense
closed analytic subset of U. Then Hol(D,U — A) is dense in Hol (D, U).
Furthermore, if A ts contained in a closed analytic subset of U of co-
dimension > 2, then A has property III as a closed subset of U.

Proof. Suppose A is of the first category in B, where B is a no-
where dense closed analytic subset of U. Let M = {f ¢ Hol (D, U)| f(D)
C CU}. M is dense in Hol(D,U) (see proof of Proposition 1). Let
g€ M. Consider the map G: D x B— C™ defined by G(d, b) = g(d) — b. Since
dim D x B < n, Lemma 1 shows that G(D x A) is of the first category
in C*. In particular G(D X A) contains no neighborhood of the origin.
Choose a sequence ¢, ¢,, - -+, of points of C* such that ¢; -0 as i — o
and ¢; ¢ G(D x A). Define g,: D — C™ by gi(d) = g(d) — ¢;. Since g(D)
C C U there is a N > 0 such that for ¢ > N, ¢g,(D) © U. The sequence
J:, ¢ > N, has ¢ as limit in Hol (D, U) and ¢,(D) € U — A by construction.
This completes the proof of the first assertion. Now suppose that 4 is
contained in a closed analytic subset of U of codimension > 2. It suffices
to consider the case where A is itself a closed analytic subset of U of
codimension > 2. Let feM. Consider the map F:D X AXC—C"
defined by F(d,a,t) = t(f(d) — a). Since dimD X A x C < n and since
D x A X R is of the first category in D X A x C, Lemma 1 shows that
F(D x A X R) is of the first category in C» and, in particular, that it
is a proper subset of C*. Let ccC*, ce F(D x A X R). Define H(d,s):
D X I— C™by H(d,s) = f(d) + sc. Since f(D) is relatively compact in U,
H(d,s) e U for sufficiently small s (independently of d) and, by construc-
tion, H(d,s)z A for any s and d except when s = 0. Obviously H pro-
vides the required homotopy. End of proof.

Property III has a certain “staying power”. Thus if X has property
ITI for closed analytic subsets of codimension > 2, then so does any
smooth holomorphic retract of X (the requirement that the retraction
r: X — A, where A C X, be smooth is imposed so that the inverse image
under r of any analytic subset of codimension > 2 is again of codimen-
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sion > 2). Also, if every open subset of X has property III for its
analytic subsets of codimension > 2, then so does any space which is
spread over X (that is, admits a locally biholomorphic map onto X).
Using the fact that any Stein manifold is a smooth holomorphic retract
of a tubular neighborhood of any embedding of it into C™, one easily
proves the following proposition (which is also a consequence of Theorem
2 in the next section).

ProPOSITION 3. Let X be spread over an open subset of a Stein
manifold. Then any closed analytic subset of X of codimension 2> has
property II1 as a closed subset of X.

Note that the analogous proposition for Stein spaces would be false,
as is shown by the example in §0.

§3

In this section we show how to use the flow along vector fields to
accomplish the job done by translations in §2.

For a complex space X and a point xeX we denote by T.(X)
(respectively, TC,(X)) the tangent space (respectively, cone) to X at x.
If 9: X —Y is a holomorphic mapping of complex spaces, we denote by
do, the differential of ¢ at x. If ¢(x) =y, the differential is a linear
mapping T,(X) — T,(Y) which sends TC,(X) to TC,(Y).

By a vector field on X we will mean an Ox-module homomorphism
of Qy—the sheaf of germs of holomorphic differential forms of degree
one—to @y. The collection of all vector fields on X is thus the vector
space Hom,, (24, 0x), which we will denote by 6(X). (See [3] for back-
ground). Given a vector field 7 on X there is, locally, an associated
local one-parameter group of automorphisms of X, called the flow
along 7. The parameter. in question is complex and the flow depends
holomorphically on all the variables occuring (even 7). More pre-
cisely, suppose we are given a finite dimensional vector subspace V
of @(X). Then for any relatively compact open subsets X, of X and V,
of V there exists an ¢ > 0 for which a holomorphic map ¢: X, X V, X D,
— X exists, with D, = {ze D||z| <&} and ¢(x, T, t) = ¢(x, 1) i.e. the flow
along T, for the “time” ¢, starting at z. One proves this by showing
local existence and uniqueness (where defined) for the flow. On suffi-
ciently small coordinate neighborhoods X, C U, C C™ the result is obtained
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by lifting a basis for the finite dimensional space of vector fields involved
to the ambient U, C C™ and by observing that the flow on U, thus ob-
tained preserves the ideal sheaf of X,. Finally one uses the uniqueness
to piece together these flows, obtaining a holomorphic map ¢: 2 — X where
£ is the largest connected open neighborhood of X X V X {0} in X X V X C
on which the flow can be defined. We denote by T(x) the value of a
vector field at a point x € X and by V(z) = {T'(x)|T € V} the vector sub-
space of T,(X) obtained by evaluating vector fields in V at z.

In the following we will show that if A is a closed analytic subset
of a reduced complex space X and there are ‘“‘enough” global vector fields
on X then Hol (D, X — A) is dense in Hol (D, X). The intuitive idea here
is, given a map f:D — X and a point de D such that f(d)e A, to find
a global vector field which is “parallel” neither to A nor to the image
of D and to use the flow of that vectorfield to push the image of D
away from A at d. If f(D) € C X then it suffices to find a vectorfield
that does the job over all of f(D). To make what we have said more
precise and to avoid lengthy repetitions we make the following temporary
definition:

DEF: A vector subspace W of O(X) is said to be sufficiently disjoint
from the tangent cone to A if given any ac A there exist T, and T,e W
such that T,(e) and T,(a) are linearly independent and no nontrivial linear
combination of T,(a) and T,(a) lies in TC,(A).

With this definition the precise meaning of having ‘“‘enough” global
vector fields on X will be that O(X) is sufficiently disjoint from the tan-
gent cone to A. First we prove a

TRANSVERSALITY LEMMA. Let ¢: X — Y be a holomorphic map from
o nonsingular complex space X to a complex space Y, and let A be a closed
analytic subspace of Y. If for every xze ¢ '(A) the image dp, (T, (X))
of the tangent space contains two linearly independent vectors whose
nontrivial linear combinations are never in TC,,(A), then ¢™'(A) is of
codimension at least two.

Proof. Let B be ¢ '(A) with its reduced complex structure and let

1: B — X be the inclusion. Let b be a nonsingular point of B. We have
the following commutative diagram
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Ty(X) —> qu(b)(Y)

o

T,(B) —> TC,4,(A)

since ¢ induces a map B — A and since TC,(B) = T,(B). Since b is a
nonsingular point of both B and X, the vector space codimension of
T,(B) in T,(X) is the same as the codimension of B in X at b. If that
codimension is < 1, then some nontrivial linear combination of any two
vectors in T,(X) would get mapped to TC,.,(4), contradicting our as-
sumption. Since the codimension of B is the infimum of its codimen-
sions at regular points, we have the desired result. End of proof.

Given a finite dimensional subspace V of 6(X) and the associated
flow ¢: 2 — X where 2 is an open subset of X X V X C, the middle partial
derivative of ¢ at a point { = (x,T,?) of £ is a linear map D,p|: V —
T,o(X). We need to know that D,p| is, to first order, just ¢ (evalu-
ation at ¢(0)).

LEMMA: For any xeX and TeV, letting { = (x,T,t), we have
Dol (S) = tS(p(©)) + 0D as t tends to 0.
The bounds implied by “0(t)” are locally uniform in x and T.

Proof. The desired result is local and ¢ can be calculated locally,
so we may suppose that X is a closed analytic subspace of an open
subset U of C™ and even that there is a basis T,,-.-, T, of V that gives
rise to vectorfields on X that can be lifted to vectorfields on U. Specifi-
cally, suppose that >, f:;(8/0%2;),1 =1, -.-.,7 are vectorfields on U that
restrict to T, on X. Let F(z,ay,---,a,t) = (Fjx,a,t)) denote the flow
starting at e U for time ¢ along the vectorfield > ; ; a;f:;(8/0z;). By
definition F' satisfies

1) F(x,a,0) =2

and
i) Pr@,0,0) = 3 0fy(F@,0,0)

Expanding F' in powers of £ we obtain
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Fiyx,a,t) =« + t > a,f:(®) + terms involving #* and higher powers of ¢.

Differentiating with respect to a; we obtain

oF,
oa;

(z, a,t) = tf;,(x) + 0(t)
and hence also

OF; @,a,t) = t,,F@, a,8) + 0
aa;

But this is the desired result, for, if S = b,T, + --- + b,T,, then D,p|(S) =

zbi(aa—f:i( )) = t 3 b, F@, 0, t) + 0t = tS@(©) + 0. End of
% i z,a,t 1

proof.
We are now in a position to prove

THEOREM 1. Let X be a complex space and let A be a closed ana-
lytic subspace of X. If O(X) is sufficiently disjoint from the tangent
cone to A, then A has property III as a closed subset of X (see §1 for
the definition of property III).

Proof. Let f:D — X be a map of the disc into X such that f(D)
Cc ¢ X. As the first step in the proof we show that there is a finite
dimensional subspace of @ which is “sufficiently disjoint from the rele-
vant portion of the tangent cone to A”. Let ae A. By hypothesis we
can choose vectorfields T, T, in ©(X) such that «T(a) + gT.(a) 2 TC,.(A)
for |a| + || =1. Since {(a,P|le| + |8] =1} is compact and TC(A) =
Uaea TC,(A) is a closed analytic subset of T(X) = ,ex To(X) (with its
natural analytic structure) and since the map x -~ aT\(x) + BT.(x) is
continuous, there is a neighborhood N, of a in X such that «T,(x) +
BT (x) e TC(A) for |a| + |8l =1 and ze N,. Since A N f(D) is compact
we can choose a finite number of points a,, --.,a, of A such that the
corresponding neighborhoods N,, cover A N f(D). Let V be the finite
dimensional vector subspace of &(X) spanned by T®,T®, T, TP, ---,TH
where T{? and T{" are the vectorfields that were chosen at the point a;
to define the neighborhood N,,. V is, in an obvious sense, sufficiently
disjoint from the tangent cone to A over A N f(D).

Let ¢: 2 — X be the flow associated to V, where 2 is an open neigh-
borhood of X X VX {0} in X X VX C. Let = X1X DD =
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{@d,T,)eD XV X C|(f(d),T,t)e 2}, and define ¢’: ' - X by ¢'(d,T,?)
= ¢(f(d),T,t). Choose some norm | | on V. For ¢>0 let V,=
{TeV||T|<e. We wish to show that there is an ¢> 0 such that
D xV,x D, C £ and such that the restriction of ¢’ to D X V, X (D,— {0})
satisfies the hypotheses of the transversality lemma (with X =D X V, X
(D, —{0),Y =X,A = A). Observe first that (by the lemma preceeding
this proof) the map +: (@ — (D XV X {0D) X V- T(X) given by
¥((d, T, t), S) = A/ )Dg' |(a,r,,,(S) can be extended to a map ¥: 2’ X V— T(X)
by putting ¥((d, T, 0), S) equal to S(f(d)). Next let us construct for each
2z e X a neighborhood N, of x and an ¢, > 0 as follows:

Case I. z2¢A. Then ¢(x,0,0)0¢A. By continuity there exist a
neighborhood N, of  and an ¢, > 0 such that (y,T,¢)e 2 and o(y, T, 1) ¢ A
for ye N, and |T},|t] <e.

Case II. ze A N f(D). By the construction of V, there exist T,
T,e V such that no nontrivial linear combination of T,(x) and T,(x) be-
longs to TC,(A). We can restate this as V((z,0,0),aT, + BT, ¢ TC(A)
for |a| 4+ |8] =1 (since ¢ is linear in its last variable). By continuity
there exist a neighborhood N, of z and an ¢, > 0 such that (y,T,t)e 2
and V((y,T,t), aT, + pT,) e TC(A) for |a|+ |Bl =1, yeN,, |T|<e, and
|t| < e;. Note that, by the definition of +, this says that if ¢ 0 and
¢ =(y,T,t) then Dy'|(T,) and D,y |(T,) are linearly independent and that
no nontrivial linear combination of them lies in TC(A).

Case III. 2ecA — f(D). Let N, =X — f(D) and ¢, = 1.

Since f(D) is compact we can choose a finite number of points z,,
-++,%,€X such that the corresponding neighborhoods N,, cover f(D).
We can discard any points in A — (D) and still have the same property.
Let ¢ = min (e;,, - - -,6;,). It is clear that ¢ has the desired property by
construction.

Let ¢ be the restriction of ¢’ to D X V, X (D, — {0}). Applying the
transversality lemma we conclude that ¢~'(4) is of codimension at least
two, i.e., dim ¢™'(4) < dim V, = vector space dimension of V. Let x:
@"%(A) — V, be the projection map and let Z be the “real section of ¢~'(4)”,
ie, Z=¢(A)ND XV X R). Weclaim that z(Z) is of the first category
in V,. Before proving this let us see how we can use it to complete the
proof of the Theorem. If n(Z) is of the first category in V,, then cer-
tainly n(Z) #= V,. Choose T e V, which is not in the image of =. T ¢ zn(Z)
says precisely that ¢'(d,T,t)¢ A for deD and teR, 0 <|t|<e Thus
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H@d,t) = ¢'(d, T, 1), 0 <t <e/2, provides the desired homotopy. Finally,
to show that z(Z) is of the first category, observe that since ¢~'(A) has
at most countably many irreducible components, it suffices to show that
(W N Z) is of the first category for every irreducible component W of
Z., Let t:W T DXV XC—C be the third projection. Since W is
irreducible and t is holomorphic, t is either an open mapping or constant.
If ¢ is an open mapping then, since R is nowhere dense in C, W N Z =
t~'(R) is nowhere dense in W, and we may apply lemma 1 of §2 to con-
clude that #(W N Z) is nowhere dense in V.. If ¢ is constant, let ¢, be its
unique value. Then W is contained in the inverse image of A under the
map D X V, X {t,} — X induced by ¢’. The argument given above to show
that ¢ satisfies the hypotheses of the transversality lemma also shows
that this map does as well (since the “same” partial derivative produces the
required tangent vectors in either case). Hence dimW <1 4+ dimV — 2
< dim V, and we again conclude by applying lemma 1 of §2. End of
proof.

Remark. One can see why zn(Z) is of the first category by observing
that (D x V x R) N £’ is a real analytic manifold and that an application
of transversality and a count of real dimensions show that z(Z) should
be lower dimensional than V..

As a corollary we obtain

THEOREM 2. Let X be a complex manifold whose tangent bundle is
spanned by its global sections. If A is any analytic subset of X of
codimension > 2 then A has property 111 as a closed subset of X. In
particular Hol (D, X — A) is dense in Hol (D, X) and the restriction to
X — A of the Kobayashi pseudo-distance on X is the Kobayashi pseudo-
distance on X — A.

Proof. We will show that 6(X) is sufficiently disjoint from the
tangent cone to A. Let ac A. If o is a nonsingular point of A, choose
T, and T, so that T,(a) and T,(a) span a two dimensional subspace of
T.(X) complementary to T.,(4). If a is a singular point, TC,(4) is an
algebraic cone in T,(X) of dimension equal to dim, (4). By one well
known definition of dimension there is a linear subspace, of codimension
equal to dim, (4), lying T,(X) and whose intersection with 7TC,(A) has
{0} as an isolated point. But then, since TC,(A) is a cone, the inter-
section of the linear subspace and TC,(A) reduces to {0}. Simply choose
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T, and T, so that T,(e) and T,(a) arelinearly independent and lie in that
linear subspace. End of proof.

Remarks. 1) The reason for requiring X to be nonsingular does
not lie in the proof given above. The reason is the fact, due to Rossi
([56]1), that if X is reduced and its tangent spaces are spanned by the
values of vectorfields, then X must be nonsingular.

2) Any compact manifold whose tangent bundle is spanned by its
global sections necessarily has trivial Kobayashi pseudo-distance. For,
if X is compact, O(X) is finite dimensional and vectorfields generate
complete one parameter groups and the flow becomes a map ¢: X X O(X)
X C—X. If z,eX then (T,%) — ¢(x,, T,t) is holomorphic and its image
contains a neighborhood of z,. Since z, X 6(X) X C has trivial pseudo-
distance, so does that neighborhood. Since z, was arbitrary, it follows
that X has trivial pseudo-distance.
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