NODAL NON-COMMUTATIVE JORDAN ALGEBRAS
LOUIS. A. KOKORIS

1. Introduction. A finite dimensional power-associative algebra ¥ with
a unity element 1 over a field § is called a nodal algebra by Schafer (7) if
every element of U has the form al + z where « is in §, z is nilpotent, and if
A does not have the form A = F1 + N with N a nil subalgebra of A. An
algebra ¥ is called a non-commutative Jordan algebra if ¥ is flexible and A+
is a Jordan algebra. Some examples of nodal non-commutative Jordan algebras
were given in (5) and it was proved in (6) that if % is a simple nodal non-
commutative Jordan algebra of characteristic not 2, then 9+ is associative. In
this paper we describe all simple nodal non-commutative Jordan algebras of
characteristic not 2. Any such algebra has the form A = F1 + N with
N+ = Flxy, .. ., x,] for some #z where the generators are all nilpotent of index
p. The x; can be selected so that xx; = a1 4+ w;; for w;; in N and a4 in F
such that, for each 7, some a;; # 0. Moreover, the multiplication table of I
is given by

(1) f(xly-"yxn)g(xly'--yxn) =f'g+ % Z —Qf;'_ig—'

1.7 ax, axj

where the dot product a-b = %(ab + ba) is the product of A+ and [x;, x,] =
X5 — X405

The author would like to express his great indebtedness to R. D. Schafer
for finding errors in the original manuscript and for showing how they could
be corrected.

[xir xi]

2. Properties of At. If D is the derivation algebra of an algebra 8, then
Albert in (1) calls 8 D-simple if there exists no ideal IN, other than B or 0,
such that mD is in M for every m in M and D in ©. We use a result of Harper
(2) which for our purposes may be stated as follows.

. THEOREM 1. (Harper) Let B be a commutative associative algebra with a
unity quantity 1 over a field § and let B have the form B = Fl + N with N
the radical of B. Also let B be D-simple where D is any set of derivations on B.
Then N = Flx1, ..., x,] for some n where the generators x,; have index p, p
the characteristic of §.

We remark that it is known that a D-simple algebra cannot have charac-
teristic zero and Schafer has shown in (7) that a nodal non-commutative
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Jordan algebra cannot have characteristic zero. He also uses a theorem of
Jacobson (4) to prove that N* is a subalgebra of A+ for any nodal non-com-
mutative Jordan algebra.

THEOREM 2. Let U be a simple nodal non-commutative Jordan algebra over a
field § whose characteristic is not 2. Let D be the derivation algebra of N. Then
A+ 25 D-simple.

Suppose A+ is not D-simple. Then there is an ideal B of A+ such that
BD C B. We shall show that B is then an ideal of A, contradicting the
fact that % is simple. The mapping dD = [b, c] where ¢ is any element of A
and [b, c] = bc — ¢b is a derivation of A+. This is so because (a-b)D = aD-b
+a-bD if and only if [a- b, c] = [a, c]-b + a-[b, ¢] and the last identity follows
from (ab)c + (cb)a = a(bc) + c(ba), the linearized form of the flexible law
(ab)a = a(ba). Now let b be in B and a in A. Since B is a D-ideal of AT,
D = [b,a]is in B. Also, since B is an ideal of A+, a-bisin B. Then ba — ab
and ab + ba in B imply ab and ba are in B. That is, B is an ideal of .

CoROLLARY. If A = F1 + N is a simple nodal non-commutative Jordan
algebra over a field § whose characteristic is not 2, then M+ = Flxy, . . ., x,] for
some n, where x? = 0, x =1 #% 0. Thus, A has order p".

3. The multiplication table of 9. Assume that ¥ is simple so that, by
the corollary above, A+t = F[1, x1, ..., x,] with x? = 0. In (3), Jacobson
has shown that if D is any derivation on A, then

m=3 2

i axz

for any f in A+ and for a; in A*. The a; of course depend on the derivation
D. If g is any element of A*, we have seen that the mapping fD = [f, g] is a
derivation of 2*. Hence

=led =3 Lae.

axi

To evaluate the a;(g), we note that x,D = [x;, g] = a:(g) and
3}
MM=Z$MM
J
Since [x4, g] = — [g, xi],
—_ s 9
0lg) = = = 3E-ayx)
and since [x,, x;] = a;(x,), it follows that

Vgl = T oty )

] 0x;
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THEOREM 3. If U is a simple algebra, then for any f, g in ¥,

of 9g
- f. 1 L9 e e
fe=fg+ 3 IZJ dx; ox, [x4, x5].

This result follows from the above formula for [f, g] and the fact that
fg = f-g + 3[f, g]. The assumption that ¥ is nodal implies that at least one
of the [x; x;] is not in N. This is equivalent to the statement that for some
1, J, X%, is not in N.

THEOREM 4. The generators x1, . . . , X, can be selected sothat x x; = o;;1 + w,;

with w;; m N and a,; in § such that, for each i, some a;; #= 0.

Let I be the vector space with xy,...,x, as a basis. If we write a;; =
a(x;, x;) then x0; = 2x;-x; — xix; = — ay; — wi; + 2x;-x; together with the
fact that x;-x;is in N, implies that a(x;, x;) = — a(x4 x;). Therefore a(x;, x;)
is a skew-symmetric bilinear form on . If the rank of the form is 27, there
exists a basis x¢/, ..., x, such that we have the canonical form

(X(xil,xH_Tl) = 1 = — a(xi_H', xi/)

for i < 7, a(x/, x;/) = 0 for all other pairs 7, j. Next take x,/" = x,/ for s < 2r

andx," = x/ + xi' forz > 2r. Then,if 7 < 7, a(x)’, xip,”") = alx/, xip,) = 1;
if r <1< 2r,
n 1 ! ! ! ! .
a(xi y Xi—r ) = a(xi ’ xi-—r) = - a(xi—r ) x(i—7)+T) = —1;

andif 7 > 2r, a(x/’, x,41") = alx/ + %/, x,41) = a(x/, x,41") = 1. The basis
x’, ..., %" of M has the properties stated in Theorem 4.

4. Construction of algebras. Let § be any field of characteristic p # 2.
Define A+ by A+ = F1 + Nt where N+ = Flxy, ..., xx] with x1, ..., %,
nilpotent generators of index p. That is, A+ consists of elements al + 2
where aisin F, 1 is the unity quantity of A+, and zis a polynomial in x4, . . . , x,.
Define the algebra % = F1 + N to be the same vector space as A+ and to
have a product defined by xx; = a1 + w;; for any a;; = — ay; in § and
and w;; = 2x;-x; — w,; in N, ¢ < j. Further define

oty 1S O og
fg—fg+%;j FYoy [xy, x,]

for f, g any elements in .

THEOREM 5. If at least one a;; # 0, the algebra N described above is a nodal
non-commutative Jordan algebra.

Linearization of the flexible law (fg)f = f(gf) vields the identity (fg)k + (hg)f
= f(gh) + h(gf). Add (gf)h + (gh)f to both sides of the equality to obtain

2) (f-oh + (g-h)f = (&f)-h + (gh)-f.
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Since Y has characteristic # 2, flexibility is equivalent to identity (2). The
expression

gf-h+ghf— (gh)f— (fgh

—rgh+1 Y EI ekt fogeh

) axl 0x;
PN T
P> "ﬂfxf’) sl = fogeh

Using

d(a-b) @ b
dx bta

the above expression becomes

i J axi ax]‘ 6xi axj

ax, ax, T ax, ox, & ox, ox, & 9w, ox,

=3 12 [xiyxj]'< ah af afﬁﬂ")‘g

6x ax, 0x; 0x;

ag of Ok of of ok ag ok f>

=fgh— )¢+ fgh— (fh)-g=0
as desried. The algebra is nodal since at least one «;; is not zero.

The proof of Theorem 4 depends only on 9 having the form as described
at the beginning of this section and it is not necessary for U to be simple in
order to obtain the result of Theorem 4. Thus we may assume that the
generators ¥y, ..., %, have the properties of Theorem 4 and that we have
the associated bilinear form of rank 2r.

THEOREM 6. If n = 2r, then U is simple.

Suppose B is a proper ideal of . Then there exists a polynomial f = f(xy, ...,

x,) in B with least possible degree ¢ in x4, . . . , %,. Since n = 27, a;; = 0 except
for the following: a; ,+; = 1 fori < r;and a;,,—r = — 1 forr <4 < 2r. Then
for each 7 there exists a k such that a;; # 0 but ax; = 0 for all j # 7. Then
for this <,

9
xif = Z g -I— terms of degree > ¢ = aki—f-

F + terms of degree > ¢.
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Therefore, if any monomial of f of degree ¢ has a power x; as a factor, x;f is
a polynomial of degree ¢t — 1. The fact that f is in 8 implies that x;f is in B
and this contradicts the assumption that f has minimal degree ¢.

If » > 2r, %A is not necessarily simple. For example, consider x; — x2,41
which has the property that (x; — x2,41)A C N. Then B = (x1 — x2r31) - A
is an ideal of U if

[(1 — x2rp1)-2lf = (%1 — X2p41) - g-f + 3 ; Ol —;;C:H'l)’g]-g%-[xi, x;]

= (x; — Xorg1)-g-f + 3 Z —6f‘ :

X1 — x
- Gx]- [1 X2rt1, j]

+3 ZZ] ba—xg‘lb%[xu ;) (¥1 = Xargn)
is in B for every g and f in . This will be so if [x; — x2,41, x;] is in B for
every j. This can be accomplished by setting xx; = x4 = x;-x; and
Xorp1X; = XX2rp1 = Xor41°X; Lhen [x; — Xo,4q, x;] = 0 is certainly in 8 for
every j.
It seems clear that whether or not U is simple with # > 27 depends on the
nature of the nilpotent elements w;;.
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