THE ERROR TERM FOR THE SQUAREFREE INTEGERS

L. Moser and R.A. MacLeod
(received February 7, 1966)

Let $Q(x)$ denote the number of squarefree integers $\leq x$. Recently K. Rogers [1] has shown that $Q(x) \geq 53 x / 88$ for all x, with equality only at $x=176$. Define $R(x)$ to be $Q(x)-6 / \pi^{2} x$. (We observe that $53 / 88 \doteqdot 0.6023$ and $6 / \pi^{2} \doteq 0.6079$.) Our objective will be to examine $R(x)$. In particular, we show that $|R(x)|<\sqrt{x}$ for all x and observe that $|R(x)|<1 / 2 \sqrt{x}$ for $x \geq 8$. The best result of this type obtained by Rogers was

$$
\begin{equation*}
|R(x)|<12 / \pi^{2} \sqrt{x}+8 / 3 x^{1 / 4} \tag{1}
\end{equation*}
$$

We have

$$
\begin{aligned}
Q(x) & =\sum_{d \leq x}|\mu(d)|=\sum_{n \leq x} \sum_{d^{2} \mid n} \mu(d)=\sum_{d^{2} \leq x}^{\sum} \mu(d) \sum_{n \leq x} 1 \\
& =d_{d^{2} \mid n}^{\sum} \mu(d)\left[x / d^{2}\right]
\end{aligned}
$$

so that

$$
\begin{equation*}
\left.\left|Q(x)-\frac{6}{\pi^{2}} x\right| \leq 1{ }_{d^{2} \leq x}^{\sum} \mu(d)\left(\frac{x}{d^{2}}-\left[\frac{x}{2}\right]\right)|+x|_{d^{2}} \sum_{x} \frac{\mu(d)}{d^{2}} \right\rvert\, \tag{2}
\end{equation*}
$$

where $x-[x]$ denotes the fractional part of x. Thus, we have almost immediately

$$
\begin{equation*}
|R(x)| \leq 2 \sqrt{x}+1 \tag{3}
\end{equation*}
$$

We direct our attention to improving (3). Let

Canad. Math. Bull. vol. 9, no. 3, 1966.

$$
A(x) \underset{\substack{d \leq x \\ \mu(d)=1}}{\sum 1, B(x)=\underset{\substack{d \leq x \\ \mu(d)=-1}}{\sum 1,} C(x)=\max (A(x), B(x)) . . . ~}
$$

Then clearly

$$
\left|\sum_{d \leq x} \mu(d)(g(x, d)-[g(x, d)])\right| \leq C(x) \text { for any } g \text {. }
$$

Let $M(x)=\Sigma \mu(d)$. Then

$$
\mathrm{d} \leq \mathrm{x}
$$

$$
C(x)=\frac{1}{2}(A(x)+B(x))+\frac{1}{2}|A(x)-B(x)|=\frac{1}{2} Q(x)+\frac{1}{2}|M(x)| .
$$

Since every four th integer is divisible by 4 , and every ninth by 9 , we have

$$
\begin{equation*}
Q(x) \leq[x]-\left[\frac{x}{4}\right]-\left[\frac{x}{9}\right]+\left[\frac{x}{36}\right] \leq \frac{2}{3} x+\frac{4}{3} \text { for all } x . \tag{4}
\end{equation*}
$$

Let $f(x)=[x]-\left[\frac{x}{2}\right]-\left[\frac{x}{3}\right]-\left[\frac{x}{5}\right]+\left[\frac{x}{30}\right]$. Since $\sum_{d \leq x} \mu(d)\left[\frac{x}{d}\right]=1$,
$\sum_{d \leq x} \mu(d)\left[\frac{x}{m d}\right]=1$ for $x \geq m$, and $\sum_{d \leq x} \mu(d) f\left(\frac{x}{d}\right)=-1$ for $x \geq 30$.
Now, $f(x)=1$ for $1 \leq x<6$ and 0 or 1 for $x \geq 6$, so that

$$
\begin{align*}
|M(x)+1| & =\left|\sum_{d \leq x} \mu(d)\left\{1-f\left(\frac{x}{d}\right)\right\}\right| \leq \underset{d \leq \frac{x}{6}}{\sum}|\mu(d)| \\
& =Q\left(\frac{x}{6}\right) \leq \frac{1}{9} x+\frac{4}{3} \text { for } x \geq 30 . \tag{5}
\end{align*}
$$

Hence

$$
\begin{equation*}
|M(x)| \leq \frac{1}{9} x+\frac{7}{3} \text { for } x \geq 30 . \tag{6}
\end{equation*}
$$

One readily checks that (5) holds for $x \geq 2$ and (6) for $x \geq 1$. Thus,

$$
\begin{equation*}
C(x) \leq \frac{1}{2}\left(\frac{2}{3} x+\frac{4}{3}\right)+\frac{1}{2}\left(\frac{1}{9} x+\frac{4}{3}+1\right)=\frac{7}{18} x+\frac{11}{6} \text { for } x \geq 1, \tag{7}
\end{equation*}
$$

$$
\text { and }\left|\sum_{d^{2} \leq x} \mu(d)\left(\frac{x}{d^{2}}-\left[\frac{x}{d^{2}}\right]\right)\right| \leq C(\sqrt{x}) \leq \frac{7}{18} \sqrt{x}+\frac{11}{6} \text { for } x \geq 1 \text {. }
$$

Also, $\quad \sum_{d>x} \frac{\mu(d)}{d^{2}}=\sum_{d>x} \frac{\{M(d)+1\}-\{M(d-1)+1\}}{d^{2}}$

$$
=\sum_{d>x}\{M(d)+1\}\left(\frac{1}{d^{2}}-\frac{1}{(d+1)^{2}}\right)-\frac{M(x)+1}{([x]+1)^{2}} .
$$

Hence

$$
\begin{gathered}
\left|\sum_{d>x} \frac{\mu(d)}{d^{2}}\right| \leq \frac{1}{9} \sum_{d>x} d\left(\frac{1}{d^{2}}-\frac{1}{(d+1)^{2}}\right)+\frac{4}{3} \sum_{d>x}\left(\frac{1}{d^{2}}-\frac{1}{(d+1)^{2}}\right)+ \\
\quad \frac{1}{9} \frac{1}{x}+\frac{4}{3} \frac{1}{x^{2}} \leq \frac{1}{3} \frac{1}{x}+\frac{8}{3} \frac{1}{x^{2}} \text { for } x \geq 2 ;
\end{gathered}
$$

i.e.

$$
\begin{equation*}
x\left|\sum_{d^{2}>x} \frac{\mu(d)}{d^{2}}\right| \leq \frac{1}{3} \sqrt{x}+\frac{8}{3} \text { for } x \geq 4 \tag{8}
\end{equation*}
$$

and

$$
|R(x)| \leq \frac{13}{18} \sqrt{x}+\frac{9}{2} \text { for } x \geq 4
$$

whence,

$$
\begin{equation*}
|R(x)|<\sqrt{x} \text { for } x \geq 263 . \tag{9}
\end{equation*}
$$

We note that $R(x)=Q(x)-\frac{6}{\pi^{2}} x$ is a decreasing function for $n \leq x<n+1$ and positive for $x=1,2, \ldots, 263$, except at $28,56,153,172,173,175,176,177,180$ and 181 , so that it suffices to check that (9) holds for $x=1,2, \ldots, 263$ and to examine $R(x)$ near the ten integers x where it is negative. This we have done, and (9) holds for all $x \geq 1$.

We observe that, using better bounds for $M(x)$ in the above argument, one readily shows

$$
\begin{equation*}
|R(x)| \leq \sqrt{3}\left(1-\frac{6}{\pi}\right) \sqrt{x}=(0.6792 \ldots) \sqrt{x} \tag{10}
\end{equation*}
$$

for all x, with equality only at $x=3$, and

$$
\begin{equation*}
|R(x)|<\frac{1}{2} \sqrt{x} \text { for } x \geq 8 \tag{11}
\end{equation*}
$$

We note that the strong form of the prime number theorem, which is equivalent (see e.g. Landau [2], p. 157) to

$$
M(x)=0\left(\frac{x}{\log ^{\alpha} x}\right) \text { for each } \alpha
$$

implies

$$
\begin{equation*}
R(x)=0\left(\frac{\sqrt{x}}{\log ^{\alpha} x}\right) \text { for each } \alpha \tag{12}
\end{equation*}
$$

while the Riemann Hypothesis implies (Landau [2], p. 161)

$$
M(x)=0\left(x^{1 / 2+\epsilon}\right) \text { for each } \epsilon>0
$$

which yields $R(x)=0\left(x^{2 / 5+\epsilon}\right)$ for each $\epsilon>0$. In the other direction, Evelyn and Linfoot [3] have proved $R(x) \neq o\left(x^{1 / 4}\right)$.

REFERENCES

1. K. Rogers, The Schnirelmann density of the squarefree integers, Proc. Amer. Math. Soc. 15(1964), 515-516.
2. E. Landau, Vorlesungen Uber Zahlentheorie, II, Chelsea (1947).
3. C.J.A. Evelyn and E.H. Linfoot, On a problem in the additive theory of numbers (Fourth paper). Ann. of Math. 32(1931) 261-270.

University of Alberta, Edmonton

