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On the distribution of Atkin and Elkies primes for reductions of
elliptic curves on average
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Abstract

For an elliptic curve E/Q without complex multiplication we study the distribution of Atkin
and Elkies primes `, on average, over all good reductions of E modulo primes p. We show that,
under the generalized Riemann hypothesis, for almost all primes p there are enough small Elkies
primes ` to ensure that the Schoof–Elkies–Atkin point-counting algorithm runs in (log p)4+o(1)

expected time.

1. Introduction

Let E be a fixed elliptic curve over Q given by an integral Weierstrass model of minimal
discriminant ∆E and let Fp denote the finite field with p elements. Primes p that do not divide
∆E are said to be primes of good reduction (for E) and, for such primes p, we let Ep denote
the elliptic curve over Fp obtained by reducing the coefficients of E modulo p. We assume
throughout that E does not have complex multiplication (CM), meaning that EndQ(E) ' Z.

This assumption excludes only a finite set of Q-isomorphism classes of elliptic curves for
which the point-counting problem we consider is easily addressed in any case. See [1, 29] for
background on elliptic curves.

We always assume that p is large enough and, in particular, that p is a prime of good
reduction greater than 3. We denote by Np the cardinality of Ep(Fp), the group of Fp-rational
points on Ep, and define the trace of Frobenius tp = p + 1 − Np. We say that an odd prime
` 6= p is an Elkies prime for Ep if the discriminant

Dp = t2p − 4p

is a quadratic residue modulo `; otherwise ` 6= p is called an Atkin prime for Ep. We note that
the Hasse bound implies t2p < 4p, so Dp is always negative.

Recall that an elliptic curve over Fp is ordinary if its trace of Frobenius tp is not a multiple
of p; for p > 3 we can have p | tp only when tp = 0. We therefore say that a prime p is
ordinary (for E) if tp 6= 0, and we say that p is supersingular otherwise. It is well known that
when E does not have CM almost all primes are ordinary; in fact we know from the striking
results of Elkies [7] that while there are infinitely many supersingular primes, the number of
supersingular primes p 6 P is bounded by O(P 3/4).

The Schoof–Elkies–Atkin (SEA) algorithm is a widely used method to determine the number
of rational points on an elliptic curve over a finite field. For finite fields of large characteristic
(in particular, the prime fields considered here), it is believed to be the asymptotically fastest
approach. As in Schoof’s original algorithm [24], the basic strategy is to determine the trace
of Frobenius tp modulo sufficiently many small primes `. By the Hasse bound, it suffices to
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do this for a set of primes whose product exceeds 4
√
p. The key improvement, due to Elkies,

is a probabilistic method to determine t modulo ` in `(` + log p)2+o(1) expected time (see
Theorem 12 for a more precise bound), provided that ` is an Elkies prime and E is an ordinary
elliptic curve with j(E) 6∈ {0, 1728}. The Atkin primes also play a role in the algorithm, but
their impact is asymptotically negligible and not considered here. See [25] for further details.

The standard heuristic complexity analysis of the SEA algorithm assumes that there are
approximately the same number of Atkin and Elkies primes ` < L, where L ∼ log p, as
p → ∞; see [1, §§ 17.2.2 and 17.2.5] for example. The validity or failure of this assumption
crucially affects the expected running time of the SEA algorithm. When it holds, the expected
running time is (log p)4+o(1) (see Corollary 14). It is known that the heuristic assumption
regarding an approximately equal proportion of Atkin and Elkies primes ` < L starting with
L ∼ log p is not always true [27]; in some cases one may require a larger value of L (but this
does not necessarily contradict the heuristic (log p)4+o(1) bound on the expected running time
of the SEA algorithm).

Little can be said about the worst-case running time of the SEA algorithm unconditionally,
but under the generalized Riemann hypothesis (GRH) it can be bounded by (log p)8+o(1) (see
Corollary 15). This follows from a result of Galbraith and Satoh [22, Appendix A], who proved
a GRH-based bound of (log p)2+o(1) on the largest Elkies prime needed†.

By comparison, the complexity of Schoof’s original deterministic algorithm [24, 25] is just
(log p)5+o(1) (see Corollary 11 for a more precise bound). Thus, even assuming the GRH, one
cannot prove that the SEA algorithm is actually an improvement over Schoof’s algorithm,
although in practice its performance is empirically superior. There is therefore an interest in
what can be said about the distribution of Elkies and Atkin primes ‘on average’. In [28], it is
shown that for any sufficiently large prime p almost all elliptic curves over Fp have, up to a
constant factor, approximately the same number of Elkies and Atkin primes (unconditionally).
Here we consider the analogous question for the reductions Ep of our fixed elliptic curve E/Q
and obtain a similar result, conditional on the GRH.

Traditionally, Elkies and Atkin primes ` are defined only for ordinary primes p. For the
purpose of stating (and proving) our results, it is convenient to extend the definition to
all primes p; we address the ordinary/supersingular distinction when we discuss algorithmic
applications.

Thus, for a prime p > 3 of good reduction for E and a real L, we define Ra(p;L) and Re(p;L)
as the number of Atkin and Elkies primes, respectively, in the dyadic interval [L, 2L], for the
elliptic curve Ep. We clearly have

Ra(p;L) +Re(p;L) = π(2L)− π(L) +O(1), (1)

where π(z) denotes the number of primes ` < z, and it is natural to expect that

Ra(p;L) ∼ Re(p;L) ∼ π(2L)− π(L)

2
(2)

as L→∞.
Here we prove, under the GRH, that for all sufficiently large P the asymptotic relations

in (2) hold for almost all primes p ∈ [P, 2P ], for a wide range of parameters L and P . Our
analysis relies on a bound of sums of Jacobi symbols involving Frobenius discriminants Dp,
due to Cojocaru and David [4].

Throughout the paper all implied constants may depend on the fixed elliptic curve E. The
letters ` and p, with and without subscripts, always denote prime numbers. Our main result
is the following.

†We note that [22, Appendix A] gives an expected time of (log p)3µ+2+o(1) for the SEA under the GRH,
where µ is the exponent in multiplication, but, as confirmed to us by the authors, this bound is incorrect. See
Remark 2 in § 5.4 for details.
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Theorem 1. Under the GRH, for ν = 1, 2 and any real L,P > 1, we have

1

π(2P )− π(P )

∑
p∈[P,2P ]

∣∣∣∣R∗(p;L)− π(2L)− π(L)

2

∣∣∣∣2ν = O

(
Lν

(logL)ν
+

L8ν(logP )2

P 1/2(logL)2ν

)
,

where R∗(p;L) is either Ra(p;L) or Re(p;L).

Corollary 2. Under the GRH, for ν = 1, 2 and any real L,P > 1, there are at most
O(PL−ν(logL)ν(logP )−1 + L6νP 1/2 logP ) primes p ∈ [P, 2P ] for which

R∗(p;L) < 1
3 (π(2L)− π(L)),

where R∗(p;L) is either Ra(p;L) or Re(p;L).

It is easy to see that Theorem 1 and Corollary 2 give nontrivial bounds when

ψ(P ) 6 L 6 P 1/12(logP )−1/3ψ(P )−1,

for any function ψ(z) → ∞ as z → ∞ and all sufficiently large P . This comfortably includes
the range of L of order logP needed to guarantee∏

`∈[L,2L]
` Elkies prime

` > 4p1/2,

which is relevant to the SEA algorithm; see [31, Theorem 13].
As we have mentioned, the SEA algorithm does not apply to supersingular primes p.

However, such primes can be identified in (log p)3+o(1) expected time [30, Proposition 4] and,
by [7], there are only O(P 3/4) supersingular primes in [P, 2P ]. Thus, this does not affect our
algorithmic applications. We now apply Corollary 2 with ν = 2 and L = 2 logP .

Corollary 3. Under the GRH, for any real P > 3, the SEA algorithm computes Np in
(log p)4+o(1) expected time for all but

O(P (logP )−2(log logP )2)

primes p ∈ [P, 2P ].

As noted above, Schoof’s algorithm computes Np in time (log p)5+o(1) for every prime p.
Thus, for any prime p ∈ [P, 2P ], if we find that the SEA algorithm appears to be taking
significantly longer than the expected (log p)4+o(1) time bound, we can revert to Schoof’s
algorithm (here we note that all our implied constants essentially come from the work
of Lagarias and Odlyzko [17] and can be made effective for the purpose of making this
determination). This can happen for only an O((log logP )2/(logP )) proportion of the primes
p ∈ [P, 2P ], which means that the average time spent per prime p ∈ [P, 2P ] is still (log p)4+o(1).
Applying this approach to each subinterval in a dyadic partitioning of [1, P ], we obtain the
following result.

Theorem 4. Let E be an elliptic curve over Q and let P > 3 be a real number. Under the
GRH there is a probabilistic algorithm to compute Np for primes p 6 P of good reduction for
E in (logP )4+o(1) average time using (logP )2+o(1) average space.
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It is natural to compare Theorem 4 to the recent remarkable result of Harvey [12] that
gives a deterministic algorithm to compute the number of points Np on the reductions Cp of
a fixed hyperelliptic curve C/Q; see [13, 15, 16] for further developments and improvements.
Applying Harvey’s result [12] in genus 1 yields a deterministic algorithm with an unconditional
time complexity that matches that of Theorem 4. However, this amortised result is weaker
than Theorem 4, since it assumes one is computing Np for all suitable primes p 6 P , whereas
Theorem 4 applies to a randomly chosen p 6 P . Additionally, the space complexity of the
algorithm of [12] is exponential in logP (even excluding the output), whereas the space
complexity given by Theorem 4 is polynomial in logP (even when computing Np for all suitable
primes p 6 P ).

2. Sums of Jacobi symbols with Frobenius discriminants

We recall the notations U � V and V � U , which are both equivalent to the statement
U = O(V ). Throughout the paper the implied constant may depend on the fixed elliptic curve
E and on the integer parameter ν > 1. As usual, we use (k/m) to denote the Jacobi symbol
of integer k modulo an odd integer m > 3.

We need the bound on sums of Jacobi symbols with Frobenius discriminants given
in [4, Theorem 3] and also some of its modifications modulo a product of four primes
`1, `2, `3, `4. For m = `1`2 (or m = `1`2`3`4 in our modified version), these statements require
the surjectivity of the mod-m Galois representation

ρE,m : Gal(Q/Q)→ Aut(E[m]) ' GL2(Z/mZ)

induced by the action of the absolute Galois group Gal(Q/Q) on the m-torsion subgroup E[m]
of E(Q).

By Serre’s open image theorem [26], when E does not have complex multiplication the image
of the adelic Galois representation

ρE : Gal(Q/Q)→ Aut(E[Ẑ]) ' GL2(Ẑ)

has finite index iE in GL2(Ẑ) (as usual, E[Ẑ] denotes lim←−E[m] and Ẑ denotes lim←−Z/mZ).

There is thus a minimal integer mE for which the index of ρ̄E,mE in GL2(Z/mEZ) is equal
to iE and, for all integers m coprime to mE (in particular, all m whose prime divisors are
sufficiently large), the representation ρ̄E,m must be surjective.

With this understanding, we now state [4, Theorem 3] in the form we need here.

Lemma 5. Under the GRH, for all sufficiently large P and all sufficiently large distinct
primes `1, `2 < P , we have

∑
p∈[P,2P ]

(
Dp

`1`2

)
= (π(2P )− π(P ))

2∏
i=1

(
−1

`i

)
1

`2i − 1
+O(`31`

3
2P

1/2 logP ).

We also need a straightforward generalization of Lemma 5 for products of four primes.

Lemma 6. Under the GRH, for all sufficiently large P and all sufficiently large distinct
primes `1, `2, `3, `4 < P , we have

∑
p∈[P,2P ]

(
Dp

`1`2`3`4

)
= (π(2P )− π(P ))

4∏
i=1

(
−1

`i

)
1

`2i − 1
+O(`31`

3
2`

3
3`

3
4P

1/2 logP ).
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Proof. The proof proceeds identically to that of [4, Theorem 3]. In particular, we define

C`(1) =
`3 − `2

2
−

{
` if ` ≡ 1 (mod 4),

0 if ` ≡ 3 (mod 4)

and

C`(−1) =
`3 − `2

2
−

{
0 if ` ≡ 1 (mod 4),

` if ` ≡ 3 (mod 4).

For ξ = ±1, let Γξ be a set of vectors (γ1, γ2, γ3, γ4) with

γ1, γ2, γ3, γ4 = ±1 and γ1γ2γ3γ4 = ξ.

We then set

Aξ(`1, `2, `3, `4) =
∑

(γ1,γ2,γ3,γ4)∈Γξ

C`1(γ1)C`2(γ2)C`3(γ3)C`4(γ4), ξ = ±1.

Arguing as in [4] (see for example [4, equation (18)] and [4, Theorem 9]), we obtain∑
p∈[P,2P ]

(
Dp

`1`2`3`4

)
= π(2P )− π(P )

A1(`1, `2, `3, `4)−A−1(`1, `2, `3, `4)

(`31 − `1)(`32 − `2)(`33 − `3)(`34 − `4)

+O(`31`
3
2`

3
3`

3
4P

1/2 logP ).

A direct calculation shows that

A1(`1, `2, `3, `4)−A−1(`1, `2, `3, `4) =

4∏
i=1

(
−1

`i

)
`i (3)

holds for all odd primes `1, `2, `3, `4.

3. Prime divisors of Frobenius discriminants

To apply Lemmas 5 and 6, we also need to estimate the average number of prime divisors
` ∈ [L, 2L] of the Frobenius discriminants Dp. Our main tool is provided by David and
Wu [5, Theorem 3.2]; see also [6, Theorem 2.3] for a similar statement concerning Np.

As usual, we use φ(r) to denote the Euler function of an integer r > 2. A combination of
some of the ideas in [5, Theorem 3.2] and [6, Lemma 2.2] yields the following estimate.

Lemma 7. Under the GRH, for an odd square-free integer r > 2 and sufficiently large P ,
we have

#{p ∈ [P, 2P ] : Dp ≡ 0 (mod r)} � P

φ(r) logP
+ r3P 1/2 logP.

Proof. The result follows from an effective version of the Chebotarev density theorem exactly
as [5, Theorem 3.2]; accordingly, we refer to some notation of [5]. To derive the desired result,
we define the set of conjugacy classes C(r) as follows:

C(r) = {g ∈ GL(2,Z/rZ) : 4 det(g) ≡ tr(g)2 (mod r)}

(in one place in [5], the corresponding congruence is det(g) + 1 ≡ tr(g) (mod r), which is
inconsequential). Finally, we also use a full analogue of [6, Lemma 2.2] to upper bound the
main term in the corresponding asymptotic formula. In fact, since r is square-free, we only need
the part of [6, Lemma 2.2] that relies on the Chinese remainder theorem, which generalizes in
a straightforward fashion to the new congruence condition.
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We note that one can probably drop the condition that r is square-free in Lemma 7; however,
this requires one to verify that the somewhat tedious lifting argument also works with the new
congruence condition.

For an integer d, we denote by ωL(d) the number of primes ` ∈ [L, 2L] for which ` | d (note
that ωL(0) = π(2L)− π(L) is well defined).

Lemma 8. Under the GRH, for any fixed integer ν = 1, 2, . . . and sufficiently large P , we
have ∑

p∈[P,2P ]

ωL(Dp)
ν � P

logL logP
+
L4νP 1/2 logP

(logL)ν
.

Proof. We write ∑
p∈[P,2P ]

ωL(Dp)
ν =

∑
`1,...,`ν∈[L,2L]
`1,...,`ν prime

∑
p∈[P,2P ]

lcm [`1,...,`ν ]|Dp

1.

Collecting for each j = 1, . . . , ν the O(Lj(logL)−j) terms with exactly j distinct primes
`1, . . . , `ν and noticing that in this case∑

p∈[P,2P ]
lcm [`1,...,`ν ]|Dp

1� P

Lj logP
+ L3jP 1/2 logP,

by Lemma 7, we obtain

∑
p∈[P,2P ]

ωL(Dp)
ν �

ν∑
j=1

Lj

(logL)j

(
P

Lj logP
+ L3jP 1/2 logP

)

and the result follows.

4. Proof of Theorem 1

Recall that Ra(p;L) and Re(p;L) denote the number of Atkin and Elkies primes, respectively,
in the dyadic interval [L, 2L], for the elliptic curve Ep (the reduction of our fixed elliptic curve
E/Q modulo p).

We clearly have

Ra(p;L)−Re(p;L) =
∑

`∈[L,2L]

(
Dp

`

)
+O(ωL(Dp)),

where, as before, ωL(d) denotes the number of primes ` ∈ [L, 2L] for which ` | d.
Therefore, by the Hölder inequality,∑

p∈[P,2P ]

|Ra(p;L)−Re(p;L)|ν � U + V + 1, (4)

where

U =
∑

p∈[P,2P ]

∣∣∣∣ ∑
`∈[L,2L]

(
Dp

`

)∣∣∣∣2ν and V =
∑

p∈[P,2P ]

ωL(Dp)
2ν .
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We now consider the case of ν = 2. In this case, changing the order of summation, we obtain

U 6
∑

`1,`2,`3,`4∈[L,2L]

∑
p∈[P,2P ]

(
Dp

`1`2`3`4

)
.

Without loss of generality, we can assume 2L < P ; otherwise the bound is trivial.
We estimate the sum over p differently depending on the number of repeated values among

`1, `2, `3, `4.
• For O(L2/(logL)2) choices of (`1, `2, `3, `4) for which the product `1`2`3`4 is a perfect

square, we estimate the inner sum trivially as O(P/logP ).
• For O(L3/(logL)3) choices of (`1, `2, `3, `4) for which `1`2`3`4 is not a perfect square but

is divisible by a nontrivial square, we use Lemma 5.
• For the remaining choices of (`1, `2, `3, `4), we use Lemma 6.

Therefore, we find that

U � L2

(logL)2
· P

logP
+

L3

(logL)3

(
P

L4 logP
+ L6P 1/2 logP

)
+

L4

(logL)4

(
P

L8 logP
+ L12P 1/2 logP

)
,

which, after removing the terms that never dominate, yields the bound

U � L2P

(logL)2P
+
L16P 1/2 logP

(logL)4
. (5)

Furthermore, by Lemma 8, we have

V � P

logL logP
+
L16P 1/2 logP

(logL)4
. (6)

Substituting (5) and (6) in (4) and noticing that the estimate on U always dominates that on V ,
we obtain ∑

p∈[P,2P ]

|Ra(p;L)−Re(p;L)|4 � L2P

(logL)2P
+
L16P 1/2 logP

(logL)4 .

Combining this with (1), we conclude the proof for ν = 2.
The case ν = 1 is completely analogous albeit technically easier, since we only have to use

Lemma 5.

5. Some auxiliary estimates

Here we take the opportunity to clarify and record stronger versions of several relevant
complexity bounds that have previously appeared in the literature in less precise forms (and, in
some cases, with errors). In this section, E denotes an elliptic curve over a finite field Fp, where
p > 3 is prime and E is defined by an equation of the form Y 2 = fE(X), where fE ∈ Fp[X] is
a monic square-free cubic.

We assume throughout that algorithms based on the fast Fourier transform (FFT) are used
for multiplication. This allows us to bound the time to multiply two n-bit integers by

M(n) = O(n log n log log n), (7)
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via the result of Schönhage and Strassen [23]. We note that this bound can be improved
slightly [9, 14], but we do not use this improvement.

The bound in (7) is not only asymptotically valid, it is practically relevant. Using Kronecker
substitution [11, § 8.4], one can reduce the problem of multiplying two polynomials in Fp[X] of
degree at most d to the multiplication of two integers with approximately 2d log2(dp) bits. Even
when log2 p is not particularly large, 2d log2(dp) may easily be large enough to justify the use of
the FFT; this applies, in particular, to algorithms for computing #E(Fp) over cryptographic-
size fields, where 2d log2(dp) may easily exceed 105 or 106, even though log2 p < 103.

We also note the following complexity bounds for arithmetic in Fp and Fp[X], which follow
from standard fast algorithms for division with remainder (see [11, Chapter 9]) and the
extended Euclidean algorithm (see [11, Chapter 11]), combined with Kronecker substitution.

Lemma 9. Let n = dlog2 pe, let a, b ∈ F×p , let f, g ∈ Fp[X] be nonzero polynomials of degree
at most d and assume log d = O(n). The following bounds hold:

Operation Complexity

ab O(M(n))
a−1 O(M(n) logn)
fg O(M(dn))
f mod g O(M(dn))
gcd(f, g) O(M(dn) log d)

When gcd(f, g) = 1, the multiplicative inverse of the reduction of f in the ring Fp[X]/(g) can
be computed in time O(M(dn) log d).

5.1. Schoof’s algorithm

Let π denote the Frobenius endomorphism of E/Fp. Schoof’s algorithm computes #E(Fp) by
computing t = tr π modulo a set of primes ` whose product exceeds 4

√
p and then uses the

Chinese remainder theorem to determine t. By the prime number theorem (PNT), O(log p)
primes suffice. To simplify matters, we restrict our attention to odd primes ` 6= p.

The Frobenius endomorphism π induces an endomorphism π` of E[`] that satisfies the
characteristic equation

π2
` − t`π` + p` = 0

in the ring End(E[`]) := End(E)/(`). Here t` and p` denote the elements of End([`]) induced by
scalar multiplication by t and p, respectively. Schoof’s algorithm works by explicitly computing
π2
` + p` and π`, 2π`, 3π`, . . . , using addition in End(E[`]), until it finds a multiple of π` that is

equal to π2
` + p`; this multiple determines t mod `. In order to give precise complexity bounds,

we now sketch an explicit implementation of the algorithm; the presentation here differs slightly
from that given by Schoof in [24, 25], but it yields sharper results.

Let ψ`(X) denote the `th division polynomial of E; it is a polynomial of degree (`2 − 1)/2
whose roots are the x-coordinates of the nonzero points in the `-torsion subgroup E[`]. One
can recursively define polynomials f0, f1, . . . , fk ∈ Fp[X], depending on the coefficients of E,
such that for odd integers k the polynomial fk is precisely the kth division polynomial ψk;
see [1, § 4.4.5a] for example. The polynomials fk satisfy recursion relations that allow one
to compute any particular fk using a double-and-add approach. Each step involves O(1)
multiplications of polynomials of degree O(k2) and, since k is roughly doubling with each step,
the total cost is dominated by the last step. This allows one to compute ψ`(X) in O(M(`2n))
time using O(`2n) space.

Nonzero elements of End(E[`]) can be uniquely represented as ordered pairs of elements of the
ring R = Fp[X,Y ]/(ψ`(X), Y 2− fE(X)), of the form ϕ = (α(X), β(X)Y ). The endomorphism
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ϕ sends a nonzero point (x0, y0) ∈ E[`] to the point (α(x0), β(x0)y0) ∈ E[`]. Addition in the
ring End(E[`]) uses the algebraic formulas for the elliptic curve group law applied to ‘points’
of the form (α(X), β(X)Y ). The cost of addition is dominated by the cost of an inversion in
Fp[X]/(ψ`(X)), which is O(M(`2n) log `). By switching to projective coordinates, we can avoid
inversions and reduce the complexity to O(M(`2n)); testing the equality of two projectively
represented elements of End(E[`]) involves O(1) multiplications in Fp[X]/(ψ`(X)) and has the
same complexity.

The Frobenius endomorphism is represented by the ordered pair

(Xp, Y p) = (Xp, fE(X)(p−1)/2Y ),

which is computed by exponentiating the polynomials X and f(X) in the ring Fp[X]/(ψ`(X)).
Using the standard square-and-multiply algorithm for fast exponentiation, this takes
O(M(`2n)n) time, and the same applies to computing π2

` . The endomorphism p` is computed
as a scalar multiple of the identity endomorphism (x, y); using a double-and-add approach in
projective coordinates, it takes O(M(`2n) log `) time to compute p`.

Theorem 10. Let ` 6= p be an odd prime and assume log ` = O(n), where n = dlog2 pe.
With the implementation described above, given an elliptic curve E/Fp, Schoof’s algorithm
computes the trace of Frobenius modulo ` in

O(M(`2n)(`+ n))

time, using O(`2n) space.

Proof. The time to compute ψ`(X) is O(M(`2n)). The time to compute π` and π2
` is

O(M(`2n)n). The time to compute p` is O(M(`2n) log `), and this dominates the time to add
π2
` and p`. Computing each multiple mπ` by adding π` to (m− 1)π` takes time O(M(`2n), as

does comparing mπ` and π2
` +p`. We compute at most ` multiples of π` before finding a match,

giving a total cost of O(M(`2n)`) for the linear search. Summing the bounds above yields a
total time of O(M(`2n)(`+n)). We store just O(1) elements of the ring Fp[X]/(ψ`(X)) at any
one time, so the space complexity is O(`2n), including space for ψ`(X).

Corollary 11. With the implementation described above, Schoof’s algorithm computes
the Frobenius trace of an elliptic curve E/Fp in

O(n5 log logn)

time, using O(n3) space, where n = dlog2 pe.

Proof. By the PNT, the primes ` used in Schoof’s algorithm satisfy ` = O(n), and there are
O(n/log n) of them. The time for each ` is bounded by O(M(n3)n) = O(n4 log n log log n).
Multiplying this by O(n/log n) gives the desired time bound, which dominates the time
required to recover t using the Chinese remainder theorem. The space bound follows from
the O(`2n) = O(n3) space used per prime ` and the O(n) spaced needed to store the value
t mod ` for each `.

5.2. Identifying Elkies primes

As above, let ` 6= p denote an odd prime. We recall that

E[`] ' Z/`Z× Z/`Z,
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which we may regard as an F`-vector space. After fixing a basis for E[`], each nonzero
endomorphism of E determines a matrix in GL(2,F`) given by its action on the basis.
The characteristic polynomial of the matrix of the Frobenius endomorphism is precisely the
characteristic polynomial of π`, which does not depend on the choice of basis.

As observed by Elkies [8], if t2 − 4p is a quadratic residue modulo ` (meaning that ` is an
Elkies prime), then the characteristic polynomial of π` splits into linear factors:

X2 − t`X + p` = (X − λ1)(X − λ2) = 0.

Here λ1, λ2 ∈ F∗` are eigenvalues of the matrix of Frobenius in GL(2,F`), and it follows that
the Frobenius endomorphism fixes at least one linear subspace of E[`] (it may fix one, two or
`+ 1 distinct linear subspaces). This subspace is an order-` subgroup of E[`] that is the kernel

of a separable isogeny ϕ : E → Ẽ of degree ` (an `-isogeny) that is defined over Fp.
Conversely, if E admits an Fp-rational `-isogeny, then this isogeny is separable, since ` 6= p,

and its kernel is an order-` subgroup of E[`] that is fixed by Frobenius; this implies that the
characteristic polynomial of π` splits and that ` is an Elkies prime. Thus, an odd prime ` 6= p
is an Elkies prime if and only if E admits an Fp-rational `-isogeny.

We now recall the classical modular polynomial Φ` ∈ Z[X,Y ] that parametrizes pairs of
`-isogenous elliptic curves in terms of their j-invariants. Note that, in general, ΦN parametrizes
N -isogenies with a cyclic kernel, but when N = ` is prime the kernel is necessarily cyclic. The
modular polynomial Φ` has the defining property that over any field F of characteristic different
from `, the modular equation

Φ`(j1, j2) = 0

holds if and only if j1 and j2 are the j-invariants of elliptic curves E1/F and E2/F that are
related by an F-rational `-isogeny ϕ : E1 → E2.

Given an elliptic curve E/Fp, to determine if ` is an Elkies prime for E, it suffices to check
whether the instantiated polynomial

ϕ`(X) = Φ`(j(E), X) ∈ Fp[X]

has a root in Fp; any such root is necessarily the j-invariant of an `-isogenous elliptic curve
defined over Fp.

The polynomial Φ`(X,Y ) has degree ` + 1 in both X and Y , and the size of its largest
coefficient is O(` log `) bits (see [3] for an explicit bound). It can be computed using a
probabilistic algorithm that, under the GRH, runs in O(`3(log `)3 log log `) expected time,
using O(`3 log `) space [2]. Given Φ`, the time to compute ϕ` is O(`2M(` log ` + n)), where
n = dlog2 pe. Alternatively, there is a probabilistic algorithm to directly compute ϕ` that,
under the GRH, runs in

O(`3(log `)3 log log `+ `2n(log n)2 log log n)

expected time, using just O(`n+`2 log(`n)) space [31]. Having computed ϕ`, we can determine
whether it has any roots in Fp by computing gcd(Xp −X,ϕ`(X)).

We note that the probabilistic algorithms we consider here are all of Las Vegas type, meaning
that their output is always correct; it is only their running times that may depend on random
choices.

Theorem 12. Assume the GRH and let ` 6= p be an odd prime with log ` = O(n), where
n = dlog2 pe. The following hold.

(a) There is a Las Vegas algorithm that decides whether ` is an Elkies prime in
O(`3(log `)3 log log `+ `n2 log n log log n) expected time, using O(`n+ `2 log(`n)) space.
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(b) There is a deterministic algorithm that decides whether ` is an Elkies prime in
O(`3(log `)2 log log `+`n2 log n log log n) expected time, using O(`3 log `+`2n) space, assuming
that Φ` is given.

Proof. With fast exponentiation it takes O(M(`n)n) time to compute Xp mod ϕ`(X),
dominating the time to compute gcd(Xp−X,ϕ`,E(X)), by Lemma 9. If n 6 `, this is bounded
by O(`3 log ` log log `), which is dominated by the first term in both time bounds. If n > `,
this is bounded by O(`n2 log n log log n), which is included in both time bounds. The first time
bound dominates the time to compute ϕ`, and the second time bound dominates the time to
compute ϕ` given Φ` (consider the cases n 6 ` log ` and n > ` log `)). The space bounds
follow immediately from the discussion above. Finally, note that if Φ` is given, computing
ϕ`(X) = Φ`(j(E), X) and gcd(Xp − X,ϕ`(X)) does not involve the use of any probabilistic
algorithms.

5.3. Elkies’ algorithm

We now consider the complexity of computing the Frobenius trace t of E/Fp modulo an Elkies
prime `. Elkies’ algorithm is similar to Schoof’s algorithm, except that rather than working
modulo the `th division polynomial ψ`(X), it works modulo a kernel polynomial h`(X) whose
roots are the x-coordinates of the nonzero points in the kernel of an Fp-rational `-isogeny

ϕ : E → Ẽ. The kernel polynomial h` necessarily divides the division polynomial ψ`, since
kerϕ is a subgroup of E[`], and it has degree (`− 1)/2, rather than (`2 − 1)/2, which speeds
up the algorithm by a factor of at least `.

Elkies assumed in [8] that E is not supersingular, and that j(E) is not 0 or 1728; these
restrictions are not a problem, since in any of these special cases there are alternative methods
to compute t that are faster than Elkies’ algorithm.

Elkies [8] gave an algorithm to compute the kernel polynomial h`(X) using the instantiated
modular polynomial ϕ`(X) = Φ`(j(E), X), along with various instantiated partial derivatives
of Φ`(X,Y ) that can either be computed directly using the algorithm in [31] or derived from
Φ` and instantiated. The first step is to find a root of ϕ` in Fp, which is necessarily the

j-invariant of an elliptic curve Ẽ that is the image of an `-isogeny ϕ : E → Ẽ. Using Rabin’s
probabilistic algorithm [20], this can be accomplished in O(M(`n)n) expected time, assuming
log ` = O(n). Once this has been done, one computes h` using [10, Algorithm 27], which takes
O(`2M(n) + `M(n) log n) time.

Theorem 13. Assume the GRH and let ` 6= p be an odd prime with log ` = O(log p). Let
E/Fp be an ordinary elliptic curve with j(E) 6∈ {0, 1728}. If ` is an Elkies prime for E, then
one can compute the Frobenius trace t modulo ` in:

(a) O(`3(log `)3 log log `+ `n2 log n log log n) expected time, using O(`n+ `2 log(`n)) space;
(b) O(`3(log `)2 log log `+ `n2 log n log log n) expected time, using O(`3 log `+ `2n) space, if

Φ` is given.

Proof. Theorem 12 bounds the complexity of computing ϕ` and determining whether it has
a root in Fp, both when Φ` is given and when it is not. In both cases, these bounds dominate
the complexity of finding a root of ϕ` by computing the kernel polynomial h`. Once h` has been
computed, t mod ` can be computed in O(M(`n)(`+n)) time using O(`n) space; the argument
is the same as in Theorem 10, except that the degree of h` is O(`) rather than O(`2). These
bounds are dominated by both sets of bounds above.

The bounds in Theorem 13 are the same as the corresponding bounds in Theorem 12; the
complexity of determining if ` is an Elkies prime dominates the complexity of computing t
modulo an Elkies prime.
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Corollary 14. Let E/Fp be an elliptic curve and suppose that the least integer L for
which the product of the Elkies primes ` 6 L exceeds 4

√
p is O(log p). Let n = dlog2 pe. There

is a Las Vegas algorithm to compute the Frobenius trace t of E in:
(a) O(n4(log n)2 log log n) expected time, using O(n2 log n) space;
(b) O(n4 log n log log n) expected time, using O(n4) space, if the modular polynomials Φ` for

all primes ` 6 L are precomputed.

Proof. We first determine whether E is supersingular or not; using the algorithm in [30],
this can be done in O(n3 log n log log n) expected time using O(n) space. If E is supersingular,
then t ≡ 0 mod p and, for p > 5, the Hasse bound |t| 6 2

√
p implies t = 0 (for p 6 3, we can

count points näıvely and output p+ 1−#E(Fp)).
If j(E) = 0, then E has CM by Q(

√
−3), and the norm equation 4p = t2 +3v2 can be solved

using Cornacchia’s algorithm in O(n2) time. This determines at most six possibilities for t;
the correct one can be distinguished using [21, Algorithm 3.5]. Similarly, if j(E) = 1728, then
E has CM by Q(i), so we solve 4p = t2 + v2 and apply [21, Algorithm 3.4].

Otherwise, we apply Theorem 13 to each Elkies prime ` 6 L. There are O(n/ log n) such
primes, each bounded by O(n). This yields the desired complexity bounds, which dominate
the complexity of recovering t using the Chinese remainder theorem.

Remark 1. The O((log p)2) space complexity bound for the SEA listed in [1, p. 421] is
incorrect; the space complexity of the algorithm given there is Ω((log p)3) (consider line 3 of
[1, Algorithm 17.25] for example).

5.4. Bounding Elkies primes

We now sharpen the bound of Galbraith and Satoh [22, Theorem 5] on the size of an interval in
which one can guarantee the existence of sufficiently many Elkies primes, assuming the GRH.

We recall the classical bound, see [19, Chapter 13], that asserts that under the GRH, for
any integer D > 2, ∑

n6L

(
1− n

L

)(
D

n

)
Λ(n) = O(L1/2 logD), (8)

where Λ(n) denotes the von Mangoldt function given by

Λ(n) =

{
log ` if n is a power of the prime `,

0 if n is not a prime power.

After discarding the contribution O(L1/2) from O(L1/2/ logL) prime powers up to L, we see
that (8) is equivalent to ∑

`6L

(
1− `

L

)(
D

`

)
log ` = O(L1/2 logD). (9)

Let R and R0 be the numbers of primes ` 6 L such that D is a quadratic residue modulo `
and such that ` | D, respectively. Let M is the smallest integer with π(M) = π(L)−R −R0.
Therefore, by the PNT and partial summation,∑

`6L

(
1− `

L

)(
D

`

)
log ` 6 −

∑
`6M

(
1− `

L

)
log `+R logL

= −
(

1− M

2L
+ o(1)

)
M +R logL

6 −
(

1

2
+ o(1)

)
M +R logL. (10)
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Since R0 = O(logD), we see that if L � (logD)2, then R0 = o(L). If R > L/(5 logL), there
is nothing to prove. Otherwise, applying the PNT again, we obtain

M >
(

4
5 + o(1)

)
L and R logL 6

(
1
5 + o(1)

)
L.

Substituting these bounds in (10), we derive∑
`6L

(
1− `

L

)(
D

`

)
log ` 6 −

(
1

5
+ o(1)

)
L. (11)

Now, recalling (9) and taking L > C(logD)2, we see that (11) is impossible and thus in this
case R > L/(5 logL). Note that using the estimates of [18] one can get a completely explicit
version of this estimate, with explicit constants. In particular, this means that one can simply
take C(log p)2 in [22, Theorem 5]. Thus, for an appropriate absolute constant C > 0, for any
L > C(logD)2 there are at least L/(5 logL) Elkies primes up to L. In the SEA algorithm we
can simply take L = C(logD)2.

Corollary 15. Under the GRH, the expected running time of the SEA algorithm is
O(n8(log n)2 log log n).

Remark 2. If one assumes that the reduced polynomials Φ` mod p have been precomputed
for all ` 6 L, the bound in Corollary 15 can be improved to O(n7 log log n); this assumption
does not make sense in our setting, where p is varying, but it might be appropriate if many
computations use the same prime p, as in [22]. As noted in the introduction, the bound
(log p)3µ+2+o(1) given in [22, Appendix A] is incorrect; under the assumption that all Φ` mod p
are precomputed (as assumed there), the bound should be (log p)max(µ+6,3µ+3)+o(1), where
µ ∈ [1, 2] has the property that two n-bit integers can be multiplied in time nµ+o(1) (so in fact
one can take µ = 1).

We should note that the bound in Corollary 15 is of purely philosophical interest. As a
practical matter, there is no reason to ever apply Elkies’ algorithm to primes `� n4/3, since
for such ` one can use Schoof’s algorithm to compute the Frobenius trace t ∈ Z more quickly
than one can compute t mod ` using Elkies’ algorithm. More generally, one may adopt a hybrid
approach as follows. Enumerate odd primes ` 6= p in increasing order. If ` is an Elkies prime, use
Elkies’ algorithm to compute t mod `; otherwise, add ` to a list S that contains all previously
considered primes ` for which t mod ` is not yet known. Before determining whether the next
prime ` is an Elkies prime, first check whether `3/4 > c`0, where `0 = min(S) and c is a
suitably chosen constant. If this condition holds, then compute t mod `0 using the method of
Schoof, remove `0 from S and repeat. Terminate as soon as the value of t is known modulo
a set of primes whose product exceeds 4

√
p. This approach guarantees an expected running

time of n5+o(1) and heuristically achieves an expected running time of n4+o(1).

6. Comments

In principle, one can extend Lemmas 5 and 6 to any number of primes `1, . . . , `2ν . However,
one needs a general argument for computing A1(`1, . . . , `2ν) − A−1(`1, . . . , `2ν), analogous to
that given in (3). Using such an extension, one can consider larger values of ν in Theorem 1
and Corollary 2.

It is shown in [27] that the bound of [28], which applies to almost all curves, cannot be
extended to all curves modulo all primes. It would be interesting to try to derive a ‘horizontal’
analogue of this lower bound.
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We note that one can obtain an unconditional analogue of Theorem 1 as all the necessary
tools (Lemmas 5–7) admit unconditional analogues; see [4–6]. However, such a result requires
L to be smaller than logP , which is not suitable for applications to the SEA algorithm.
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