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AN ELEMENTARY RESULT ON EXPONENTIAL
MEASURE SPACES

BY
C. Y. SHEN

A simple but useful result in the measure theory for product spaces can be
stated as follows:

THEOREM A. A necessary and sufficient condition that a measurable subset E of
X x Y has measure zero is that almost every X-section (or almost every Y-section)
has measure zero (see [1, §36)).

We will show, in this short note, that a similar result also holds for the exponen-
tial of measure spaces. Before proceeding any further, we describe briefly here the
exponential construction of a measure space.

Let (X, x, é) be a o-finite measure space. For each nonnegative integer n,
(X, x'", é€'™ denotes the nth product space. When n=0, X**={0} and £'°({0})=1.
Let X; =0 X" Then

xe = {Un=0 4n: 4, € x'" for each n}

is a o-algebra of subsets of X, and the set function ¢; defined on x; by
&1
) = 3 EMEN X

n
is a o-finite measure. Two sequences x, y € X '™ are equivalent if one is a rearrange-
ment of the other. The set of equivalence classes of X" is denoted by X™ and the
set X,=\Jo X" is called the exponential of the set X. The quotient space of
(X¢, xe, €;) under the natural projection p: X; — X, is called the exponential
space of (X, x, ¢£) and is denoted by (X, x., £&). Exponential spaces arise naturally
as the underlying sample spaces in the general theory of counting processes. For
more detailed discussion, we refer readers to [2], [3].

Each unordered sequence x € X, x#0, can be regarded as a formal product
t,...t, of elements in X where the order of the factors is irrelevant. On X,, one can
introduce a binary operation as follows: If x=+¢,...¢,, y=t{...t,, then

Xy =ty...tyty.. .1,

with O as the identity element. For each E< X, and each x € X,, we define the *“x-
section” of E as
E,={y:xyekE}.
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THEOREM B. Let E € y,. Then for all x € X,, E, is measurable. If ¢,(E) =0, then
for almost all x € X,, £€.(E,)=0.

Proof. For each integer n>0, let E"=E N X™. It is easy to show that
E, = U (En)x-
n=0

By taking each E™ separately, we see that the theorem reduces to the following:
Let n, k be nonnegative integers, and suppose that E € x, and E< X™. Then for all
x e X*, E, is measurable. Moreover, if £,(E)=0 then &(E,)=0 for almost all
xin X%,

Case 1. k>n. Here E,= @ and the result follows trivially.

Case 2. k=0. Here E,=E and the result is again trivial.

X0 ifxekE

Case 3. k=n. Here E,¢={g if x ¢ E,

If £,(E)=0 then ¢.(E,)=0 for almost all x e X™.

Case 4. 1 <k<n—1. Consider the set F=p~(E). Let x=p(u), and F, denote the
section {v: (u, v) € F}. It is easily shown that F,=p~*(E,). By [1, §34, Theorem A],
F, is measurable; hence E, is measurable. If £ has measure zero, then &;(F)
=¢,(E)=0 and by [1, §36, Theorem A] there is a null set F'< X"* such that if
ue X*~F' then ¢ ¥(F,)=0. Take E'=p(F'). It follows that

§(E") = £p~ N (p(F)) = 0.

If x¢ E' thenu ¢ F', and &,(E,)=§""*F,)=0.
A typical application of Theorem B can be given as follows: For each real-valued
function ¢ on X, and for each x € X,, we define ¢, on X, by the formula

P:(y) = p(xy).
CoRrOLLARY C. If p=1 a.e., then for almost all x € X,, .=, a.e.
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