
SOME REMARKS CONCERNING (/, dn) AND [F, dn] 
SUMMABILITY METHODS 

C. F. KOCH 

1. Introduction. In this paper we note a simple connection between the 
(/, dn) method of summability (defined by Smith (8)) and a composition of 
[F, dn] (defined by Jakimovski (4)) and Sonnenschein methods (9; 10). This 
connection is then used to supply some sufficient conditions for the regularity 
of (/, dn) methods by using known regularity conditions for various [F, dn] 
and Sonnenschein methods. Finally, the connection is further exploited to 
obtain information about the Lebesgue constants for a certain class of [F, dn] 
methods by investigating related (/, dn) methods. 

2. Definitions and the regularity theorem. The (/, dn) method of 
summability is defined by Smith (8) essentially as follows. Let/(s;) be a non-
constant entire function satisfying / ( l ) = 1 and let {dn} be a sequence of 
complex numbers satisfying dt ^ — 1, dt ^ — /(0) (i ^ 1). Then the equations 

aoo = 1, aok = 0 (k 9e 0), 

(2.D n M ± i . i ^ «.ED 
i=\ i i - t i t k=o 

define the elements of the sequence to sequence matrix (ank). Note that a 
slight notational change has been made in Smith's definition by requiring 
t h a t / ( l ) = 1. 

The [F, dn] method of summability is defined by Jakimovski (4) as the 
special case of the (/, dn) method in which f(z) = z. Thus the [F, dn] sum­
mability matrix (Pnj) is defined by 

Poo = 1, Pok = 0 (k* 0), 

n f if = £ PnA 
Since f(z) is entire, so is (f(z))j, and as such has an absolutely convergent 

power series expansion (f(z))j = J2k = ofjkZk valid for all complex z. We 
formally replace zj in the Jakimovski definition by the power series expansion 
of (f(z))j to obtain Y/j=oPnj Hk = ofjk^k as a double series representation of 
the left side of (2.1). This double series converges absolutely since Y,k = ofjkZk 
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is absolutely convergent for all j and the summat ion on j is finite. T h u s i t 
may be rearranged to form the power series 

(2.2) Êîa.^nf^. 
Then , comparing (2.1) and (2.2), the uniqueness of power series representa t ions 

guarantees t h a t ank = 2^=o Pnjfjk for all n and k. 
T h e Sonnenschein method of summabi l i ty was defined by Sonnenschein 

(9; 10) as follows. L e t / ( s ) be analyt ic for \z\ < R, where R > 1 and such t h a t 
/ ( l ) = 1. T h e n the element f jk in the Sonnenschein summabi l i ty matr ix is 
defined to be the coefficient of zk in the power series expansion of (f(z))j, for 
j ^ 0, k ^ 0. 

W e thus note t h a t the element ank in an (/, dn) matr ix can be obtained by 
formal matr ix mult iplication of the appropr ia te [F, dn] and Sonnenschein 
matr ices. 

In general, if A and B are regular summabi l i ty matrices, then the A t rans­
form of the B t ransform of a sequence (herein denoted by the AB me thod) 
need no t be the same as the method obtained by mult iplying the A and B 
matrices together and then applying the resulting matr ix to the given sequence 
(denoted by the A • B me thod) . Indeed, for a given sequence and given A 
and B either one could exist or fail to exist; see (1). However, if A is, in 
addit ion, row-finite, we have the following theorem of Agnew (1 , Theorem 10.2). 

T H E O R E M 1 (Agnew). If A and B are regular with A row-finite, then the 
convergence field of A • B includes the convergence field of AB. 

W e may now s ta te the following theorem concerning regulari ty of (/, dn) 
methods. 

T H E O R E M 2. If (Pnf) is a regular [F, dn] matrix and (fjk) is a regular Sonnen­
schein matrix, then the (f,dn) method (ank), defined by ank = 2^=o Pnjfjk, is 
regular. 

Proof. If the sequence {sk} converges to s} regulari ty of (Jjk) and (Pnj) 
guarantees convergence of the [F, dn] t ransform of the Sonnenschein transform 
to 5. T h e n Agnew's theorem supplies convergence of the [F, dn] t ransform to s. 

W e note t h a t if f(z) is an ent ire function and the (/, dn) method is applied 
to the geometric series, we have the following special result. 

T H E O R E M 3. If f{z) is an entire function, then those values of z for which the 
(/, dn) transform of the partial sums of the geometric series converge to 1/(1 — z) 
are precisely those values for which the related [F, dn] transform of the related 
Sonnenschein transform converges to 1/(1 — z). 

Proof. Since the part ial sums of the geometric series can be wri t ten in the 
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form 1/(1 — z) — sw+1/(l — z), it is sufficient to consider the various sum-
mability transforms of the sequence {zn}. From the fact tha t / ( s ) is entire, 

converges absolutely for all z. Thus we can interchange the order of summation 
and those values of z for which limn An(z) = 0 are the same as those values 
of z for which limw Bn(z) = 0, where 

co n 

Bn{z) = I E Pnéd-

For the convenience of the reader we now list various well-known sufficient 
conditions for regularity of [F, dn] and Sonnenschein methods. Choosing an 
[Fy dn] method satisfying (i), (ii), or (iii) below and a Sonnenschein method 
satisfying (iv), (v), or (vi), the associated (f,dn) method will be regular. 

The [F, dn] method is regular if: 
(i) dn ^ 0 for all n and Zn = i 1/4 = +<*> (4), or 

(ii) dn = Pne
i6« and E : = i 1/P» = + ^ and E^=i 6J/Pn < + oo (3), or 

(iii) {\m} satisfies \m ^ 0 for all m and Ew=i 1/̂ m = + 0 0 , k ^ 2, is a 
fixed positive integer, and dn = pne

idn, where pk(m-v)+} = Xw.1/A; for 
j = 1, 2, . . . , k and 6k(m-i)+j = exp{j(k — l)iri/k] for 7 = 1, 2, . . . , k 
(6). 

The Sonnenschein method is regular provided: 
(iv) (a) f(z) is analytic in \z\ < R, R > 1, 

(b) |/(2)| < 1 for |s| < 1 except at a finite number of points £, 
(c) the real part of A$ 9^ 0, where A$ is defined by 

A{(z) - S^ ' ( 1 ) = i4{ip(2 - l ) p + 0(Z - 1)* ZSZ-+1 

with ht(z) = /(£*)//(£), and 
(d) / ( l ) = 1 (2). 

In the case of Karamata matrices which are those Sonnenschein matrices 
where f(z) = [a + (1 — a — &)z]/(l — /5s), we have regularity provided: 

(v) a = 13 = 0, or 
(vi) 1 - H 2 > (1 - a ) ( l - 0) > 0 (7). 

3. An application. The Lebesgue constants for the [F, dn] method with 
dn > 0 have been shown to be unbounded by Lorch and Newman (5). How­
ever, their method will not apply directly to the [F, dn] methods with dn 

complex. For those complex methods defined by Miracle (6) we have the 
following result. 

THEOREM 4. The Lebesgue constants for the [F, dn] methods defined by Miracle 
(6) are unbounded. 
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Proof. Le t Pn]c denote the coefficients in the [F, dn] mat r ix as defined by 
Miracle. W e note t h a t for n = mp we have 

U 1 + dh 
_ f\ ̂  + ̂  

*=1 1 + ^k 
T h u s the elements with row subscript mp in the [F, dn] matr ix are identical 
to the elements with row subscript m in the (zp, \m) matr ix defined by-
Smith (8). Hence, the Lebesgue cons tants for the (zp, \n) method coincide 
with a subsequence of the Lebesgue cons tants for the [F, dn] method. T h e n 
the unboundedness of the subsequence will imply the unboundedness of the 
Lebesgue cons tants for the [F, dn] method. These cons tan ts are given by 

(3.1) L(f,K) _ 1 f/2 

7T Jo 

1 
sin t 

{ m Jpit J_ \ 
T / itT~T e T"̂  A J 

Im^ H — 
lY dt. 

Since \m > 0 we can apply the method of Lorch, and with only slight modifica­
tions. Analogous to their derivation, we make the following definitions. 

m N m -I 

sm = 2£2Z 2\ \* and um = i + 2pYlJ—-fci (i + xt)
2 

W e then obtain the following es t imates : 

(3.2) 

(3.3) 

and 

(3.4) 

n-—— = exp{ (Um — l)it 

e'pit + X* 
1 + X* 

Ss exp'j 2(1 + \ky 

SJ2} + 0(Smtz), 

for 0 ^ t ^ Tr/2p, 

m 2pit _|_ -, 

I I , , \ = 0(exp{ - IS J] ) for 0 g tg */2p. 
*=1 -1- T" A^ 

I t should be noted t h a t es t imates (3.3) and (3.4) are no t valid for 0 ^ t S TT/2 
since p è 2. However, the following addit ional es t imate , though much cruder, 
will fill the gap : 

(3.5) n = 0(1). 

W e note t h a t if p = 1, these es t imates coincide with those of Lorch and 
Newman. Since they are obtained in an analogous manner , their derivat ion 
will no t be supplied here. 

Nex t we introduce the q u a n t i t y £, 0 < £ < ir/2p, to be fixed later. W e 
use formula (3.2) to es t imate the port ion of the integral (3.1) from 0 to £, 
then formula (3.4) for the port ion from £ to ir/2p, and formula (3.5) for the 
port ion from ir/2p to T/2. W e extend the interval of integrat ion in the approxi­
mat ing exponential of formula (3.2), thereby introducing an addit ional error 
which can, however, be absorbed in the error arising from formula (3.4). 
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Thus we obtain 

(3.6) L(z*,\m)=- C^M-SA^f&dt + OiSj) 
ir J o sin t 

+ 0(r2exp(-i5^2})+0(l). 
Now if Sm is bounded, we choose £ to be fixed; if Sm is unbounded, we choose 
£ = Sm~*/8, reducing the error terms to 0(1) in either case. Formula (3.6) 
differs from that of Lorch and Newman (5, formula (3.6)) only by 0(1) , 
hence from this point on their method can be followed exactly to show that 
the Lebesgue constants for the (zp, \m) method, and hence also for the [F, dn] 
method, are unbounded. 
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