SOME REMARKS CONCERNING (f, d,) AND |[F, d,]
SUMMABILITY METHODS

C. F. KOCH

1. Introduction. In this paper we note a simple connection between the
(f, d,) method of summability (defined by Smith (8)) and a composition of
[F, d,] (defined by Jakimovski (4)) and Sonnenschein methods (9; 10). This
connection is then used to supply some sufficient conditions for the regularity
of (f,d,) methods by using known regularity conditions for various [F, d,]
and Sonnenschein methods. Finally, the connection is further exploited to
obtain information about the Lebesgue constants for a certain class of [F, d,]
methods by investigating related (f, d,) methods.

2. Definitions and the regularity theorem. The (f, d,) method of
summability is defined by Smith (8) essentially as follows. Let f(z) be a non-
constant entire function satisfying f(1) = 1 and let {d,}] be a sequence of
complex numberssatisfyingd; # —1, d; # —f(0) (¢ = 1). Then the equations

@ = 1, ag =0 (k = 0),

- L _S0s Gz
define the elements of the sequence to sequence matrix (a,;). Note that a
slight notational change has been made in Smith’s definition by requiring
that f(1) = 1.

The [F, d,] method of summability is defined by Jakimovski (4) as the
special case of the (f, d,) method in which f(2) = 2. Thus the [F, d,] sum-
mability matrix (P,;) is defined by

Since f(z) is entire, so is (f(2))?, and as such has an absolutely convergent
power series expansion (f(2))? = X r=ofsg® valid for all complex z. We
formally replace 27 in the Jakimovski definition by the power series expansion
of (f(z))? to obtain 2 j_o Pu; 2 r=0fn2" as a double series representation of
the left side of (2.1). This double series converges absolutely since > ¢ —o fx2*

Received June 27, 1968.
1361

https://doi.org/10.4153/CJM-1969-150-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-150-7

1362 C. F. KOCH

is absolutely convergent for all j and the summation on j is finite. Thus it
may be rearranged to form the power series

“ &)+,

;_O;)Pnjfjkz —LII 1+d,

Then, comparing (2.1) and (2.2), the uniqueness of power series representations
guarantees that a,;, = D j=o Py f; for all » and k.

The Sonnenschein method of summability was defined by Sonnenschein
(9; 10) as follows. Let f(z) be analytic for |z < R, where R > 1 and such that
f() = 1. Then the element f,; in the Sonnenschein summability matrix is
defined to be the coefficient of z* in the power series expansion of (f(2))?, for
jz20,k=0.

We thus note that the element a,; in an (f, d,) matrix can be obtained by
formal matrix multiplication of the appropriate [F,d,] and Sonnenschein
matrices.

In general, if 4 and B are regular summability matrices, then the 4 trans-
form of the B transform of a sequence (herein denoted by the 4B method)
need not be the same as the method obtained by multiplying the 4 and B
matrices together and then applying the resulting matrix to the given sequence
(denoted by the 4 - B method). Indeed, for a given sequence and given 4
and B either one could exist or fail to exist; see (1). However, if 4 is, in
addition, row-finite, we have the following theorem of Agnew (1, Theorem 10.2).

TueoREM 1 (Agnew). If A and B are regular with A row-finite, then the
convergence field of A - B includes the convergence field of AB.

We may now state the following theorem concerning regularity of (f, d,)
methods.

THEOREM 2. If (P,;) is a regular [F, d,] matrix and (f ;1) is a regular Sonnen-
schein matrix, then the (f,d,) method (a.), defined by a,x = 2 =0 Pujfi, 1S
regular.

Proof. 1f the sequence {s;} converges to s, regularity of (f;;) and (P,;)
guarantees convergence of the [F, d,] transform of the Sonnenschein transform
to s. Then Agnew’s theorem supplies convergence of the [F, d,] transform to s.

We note that if f(2) is an entire function and the (f, d,) method is applied
to the geometric series, we have the following special result.

THEOREM 3. If f(2) is an entire function, then those values of z for which the
(f, d.) transform of the partial sums of the geometric series converge to 1/(1 — z)
are precisely those values for which the related [F, d,] transform of the related
Sonnenschein transform converges to 1/(1 — z).

Proof. Since the partial sums of the geometric series can be written in the
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form 1/(1 — g) — 2**!/(1 — 2), it is sufficient to consider the various sum-
mability transforms of the sequence {2"}. From the fact that f(2) is entire,

A,(2) = 22 Puy 2 fus”
7=0 k=0

converges absolutely for all z. Thus we can interchange the order of summation
and those values of z for which lim, 4,(2) = 0 are the same as those values
of z for which lim, B,(2) = 0, where

B,(2) = Z Z Pn,fjkzk.
k=0 j=0

For the convenience of the reader we now list various well-known sufficient
conditions for regularity of [F, d,] and Sonnenschein methods. Choosing an
[F, d,] method satisfying (i), (ii), or (iii) below and a Sonnenschein method
satisfying (iv), (v), or (vi), the associated (f, d,) method will be regular.

The [F, d,] method is regular if:

(i) d, 2 Oforall w and > ,-11/d, = 4+ (4), or

(i1) d, = pe’ and > n-11/p, = +00 and X . -1 60,2/p, < +© (3), or

(iii) {N,] satisfies N\, = 0 for all m and > n_11/A\, = 40,k =2, is a
fixed positive integer, and d, = p,e?", where prm-n+; = M\* for
i=12,...,kand Oyn-n+; = exp{j(k — V)wi/k} forj=1,2,...,k
(6).

The Sonnenschein method is regular provided:

(iv) (a) f(z) is analyticin |3 < R, R > 1,
(b) |f(z)| < 1 forl|s < 1 except at a finite number of points &,
(c) the real part of 4 # 0, where A is defined by

he(z) — "D = 4P (z — 1)+ 0(z — 1)? asz—1

with he(z) = f(¢2)/f(£), and
(d) f(1) =1 (2).
In the case of Karamata matrices which are those Sonnenschein matrices
where f(z) = [« + (1 — a — B8)2]/(1 — B2), we have regularity provided:
V) a=8=0,o0r
(vi) 1 —lal2> 1 —a)@1 —B8)>0(7).

3. An application. The Lebesgue constants for the [F, d,] method with
d, > 0 have been shown to be unbounded by Lorch and Newman (5). How-
ever, their method will not apply directly to the [F, d,] methods with d,
complex. For those complex methods defined by Miracle (6) we have the
following result.

THEOREM 4. The Lebesgue constants for the [F, d,] methods defined by Miracle
(6) are unbounded.
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Proof. Let P, denote the coefficients in the [F, d,] matrix as defined by
Miracle. We note that for # = mp we have

Thus the elements with row subscript mp in the [F, d,] matrix are identical
to the elements with row subscript m in the (2%, \,) matrix defined by
Smith (8). Hence, the Lebesgue constants for the (27, \,) method coincide
with a subsequence of the Lebesgue constants for the [F, d,] method. Then
the unboundedness of the subsequence will imply the unboundedness of the
Lebesgue constants for the [F, d,] method. These constants are given by

m it

ol H + A
t 14+ A k}
k=1 ®

Since A, > 0 we can apply the method of Lorch, and with only slight modifica-
tions. Analogous to their derivation, we make the following definitions.

dt.

/2
(3.1) LE, \) == J smt

2p2(1+)\k) and Um=1+2pkzl

=1 =N DV
We then obtain the following estimates:
m 2pit
3.2) [TE—E2 = exp{ (U — 1)it — Sul®) + 0(Su),
=1 14 N
621)“ + )\k { —p )\k }
(3.3) TN =< exp TS WE for0 =t £ m/2p,
and
m 2p1t + >\Ic X 0
(3.4) H = O(exp{—%Snt’}) for0 =t = 7/2p.
w=1 1+ N

It should be noted that estimates (3.3) and (3.4) are not valid for 0 < ¢ < #/2
since p = 2. However, the following additional estimate, though much cruder,
will fill the gap:

O e R
(3.5) kI=Il T = 0().
We note that if p = 1, these estimates coincide with those of Lorch and
Newman. Since they are obtained in an analogous manner, their derivation
will not be supplied here.

Next we introduce the quantity ¢ 0 < ¢ < 7/2p, to be fixed later. We
use formula (3.2) to estimate the portion of the integral (3.1) from 0 to §,
then formula (3.4) for the portion from ¢ to 7/2p, and formula (3.5) for the
portion from 7/2p to w/2. We extend the interval of integration in the approxi-
mating exponential of formula (3.2), thereby introducing an additional error
which can, however, be absorbed in the error arising from formula (3.4).
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Thus we obtain

Isin Unt| 3
st U O0(SaE)

+ O " exp{—1Snt}) + 0Q1).
Now if S,, is bounded, we choose ¢ to be fixed; if S,, is unbounded, we choose
¢ = S,7%5, reducing the error terms to O(1) in either case. Formula (3.6)
differs from that of Lorch and Newman (5, formula (3.6)) only by O(1),
hence from this point on their method can be followed exactly to show that
the Lebesgue constants for the (2?, \,,) method, and hence also for the [F, d,]
method, are unbounded.

/2
(36) L(zp; An) = —12—r f eXp{—Smt2}
0
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