VI

Some boundary properties of solutions

In this chapter we will explore certain boundary properties of the solutions of locally integrable vector fields. In the first section we present a growth condition that ensures the existence of a distribution boundary value for a solution of a locally integrable complex vector field in \mathbb{R}^{N}. This condition extends the well-known tempered growth condition for holomorphic functions which we will recall in Theorem VI.1.1 below. Section VI. 2 considers the pointwise convergence of solutions of planar, locally integrable vector fields to their boundary values. Sections VI. 3 and VI. 4 explore the class of vector fields in the plane for which Hardy space-like properties are valid. The chapter concludes with applications to the boundary regularity of solutions. The boundary variant of the Baouendi-Treves approximation theorem, namely, Theorem II.4.12, will be crucial for the results in Sections VI. 2 and VI. 4 .

VI. 1 Existence of a boundary value

Suppose L is a smooth complex vector field,

$$
L=\sum_{j=1}^{N} a_{j}(x) \frac{\partial}{\partial x_{j}}
$$

defined on a domain $\Omega \subseteq \mathbb{R}^{N}$ and $u \in C(\Omega)$ is such that $L u=0$ in Ω. Assume $\partial \Omega$ is smooth. We would like to explore conditions on u that guarantee that u will have a distribution boundary value on $\partial \Omega$. Theorem V.2.6 showed us that when u is holomorphic on a domain $D \subseteq \mathbb{C}^{n}$, then u has a boundary value if

$$
\begin{equation*}
|u(z)| \leq \frac{C}{\operatorname{dist}(z, \partial D)^{k}} \tag{VI.1}
\end{equation*}
$$

for some $C, k>0$. Conversely, it is well known that if a holomorphic function on Ω has a distribution trace on ∂D, then $u(z)$ has a tempered growth as in (VI.1). For simplicity, we recall here a precise version in the planar case:

Theorem VI.1.1 (Theorems 3.1.11, 3.1.14 [H2].). Let $A, B>0, Q=(-A, A)$ $\times(0, B)$ and f holomorphic on Q.
(i) If for some integer $N \geq 0$ and $C>0$,

$$
|f(x+i y)| \leq C y^{-N}, \quad x+i y \in Q
$$

then there exists bf $\in D^{\prime}(-A, A)$ of order $N+1$ such that

$$
\lim _{y \rightarrow 0^{+}} \int f(x+i y) \psi(x) \mathrm{d} x=\langle b f, \psi\rangle \quad \forall \psi \in C_{0}^{N+1}(-A, A)
$$

(ii) If $\lim _{y \rightarrow 0^{+}} f(\cdot+i y)$ exists in $D^{\prime k}(-A, A)$, then for any $0<A^{\prime}<A$, and $0<B^{\prime}<B$, there exists C^{\prime} such that

$$
|f(x+i y)| \leq C^{\prime} y^{-k-1}, \quad x+i y \in\left(-A^{\prime}, A^{\prime}\right) \times\left(0, B^{\prime}\right)
$$

Because of the local equivalence of L^{1} and sup norms for solutions in the elliptic (Cauchy-Riemann) case, the preceding theorem asserts that a holomorphic function f on Q has a trace at $y=0$ if and only if for some integer $N>0$,

$$
\iint_{Q}|f(x+i y)| y^{N} \mathrm{~d} x \mathrm{~d} y<\infty
$$

It is natural to investigate generalizations of this theorem for nonelliptic vector fields. It turns out that the tempered growth condition (VI.1) is sufficient to ensure the existence of a boundary value for a general nonvanishing vector field that may not be locally integrable. Indeed, we have:

Theorem VI.1.2 (Theorem 1.1 [BH4]). Let L be a C^{∞} complex vector field in a domain $\Omega \subseteq \mathbb{R}^{n}, f \in C(\Omega), L f=0$ in Ω. Suppose

$$
|f(x)| \leq C \operatorname{dist}(x, \partial \Omega)^{-N}
$$

for some $C, N>0$. If $\Sigma \subseteq \partial \Omega$ is open, smooth and noncharacteristic for L, then f has a distribution boundary value on Σ.

The preceding result suggests that for a locally integrable vector field, in general, one should seek a growth condition that is weaker than a tempered growth expressed in terms of $\operatorname{dist}(x, \partial \Omega)$.

As a motivation, suppose $Z=x+i \varphi(x, y)$ is smooth in a neighborhood of the origin in \mathbb{R}^{2}, φ real-valued. Then Z is a first integral for

$$
L=\frac{\partial}{\partial y}-\frac{i \varphi_{y}}{1+i \varphi_{x}} \frac{\partial}{\partial x} .
$$

Assume that $\varphi(x, y)>0$ when $y>0$ and $\varphi(x, 0)=0$, for all x. Then for any integer $N>0$, since the holomorphic function $\frac{1}{(x+i y)^{N}}$ has a boundary value as $y \rightarrow 0^{+}$, it is not hard to see that

$$
u_{N}(x, y)=\frac{1}{Z(x, y)^{N}}
$$

also has the same boundary value.
Note that $L u_{N}=0$ when $y>0,\left|u_{N}(0, y)\right|=\frac{1}{|\varphi(0, y)|^{N}}$, while

$$
\left|u_{N}(x, y)\right| \leq \frac{1}{|\varphi(x, y)|^{N}}=\frac{1}{|Z(x, y)-Z(x, 0)|^{N}}
$$

Observe that φ may be chosen so that $u_{N}(x, y)$ is not bounded by any power of y as $y \rightarrow 0^{+}$. In general, if L is locally integrable, Z is a first integral of L near the origin and $L u=0$ in the region $y>0$, then the growth condition

$$
\begin{equation*}
|u(x, y)||Z(x, y)-Z(x, 0)|^{N} \leq C<\infty \tag{VI.2}
\end{equation*}
$$

is sufficient for u to have a distribution boundary value at $y=0$. When L is real-analytic, (VI.2) is also a necessary condition for the existence of a boundary trace at $y=0$ (see [BH5]). Before we state the main result of this section, as a motivation for its proof, we review the classical case of holomorphic functions. Consider a holomorphic function f on the rectangle $Q=(-A, A) \times(-B, B)$ satisfying the growth condition

$$
\left|f(x+i y) y^{N}\right| \leq C<\infty
$$

We wish to show that f has a boundary value at $y=0$. Let $\psi \in C_{0}^{\infty}(-A, A)$. Fix $0<T<B$. For each integer $m \geq 0$, choose $\psi_{m}(x, y) \in C^{\infty}((-A, A) \times$ $[0, B])$ such that
(i) $\psi_{m}(x, 0)=\psi(x)$ and
(ii) $\left|\bar{\partial} \psi_{m}(x, y)\right| \leq C y^{m}$
where C depends only on the size of the derivatives of ψ up to order $m+1$. Indeed, if we define

$$
\psi_{m}(x, y)=\sum_{k=0}^{m} \frac{\psi^{(k)}(x)}{k!}(i y)^{k},
$$

then it is easy to see that (i) and (ii) hold. Note that since f is holomorphic, for any $0<\epsilon<T$, and $g \in C_{0}^{1}(-A, A)$, integration by parts gives:

$$
\begin{aligned}
\int_{-A}^{A} f(x+i \epsilon) g(x, \epsilon) \mathrm{d} x= & \int_{-A}^{A} f(x+i T) g(x, T) \mathrm{d} x \\
& +2 i \int_{-A}^{A} \int_{\epsilon}^{T} f(x+i y) \bar{\partial} g(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Plugging $g(x, y)=\psi_{N}(x, y-\epsilon)$ in the preceding formula yields

$$
\begin{aligned}
\int_{-A}^{A} f(x+i \epsilon) \psi(x) \mathrm{d} x= & \int_{-A}^{A} f(x+i T) \psi_{N}(x, T-\epsilon) \mathrm{d} x \\
& +2 i \int_{-A}^{A} \int_{\epsilon}^{T} f(x+i y) e(x, y, \epsilon) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

where $|e(x, y, \epsilon)| \leq C|y-\epsilon|^{N}$. Since $\left|f(x+i y) y^{N}\right| \leq C$, as $y \rightarrow 0$, the righthand side in the formula converges. This proves that $f(x+i y)$ has a boundary value at $y=0$.

We will prove now the sufficiency of (VI.2) in a more general set-up. Let L be a smooth, locally integrable vector field defined near the origin in \mathbb{R}^{m+1}. In appropriate coordinates (x, t) we may assume that L possesses m smooth first integrals of the form $Z_{j}(x, t)=A_{j}(x, t)+i B_{j}(x, t), j=1, \ldots, m$ defined on a neighborhood of the closure of the cylinder $Q=B_{r}(0) \times(-T, T)$ where $B_{r}(0)$ is a ball in x space \mathbb{R}^{m} and $Z_{x}(0,0)$ is invertible. Thus, after multiplication by a nonvanishing factor, L may be written as

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-\sum_{k=1}^{m} \frac{\partial Z_{k}}{\partial t} M_{k} \tag{VI.3}
\end{equation*}
$$

where the M_{k} are the vector fields in x space satisfying $M_{k} Z_{j}=\delta_{k j}, 1 \leq$ $k, j \leq m$. The next theorem gives, in particular, a sufficient condition for the existence of a boundary value of a continuous function f when f is a solution of $L f=0$.

Theorem VI.1.3. Let L be as above and let f be continuous on $Q^{+}=$ $B_{r}(0) \times(0, T)$. Suppose
(i) $L f \in L^{1}\left(Q^{+}\right)$;
(ii) there exists $N \in \mathbb{N}$ such that

$$
\int_{0}^{T} \int_{B_{r}(0)}|Z(x, t)-Z(x, 0)|^{N}|f(x, t)| \mathrm{d} x \mathrm{~d} t<\infty
$$

Then $\lim _{t \rightarrow 0^{+}} f(x, t)=$ bf exists in $D^{\prime}\left(B_{r}(0)\right)$ and it is a distribution of order $N+1$.

Proof. Note first that by taking complex, linear combinations of the Z_{j} 's, we may assume that $Z_{x}(0,0)=\mathrm{Id}$, the identity matrix. This will not affect hypothesis (ii) in the theorem. Let $\psi \in C_{0}^{\infty}\left(B_{r}(0)\right)$. For each integer $k \geq 0$, we will show that there exists $\psi_{k}(x, t) \in C^{\infty}\left(B_{r}(0) \times[0, T]\right)$ such that
(i) $\psi_{k}(x, 0)=\psi(x)$ and
(ii) $\left|L \psi_{k}(x, t)\right| \leq C|Z(x, t)-Z(x, 0)|^{k}$
where C depends only on the size of $D^{\alpha} \psi(x)$ for $|\alpha| \leq k+1$. To get $\psi_{k}(x, t)$ with these properties, we will use a smooth function $u_{k}=u_{k}(x, y)$ defined near $0 \in \Sigma=\{Z(x, 0)\}$ in \mathbb{C}^{m} and satisfying:
(a) $u_{k}(Z(x, 0))=\psi(x)$ and
(b) $\left|\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right) u_{k}(x, y)\right| \leq C \operatorname{dist}((x, y), \Sigma)^{k}$ for $j=1, \ldots, m$.

Assuming for the moment that such a u_{k} with these properties exists, we set

$$
\psi_{k}(x, t)=u_{k}(A(x, t), B(x, t))
$$

where

$$
A(x, t)=\left(A_{1}(x, t), \ldots, A_{m}(x, t)\right), \quad B(x, t)=\left(B_{1}(x, t), \ldots, B_{m}(x, t)\right) .
$$

Then $\psi_{k}(x, 0)=\psi(x)$ so that (i) above holds. To check (ii), observe that from the equations

$$
L\left(Z_{j}\right)=L\left(A_{j}+i B_{j}\right)=0, \quad j=1, \ldots, m
$$

we have

$$
\begin{equation*}
L\left(\psi_{k}\right)=\sum_{j=1}^{m}\left(\frac{\partial u_{k}}{\partial x_{j}} L\left(A_{j}\right)+\frac{\partial u_{k}}{\partial y_{j}} L\left(B_{j}\right)\right)=2 \sum_{j=1}^{m} L\left(A_{j}\right) \frac{\partial u_{k}}{\partial \bar{z}_{j}} . \tag{VI.4}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left|L\left(\psi_{k}\right)(x, t)\right| & \leq C_{1}\left|\bar{\partial} u_{k}(A(x, t), B(x, t))\right| \\
& \leq C_{2} \operatorname{dist}(A(x, t)+i B(x, t), \Sigma)^{k} \\
& \leq C_{2}|Z(x, t)-Z(x, 0)|^{k} .
\end{aligned}
$$

Thus if u_{k} satisfies (a) and (b), then $\psi_{k}(x, t)$ will satisfy (i) and (ii). We will next write a formula for the u_{k}. Since the map $x \mapsto A(x, 0)$ is invertible, there is a smooth map $G=\left(G_{1}, \ldots, G_{m}\right)$ such that

$$
\mathfrak{J}(Z(x, 0))=B(x, 0)=G(A(x, 0))
$$

This and some of what follows may require decreasing the neighborhood around the origin. Note that since $\mathrm{d} B(0,0)=0$, and $\mathrm{d} A(0,0) \neq 0, \mathrm{~d} G(0,0)=0$.

Let V_{j} be the vector fields satisfying $V_{j}\left(x_{s}+i G_{s}(x)\right)=\delta_{j s}, 1 \leq j, s \leq m$. For each $k=1,2, \ldots$ define

$$
u_{k}(x, y)=\sum_{|\alpha| \leq k} \frac{i^{|\alpha|}}{\alpha!} V^{\alpha} \tilde{\psi}(x)(y-G(x))^{\alpha}
$$

where by definition, $\tilde{\psi}(x)=\psi\left(A(x, 0)^{-1}\right)$. Clearly, $u_{k}(Z(x, 0))=\psi(x)$. We claim that for each $j=1, \ldots, m$,

$$
\begin{equation*}
2 \frac{\partial u_{k}}{\partial \overline{z_{j}}}=i^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \frac{\partial}{\partial x_{j}}\left(V^{\alpha} \tilde{\psi}(x)\right)(y-G(x))^{\alpha} \tag{VI.5}
\end{equation*}
$$

In particular, the claim implies property (b) for u_{k}. Indeed, after contracting the neighborhood of the origin, we may assume that $\Sigma=\{x+i G(x)\}$. Since $\mathrm{d} G(0,0)=0$, it follows that

$$
|y-G(x)| \leq \operatorname{dist}((x, y), \Sigma)
$$

which gives (b). The claim will be proved by induction. We have:

$$
\frac{\partial u_{1}}{\partial y_{j}}(x+i y)=i V_{j}(\tilde{\psi}(x))
$$

and

$$
\frac{\partial u_{1}}{\partial x_{j}}(x+i y)=\frac{\partial \tilde{\psi}}{\partial x_{j}}-i \sum_{s=1}^{m} V_{s}(\tilde{\psi}) \frac{\partial G_{s}}{\partial x_{j}}+i \sum_{s=1}^{m} \frac{\partial}{\partial x_{j}}\left(V_{s}(\tilde{\psi})\right)\left(y_{s}-G_{s}(x)\right)
$$

Next observe that

$$
\begin{equation*}
\frac{\partial}{\partial x_{j}}=i \sum_{s=1}^{m} \frac{\partial G_{s}(x)}{\partial x_{j}} V_{s}+V_{j} \tag{VI.6}
\end{equation*}
$$

which can be seen by applying both sides to the m linearly independent functions $x_{1}+i G_{1}(x), \ldots, x_{m}+i G_{m}(x)$. Hence

$$
\frac{\partial u_{1}}{\partial x_{j}}+i \frac{\partial u_{1}}{\partial y_{j}}=i \sum_{s=1}^{m} \frac{\partial}{\partial x_{j}}\left(V_{s}(\tilde{\psi})\right)\left(y_{s}-G_{s}(x)\right)
$$

which proves the claim for $k=1$. Assume next that (VI.5) holds for $k-1$, $k \geq 1$. We can write

$$
\begin{equation*}
u_{k}(x, y)=u_{k-1}(x, y)+E_{k}(x, y) \tag{VI.7}
\end{equation*}
$$

where

$$
E_{k}(x, y)=i^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!}\left(V^{\alpha} \tilde{\psi}(x)\right)(y-G(x))^{\alpha}
$$

For any $1 \leq j \leq m$, by the induction assumption, we have

$$
\begin{equation*}
2 \frac{\partial u_{k-1}}{\partial \overline{z_{j}}}=i^{k-1} \sum_{|\beta|=k-1} \frac{1}{\beta!} \frac{\partial}{\partial x_{j}}\left(V^{\beta} \tilde{\psi}\right)(y-G(x))^{\beta} . \tag{VI.8}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\frac{\partial E_{k}}{\partial x_{j}}(x, y)=i^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!}\left(\frac{\partial}{\partial x_{j}} V^{\alpha} \tilde{\psi} \quad(y-G(x))^{\alpha}+V^{\alpha}(\tilde{\psi}) \frac{\partial}{\partial x_{j}}(y-G(x))^{\alpha}\right) \tag{VI.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial E_{k}}{\partial y_{j}}(x, y)=i^{k} \sum_{|\alpha|=k} \frac{V^{\alpha}(\tilde{\psi})}{\alpha!} \frac{\partial}{\partial y_{j}}(y-G(x))^{\alpha} . \tag{VI.10}
\end{equation*}
$$

Using the expression for $\frac{\partial}{\partial x_{j}}$ from (VI.6), (VI.8) can be written as

$$
\begin{align*}
2 \frac{\partial u_{k-1}}{\partial \overline{z_{j}}}= & i^{k} \sum_{|\beta|=k-1} \sum_{s=1}^{m} \frac{1}{\beta!} \frac{\partial G_{s}}{\partial x_{j}}(x) V_{s}\left(V^{\beta} \tilde{\psi}\right)(y-G(x))^{\beta} \\
& +i^{k-1} \sum_{|\beta|=k-1} \frac{1}{\beta!} V_{j}\left(V^{\beta} \tilde{\psi}\right)(y-G(x))^{\beta} \tag{VI.11}
\end{align*}
$$

From (VI.7), (VI.9), (VI.10) and (VI.11), we get

$$
2 \frac{\partial u_{k}}{\partial \overline{z_{j}}}=i^{k} \sum_{|\alpha|=k} \frac{1}{\alpha!} \frac{\partial}{\partial x_{j}}\left(V^{\alpha} \tilde{\psi}(x)\right)(y-G(x))^{\alpha}
$$

which establishes property (b) for u_{k}. Hence for each k we have ψ_{k} which satisfies (i) and (ii) and has the form

$$
\begin{equation*}
\psi_{k}(x, t)=\sum_{|\alpha| \leq k}\left(P_{\alpha}\left(x, t, D_{x}\right) \tilde{\psi}(A(x, t))\right)(B(x, t)-G(A(x, t)))^{\alpha} \tag{VI.12}
\end{equation*}
$$

where $P_{\alpha}\left(x, t, D_{x}\right)$ is a differential operator of order $|\alpha|$ involving differentiations only in x. Observe next that if $g(x, t)$ is a C^{1} function, the differential of the m form $g(x, t) \mathrm{d} Z_{1} \wedge \cdots \wedge \mathrm{~d} Z_{m}$ where $Z_{j}=A_{j}(x, t)+i B_{j}(x, t)$ is given by

$$
\mathrm{d}\left(g \mathrm{~d} Z_{1} \wedge \cdots \wedge \mathrm{~d} Z_{m}\right)=L g \mathrm{~d} t \wedge \mathrm{~d} Z_{1} \wedge \cdots \wedge \mathrm{~d} Z_{m}
$$

This observation and integration by parts lead to:

$$
\begin{align*}
\int_{B_{r}(0)} f(x, \epsilon) \psi_{N}(x, \epsilon) \mathrm{d} Z(x, \epsilon)= & \int_{B_{r}(0)} f(x, T) \psi_{N}(x, T) \mathrm{d} Z(x, T) \\
& +\int_{B_{r}(0)} \int_{\epsilon}^{T} f(x, t) L \psi_{N}(x, t) \mathrm{d} t \wedge \mathrm{~d} Z \tag{VI.13}\\
& +\int_{B_{r}(0)} \int_{\epsilon}^{T} L f(x, t) \psi_{N}(x, t) \mathrm{d} t \wedge \mathrm{~d} Z
\end{align*}
$$

where $\mathrm{d} Z=\mathrm{d} Z_{1} \wedge \mathrm{~d} Z_{2} \wedge \cdots \wedge \mathrm{~d} Z_{m}$. Now by the hypotheses on $f(x, t)$ and property (ii) of $\psi_{N}(x, t),\left|f(x, t) L \psi_{N}(x, t)\right| \in L^{1}$ and so the second integral on the right in (VI.13) has a limit as $\epsilon \rightarrow 0$. The third integrand on the right is in L^{1} since $L f$ is. Therefore,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{B_{r}(0)} f(x, \epsilon) \psi_{N}(x, \epsilon) \mathrm{d} Z(x, \epsilon) \quad \text { exists. } \tag{VI.14}
\end{equation*}
$$

We can clearly modify ψ_{n} by dropping the tilde in its definition and use (VI.14) to conclude:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{B_{r}(0)} f(x, \epsilon) \Psi_{N}(x, \epsilon) \mathrm{d} Z(x, \epsilon) \quad \text { exists } \tag{VI.15}
\end{equation*}
$$

where for any smooth function $\psi(x)$,

$$
\Psi_{n}(x, t)=\sum_{|\alpha| \leq n}\left(P_{\alpha}\left(x, t, D_{x}\right) \psi(A(x, t))\right)(B(x, t)-G(A(x, t)))^{\alpha}
$$

Let $P(x, t)=B(x, t)-G(A(x, t))$. For $g(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ whose x-support is contained in a fixed compact set independent of t, and n a non-negative integer, define

$$
\begin{equation*}
T_{n} g(x, t)=\sum_{|\alpha| \leq n} P_{\alpha}\left(x, t, D_{x}\right)(g(x, t)) P(x, t)^{\alpha}, \quad T_{0} g(x, t)=g(x, t) \tag{VI.16}
\end{equation*}
$$

Using (VI.15), we will show next that in fact,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{N} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.17}
\end{equation*}
$$

for any $g=g(x, t)$. To see this, for $\psi=\psi(x)$, we change variables $y=A(x, t)$ in (VI.15) to write

$$
\int f(x, t) \Psi_{N}(x, t) \mathrm{d} Z(x, t)=\int f(H(y, t), t) Q\left(y, t, D_{y}\right) \psi(y) \mathrm{d} y
$$

where Q is a differential operator (with differentiation only in y) and $y \mapsto$ $H(y, t)$ is the inverse of $x \mapsto A(x, t)$. Since

$$
\lim _{t \rightarrow 0} \int f(H(y, t), t) Q\left(y, t, D_{y}\right) \psi(y) \mathrm{d} y \quad \text { exists }
$$

it follows that

$$
\lim _{t \rightarrow 0} \int f(H(y, t), t) Q\left(y, t, D_{y}\right) \psi(y, t) \mathrm{d} y \quad \text { exists }
$$

for any smooth $\psi(y, t)$ with a fixed compact support in y. Going back to the x coordinates, we have shown that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) S_{N} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.18}
\end{equation*}
$$

where by definition

$$
S_{n} g(x, t)=\sum_{|\alpha| \leq n}\left(P_{\alpha}\left(x, t, D_{x}\right) g(A(x, t), t)\right) P(x, t)^{\alpha}
$$

for any smooth $g=g(x, t)$. Observe that the integral in (VI.18) can be written in the form

$$
\int u(x, t) g(A(x, t), t) \mathrm{d} x
$$

where this latter integral denotes the action of a distribution $u(., t)$ on the smooth function $x \mapsto g(A(x, t), t)$. Now since $(x, t) \mapsto(A(x, t), t)$ is a diffeomorphism near the origin, any function $\psi(x, t)$ is of the form $g(A(x, t), t)$ for some $g=g(x, t)$. We can therefore use (VI.18) to conclude that for any $g(x, t)$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{N} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.19}
\end{equation*}
$$

which proves (VI.17). For $\psi(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ whose x-support is contained in a fixed compact set and a given multi-index β with $|\beta|=N$, plug $g(x, t)=\psi(x, t) P(x, t)^{\beta}=\psi(x, t)(B(x, t)-G(A(x, t)))^{\beta}$ in (VI.19). Note that we may write

$$
\begin{equation*}
T_{N}\left(\psi P^{\beta}\right)(x, t)=\psi P^{\beta}+\psi \sum_{|\alpha|=N} e_{\alpha}(x, t) P^{\alpha}+\sum_{|\gamma|>N} h_{\gamma}(x, t) P^{\gamma} \tag{VI.20}
\end{equation*}
$$

where the h_{γ} and e_{α} are smooth functions and

$$
\lim _{t \rightarrow 0} D_{x}^{\alpha^{\prime}} e_{\alpha}(x, t)=0 \quad \forall \alpha, \alpha^{\prime}
$$

Observe that for each γ with $|\gamma|>N$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) h_{\gamma}(x, t) P(x, t)^{\gamma} \mathrm{d} Z(x, t) \quad \text { exists. } \tag{VI.21}
\end{equation*}
$$

Indeed, this follows from applying the integration by parts formula (VI.13) to the m-form $f(x, t) h_{\gamma}(x, t) P(x, t)^{\gamma} \mathrm{d} Z_{1} \wedge \cdots \wedge \mathrm{~d} Z_{m}$, using the hypotheses on f, and the bound $|P(x, t)| \leq|Z(x, t)-Z(x, 0)|$. From (VI.19) and (VI.21) we conclude that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t)\left(\psi P^{\beta}+\psi \sum_{|\alpha|=N} e_{\alpha}(x, t) P^{\alpha}\right) \mathrm{d} Z(x, t) \quad \text { exists. } \tag{VI.22}
\end{equation*}
$$

We can plug ψ_{β} for ψ in (VI.22) and sum over β with $|\beta|=N$ to conclude

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) \sum_{|\beta|=N} P^{\beta}\left(\psi_{\beta}+\left(\sum_{|\alpha|=N} \psi_{\alpha}\right) E_{\beta}(x, t)\right) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.23}
\end{equation*}
$$

where all order derivatives of the E_{β} go to zero as $t \rightarrow 0$. Observe that given $\left\{\psi_{\beta}\right\}_{|\beta|=N}$ as above, we can find $\left\{\phi_{\beta}\right\}_{|\beta|=N}$ such that

$$
\sum_{|\beta|=N} P^{\beta}\left(\phi_{\beta}+\left(\sum_{|\alpha|=N} \phi_{\alpha}\right) E_{\beta}\right)=\sum_{|\beta|=N} P^{\beta} \psi_{\beta}
$$

It follows that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) \sum_{|\beta|=N} \psi_{\beta} P^{\beta} \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.24}
\end{equation*}
$$

whenever the functions $\psi_{\beta}(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ have their x-support contained in a fixed compact set independent of t. We now return to a general $g(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ with x-support contained in a fixed compact set independent of t. From (VI.19) and (VI.24) we conclude that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{N-1} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.25}
\end{equation*}
$$

for any $g(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ with x-support contained in a fixed compact set independent of t. We will prove by descending induction that for any such $g(x, t)$ and $0 \leq k \leq N$,

$$
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{k} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists }
$$

which for $k=0$ and $g(x, t)=\psi(x) \in C_{c}^{\infty}\left(B_{r}(0)\right)$ gives us the desired limit. To proceed by induction, suppose $1 \leq k \leq N$ and assume that for any multi-index β with $|\beta|=k$, the limits

$$
\begin{align*}
& \lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) P^{\beta}(x, t) g(x, t) \mathrm{d} Z(x, t) \quad \text { and } \tag{VI.26}\\
& \lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{k-1} g(x, t) \mathrm{d} Z(x, t)
\end{align*}
$$

both exist for any $g(x, t) \in C^{\infty}\left(B_{r}(0) \times(-T, T)\right)$ with x-support contained in a fixed compact set independent of t. We have already seen that (VI.26) is true for $k=N$ as follows from (VI.24) and (VI.25). Fix β^{\prime} with $\left|\beta^{\prime}\right|=k-1$. Plug $g(x, t)=\psi(x, t) P(x, t)^{\beta^{\prime}}$ in the limit on the right in (VI.26) and observe that $T_{k-1} g$ may be written as

$$
\begin{equation*}
T_{k-1} g(x, t)=\psi P^{\beta^{\prime}}+\psi \sum_{|\alpha|=k-1} e_{\alpha}(x, t) P^{\alpha}+\sum_{|\gamma| \geq k} h_{\gamma}(x, t) P^{\gamma} \tag{VI.27}
\end{equation*}
$$

where the e_{α} and h_{γ} are smooth, the x-supports of the $h_{\gamma}(x, t)$ are contained in a compact set that is independent of t, and all order derivatives of the e_{α}
go to zero as $t \rightarrow 0$. From the existence of the two limits in (VI.26) we derive that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t)\left(\psi P^{\beta^{\prime}}+\psi \sum_{|\alpha|=k-1} e_{\alpha}(x, t) P^{\alpha}\right) \mathrm{d} Z(x, t) \tag{VI.28}
\end{equation*}
$$

exists. We now argue as before by replacing ψ by $\psi_{\beta^{\prime}}$ and summing over $\left|\beta^{\prime}\right|=k-1$ to conclude that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) P(x, t)^{\beta} \psi(x, t) \mathrm{d} Z(x, t) \quad \text { exists } \tag{VI.29}
\end{equation*}
$$

for all β with $|\beta|=k-1$ and $\psi(x, t) \in C^{\infty}\left(B_{r}(0) \times(-B, B)\right)$ with x-support contained in a fixed compact set independent of t. Hence, taking account of (VI.26) and (VI.29) we conclude that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{r}(0)} f(x, t) T_{k-2} g(x, t) \mathrm{d} Z(x, t) \quad \text { exists. } \tag{VI.30}
\end{equation*}
$$

We have thus proved that (VI.26) holds for $k-1$, completing the inductive step. Therefore,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \int_{B_{r}(0)} f(x, \epsilon) \psi(x) \mathrm{d} Z(x, \epsilon) \quad \text { exists } \tag{VI.31}
\end{equation*}
$$

and thus $b f=\lim _{t \rightarrow 0} f(., t)$ exists. Moreover, since the functions

$$
x \longmapsto \psi_{N}(x, \epsilon)-\psi(x) \quad \text { and } \quad x \longmapsto Z(x, \epsilon)-Z(x, 0)
$$

and all their x-derivatives converge to zero as $\epsilon \rightarrow 0$, (VI.13), (VI.14), and (VI.31) imply the following formula for $b f$:

$$
\begin{align*}
& \left\langle Z_{x}(x, 0) b f, \psi\right\rangle=\int_{B_{r}(0)} f(x, T) \psi_{N}(x, T) \mathrm{d} Z \tag{VI.32}\\
& \quad+\int_{B_{r}(0)} \int_{0}^{T} f(x, t) L \psi_{N}(x, t) \mathrm{d} t \wedge \mathrm{~d} Z \\
& \quad+\int_{B_{r}(0)} \int_{0}^{T} L f(x, t) \psi_{N}(x, t) \mathrm{d} t \wedge \mathrm{~d} Z
\end{align*}
$$

This formula shows that $b f$ is a distribution of order $N+1$.

VI. 2 Pointwise convergence to the boundary value

Suppose L is a locally integrable vector field in a planar domain Ω with a smooth boundary. Let $f \in L_{\mathrm{loc}}^{1}(\Omega)$, and assume that f has a weak trace $b f$ which is in $L_{\mathrm{loc}}^{1}(\partial \Omega)$. In this section we will discuss the pointwise convergence
of f to $b f$. It is classical that when L is the Cauchy-Riemann operator, the holomorphic function f converges nontangentially to $b f(p)$ for almost all p in $\partial \Omega$. In general, this approach region cannot be relaxed. Indeed, we recall:

Theorem VI.2.1. (Theorem 7.44 in $[\mathbf{Z y}]$.) Let C_{0} be any simply closed curve passing through $z=1$ situated, except for that point, totally inside the circle $|z|=1$, and tangent to the circle at that point. Let C_{θ} be the curve C_{0} rotated around $z=0$ by the angle θ. There is a Blaschke product $B(z)$ which, for almost all θ_{0}, doesn't tend to any limit as $z \mapsto \exp \left(i \theta_{0}\right)$ inside $C_{\theta_{0}}$.

This theorem shows us that for nonelliptic vector fields, we can't expect nontangential convergence. Indeed, by the theorem, if

$$
L_{k}=\frac{\partial}{\partial t}-i(k+1) t^{k} \frac{\partial}{\partial x} \quad(k=1,2,3, \ldots)
$$

then for each k, we can get a bounded solution $f_{k}=F_{k}\left(x+i t^{k+1}\right)$ of L_{k} with F_{k} holomorphic in a semidisk in the upper half-plane, $b f_{k}(x)=b F_{k}(x) \in$ $L^{1}(-1,1)$, but each $f_{k}(x, t)$ doesn't converge nontangentially on a subset of $(-1,1)$ of positive measure. It suffices to take F_{k} holomorphic and bounded on the semidisk $\{z:|z|<1, \Im z>0\}$ such that on a set of full measure in $(-1,1), F_{k}$ has no limit in certain appropriate regions. By considering the L_{k} with k even, we see that nontangential convergence may fail even for vector fields that are C^{∞} and analytic hypoelliptic. Note that for each k, and for almost all $p \in(-1,1)$, there is an open region $\Gamma_{k}(p)$ with $p \in \bar{\Gamma}_{k}(p)$ such that $f_{k}(x, t)$ converges to $b f_{k}(p)$ in $\Gamma_{k}(p)$. On the other hand, if we take the real vector field $\frac{\partial}{\partial t}$, and the solution $u(x, t) \equiv b u(x)=\chi$, the characteristic function of a Cantor set C of positive measure in $(-1,1)$, the only sets of approach for which $u(x, t) \rightarrow b u(x), \quad x \in C$, are the vertical segments. Thus for a general locally integrable vector field, we cannot get approach sets for convergence larger than curves. Suppose now $L=X+i Y$ is a smooth, locally integrable vector field near the closure of a planar domain Ω. Assume $\Sigma \subseteq \partial \Omega$ is a smooth curve that is noncharacteristic for $L, f \in L_{\text {loc }}^{1}(\Omega), L f=0$ and f has a trace $b f \in L^{1}(\Sigma)$. Multiplying by i if necessary, we may assume that X is not tangent to Σ anywhere and that it points toward Ω. For each $p \in \Sigma$, let γ_{p} be the integral curve of X through p and set $\gamma_{p}^{+}=\gamma_{p} \cap \Omega$. We shall classify the points of Σ into two types:
(I) A point $p \in \Sigma$ is a type I point if the vector fields X and Y are linearly dependent on an arc $\left\{\gamma_{p}^{+}(s): 0<s<\epsilon\right\}$ for some $\epsilon>0$.
(II) A point $q \in \Sigma$ is a type II point if there is a sequence $q_{k} \in \gamma_{p}^{+}$converging to q such that L is elliptic at each q_{k}.

Theorem VI.2.2. Let $L u=0$ in $\Omega, u \in L_{\text {loc }}^{1}(\Omega), \quad b u \in L^{1}(\Sigma)$, and Σ is noncharacteristic for L. Assume L is locally integrable in a neighborhood of Σ. For each $p \in \Sigma$, there is an approach set $\Gamma(p) \subseteq \Omega$ such that:
(i) $p \in \bar{\Gamma}(p)$ and if $q \in \Sigma \cap \bar{\Gamma}(p)$, then $q=p$;
(ii) $\gamma_{p}^{+} \subseteq \Gamma(p)$;
(iii) for a.e. $p \in \Sigma, \lim _{\Gamma(p) \ni q \rightarrow p} u(q)=u(p)$;
(iv) if p is a type II point, $\Gamma(p)$ is an open set, otherwise $\Gamma(p)=\gamma_{p}^{+}$.

Proof. Since the problem is local, we may assume that we are in coordinates (x, t) where $\Omega=(-1,1) \times(0,1), \Sigma=(-1,1) \times\{0\}$, and $Z(x, t)=$ $x+i \varphi(x, t)$ is a first integral of L with φ real, $\varphi(0,0)=0$ and $\varphi_{x}(0,0)=0$. Modulo a nonvanishing factor,

$$
L=\frac{\partial}{\partial t}-i \frac{\varphi_{t}}{1+i \varphi_{x}} \frac{\partial}{\partial x}
$$

and so

$$
X=\frac{\partial}{\partial t}-\left(\frac{\varphi_{t} \varphi_{x}}{1+\varphi_{x}^{2}}\right) \frac{\partial}{\partial x}, \quad Y=\frac{-\varphi_{t}}{1+\varphi_{x}^{2}} \frac{\partial}{\partial x} .
$$

Observe that L is elliptic, i.e., X and Y are linearly independent precisely at the points where $\varphi_{t} \neq 0$. Assume now that $0 \in \Sigma$ is a type II point. Then $t \mapsto \varphi(0, t)$ can't vanish on any interval $[0, \epsilon], \epsilon>0$. Indeed, otherwise, we would conclude that $L=X$ on $\{0\} \times[0, \epsilon)$-contradicting the hypothesis that 0 is a type II point. For $\delta>0$ small, define

$$
m(x)=\inf _{0 \leq t \leq \delta} \varphi(x, t), \quad M(x)=\sup _{0 \leq t \leq \delta} \varphi(x, t)
$$

Then since $m(0)<M(0)$, we may choose $A>0$ so that $m(x)<M(x)$ for $|x| \leq A$. After decreasing A and δ, by the boundary version of the BaouendiTreves approximation theorem in Chapter II (Theorem II.4.12), there is a sequence of entire functions F_{k} satisfying:
(a) $F_{k}(Z(x, t)) \rightarrow u(x, t)$ pointwise a.e. on $(-A, A) \times(0, \delta)$;
(b) $F_{k}(Z(x, 0)) \rightarrow b u(x)$ a.e. on $(-A, A)$.

Set

$$
\Omega_{A}=\{\zeta=\xi+i \eta:|\xi|<A, m(\xi)<\eta<M(\xi)\}
$$

We may assume that the sequence F_{k} converges uniformly on compact subsets of Ω_{A} to a holomorphic function F and $u(x, t)=F(Z(x, t))$ for $(x, t) \in Z^{-1}\left(\Omega_{A}\right)$. Indeed, this is clearly true if $u(x, t)$ is continuous for $t>0$. In general, we can use the fact that we can express u as $Q h$ where h is a
continuous solution and Q is an elliptic differential operator that maps solutions to solutions. The operator Q can be taken to be a convenient power of the operator D defined in Section IV.2. Since 0 is a type II point, by theorem 3.1 in [BH1] and [BCT] (page 465), for some $0<A_{1}<A, 0<\delta_{1}<\delta$, there is a holomorphic function G of tempered growth defined on the region $\Omega_{1}=\left\{Z(x, 0)+i Z_{x}(x, 0) v:|x|<A_{1}, 0<v<\delta_{1}\right\}$ such that for every $\psi \in C_{0}^{\infty}\left(-A_{1}, A_{1}\right)$,

$$
\langle b u, \psi\rangle=\lim _{v \downarrow 0} \int G\left(Z(x, 0)+i Z_{x}(x, 0) v\right) \psi(x) \mathrm{d} x
$$

Since $b u \in L^{1}$, the holomorphic function $G(z)$ converges nontangentially to $b u(x)$ a.e. in $\left(-A_{1}, A_{1}\right)$. We may assume that A_{1} and δ_{1} are small enough so that $\Omega_{1} \subseteq \Omega_{A}$. We will show that $G=F$ on Ω_{1}. Define the subsets of $\left[-A_{1}, A_{1}\right]$:

$$
\begin{aligned}
& E_{1}=\{x: \varphi(x, t)=\varphi(x, 0), t \in[0, \tau] \quad \text { for some } \tau>0\} \\
& E_{2}=\{x: \varphi(x, t) \geq \varphi(x, 0), t \in[0, \tau] \quad \text { for some } \tau>0\} \\
& E_{3}=\{x: \varphi(x, t) \leq \varphi(x, 0), t \in[0, \tau] \quad \text { for some } \tau>0\} \\
& E_{4}=\left\{x: \text { for some } \quad t_{j} \rightarrow 0, \quad s_{j} \rightarrow 0, \varphi\left(x, s_{j}\right)<\varphi(x, 0)<\varphi\left(x, t_{j}\right)\right\}
\end{aligned}
$$

Observe that $\left[-A_{1}, A_{1}\right]=E_{1} \cup E_{2} \cup E_{3} \cup E_{4}$. If $x_{0} \in E_{4}$, then by theorem 3.1 in [$\mathbf{B H 1}$], there is a holomorphic function H defined in a neighborhood of $Z\left(x_{0}, 0\right)$ such that $u(x, t)=H(Z(x, t))$ for (x, t) in a neighborhood of $\left(x_{0}, 0\right), t>0$. Hence in this case, $F(z)$ has a holomorphic extension to a neighborhood of $Z\left(x_{0}, 0\right)$ and since $u(x, t)=F(Z(x, t))$ for $t>0$, we have $F(Z(x, 0))=b u(x)=b G(Z(x, 0))$. Therefore, by theorem 2.2 in $[\mathbf{D u}], F(z)=$ $G(z)$ on Ω_{1}. We may therefore assume that $E_{4}=\emptyset$. Each of the other three sets E_{1}, E_{2}, and E_{3} can be written as a countable union of closed sets as follows: $E_{1}=\bigcup_{j=1}^{\infty} E_{1 j}$, where $E_{1 j}=\left\{x \in\left[-A_{1}, A_{1}\right]: \varphi(x, t)=\varphi(x, 0), t \in\left[0, \frac{1}{j}\right]\right\} ;$ $E_{2}=\bigcup_{j=1}^{\infty} E_{2 j}$, where $E_{2 j}=\left\{x \in\left[-A_{1}, A_{1}\right]: \varphi(x, t) \geq \varphi(x, 0), t \in\left[0, \frac{1}{j}\right]\right\}$; and $E_{3}=\bigcup_{j=1}^{\infty} E_{3 j}$, where $E_{3 j}=\left\{x \in\left[-A_{1}, A_{1}\right]: \varphi(x, t) \leq \varphi(x, 0), t \in\left[0, \frac{1}{j}\right]\right\}$. Thus the interval $\left[-A_{1}, A_{1}\right]$ is a countable union of the closed sets $E_{i j}$ and hence by Baire's Category Theorem, one of these sets contains an interval with nonempty interior.

Case 1: Suppose $\varphi(x, t)=\varphi(x, 0)$ on $\left[A_{2}, A_{3}\right] \times[0, T]$ for some $T>0$, $A_{2}<A_{3}$. Then $L=\frac{\partial}{\partial t}$ on $\left[A_{2}, A_{3}\right] \times[0, T]$ and so $u(x, t)=b u(x)$ on this rectangle. This implies that $F(z)$ extends as a continuous function in Ω_{1} up to the boundary piece $\left\{Z(x, 0): A_{2}<x<A_{3}\right\}$ and therefore $b F(Z(x, 0))=b u(x)$ for $x \in\left(A_{2}, A_{3}\right)$. But then $F \equiv G$ in Ω_{1}.

Case 2: Suppose $\varphi(x, t) \geq \varphi(x, 0)$ on $\left[A_{2}, A_{3}\right] \times[0, T]$, for some $T>0$, $A_{2}<A_{3}$. For $\epsilon>0$ sufficiently small, define

$$
u_{\epsilon}(x, t)=G(Z(x, t)+i \epsilon), \quad(x, t) \in\left(A_{2}, A_{3}\right) \times(0, T)
$$

Observe that $L u_{\epsilon}=0$. Recall that G is holomorphic on the region $\Omega_{1}=$ $\left\{Z(x, 0)+i Z_{x}(x, 0) v:|x|<A_{1}, 0<v<\delta_{1}\right\}$. Let $\Omega_{2}=\left\{Z(x, 0)+i Z_{x}(x, 0) v\right.$: $\left.|x|<A_{1}, 0<v<\delta_{2}\right\}$ for some $0<\delta_{2}<\delta_{1}$, and for each $p=Z(x, 0),|x|<$ A_{1}, define the nontangential approach region

$$
\Gamma(p)=\left\{z \in \Omega_{2}:|z-p|<2 \operatorname{dist}\left(z, \partial \Omega_{2}\right)\right\}
$$

Denote by $G^{*}(x)$ the nontangential maximal function of $G(z)$, that is,

$$
G^{*}(x)=\sup \{|G(z)|: z \in \Gamma(Z(x, 0))\}
$$

We have:

$$
\left|u_{\epsilon}(x, t)\right| \leq G^{*}(x) \in L^{1}\left(A_{2}, A_{3}\right)
$$

Let

$$
\begin{aligned}
w(x, t) & =\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x, t) \quad \text { (the pointwise limit) } \\
& = \begin{cases}G(x+i \varphi(x, t)), & \text { if } \varphi(x, t)>\varphi(x, 0) \\
b u(x), & \text { if } \varphi(x, t)=\varphi(x, 0)\end{cases}
\end{aligned}
$$

Then $u_{\epsilon} \rightarrow w$ in $L^{1}\left(\left(A_{2}, A_{3}\right) \times(0, T)\right)$ and so $L w=0$ in $\left(A_{2}, A_{3}\right) \times(0, T)$. Since

$$
|G(x+i \varphi(x, t))| \leq G^{*}(x) \quad \text { and a.e. } \quad G(x+i \varphi(x, t)) \rightarrow b u(x) \text { as } t \rightarrow 0
$$

we conclude that

$$
w(x, t) \rightarrow b u(x) \text { in } L^{1}\left(A_{2}, A_{3}\right) \text { as } t \rightarrow 0
$$

Therefore $u(x, t)=w(x, t)$ in a neighborhood of $\left(A_{2}, A_{3}\right) \times\{0\}, t>0$. In particular, since we may assume that

$$
\left\{(x, t) \in\left(A_{2}, A_{3}\right) \times(0, T): \varphi(x, t)>\varphi(x, 0)\right\}
$$

is not empty (otherwise, we would be placed under Case 1), $F(z) \equiv G(z)$ on Ω_{1}.

Case 3: Suppose $\varphi(x, t) \leq \varphi(x, 0)$ on $\left[A_{2}, A_{3}\right] \times[0, T], T>0, A_{2}<A_{3}$. We may assume that there exists $x_{0} \in\left(A_{2}, A_{3}\right)$ and $s_{j} \rightarrow 0$ such that $\varphi\left(x_{0}, s_{j}\right)<$ $\varphi\left(x_{0}, 0\right)$. Indeed, otherwise, matters will reduce to Case 1. By theorem 3.1
in $[\mathbf{B H 1}]$ and $[\mathbf{B C T}]$ (page 465), after decreasing $\left[A_{2}, A_{3}\right] \times[0, T]$, we get a tempered holomorphic function $G_{1}(z)$ defined on the region

$$
\Omega_{1}^{\prime}=\left\{Z(x, 0)+i Z_{x}(x, 0) v: A_{2}<x<A_{3},-T<v<0\right\}
$$

such that for every $\psi \in C_{0}^{\infty}\left(A_{2}, A_{3}\right)$,

$$
\langle b u, \psi\rangle=\lim _{v \rightarrow 0} \int G_{1}\left(Z(x, 0)+i Z_{x}(x, 0) v\right) \psi(x) \mathrm{d} x .
$$

By the edge-of-the-wedge theorem, there is a holomorphic function $v(z)$ defined in a neighborhood of $\left\{Z(x, 0): A_{2}<x<A_{3}\right\}$ that extends G and G_{1}. Hence $F(z)=G(z)$ in Ω_{1}. We have thus shown that $F \equiv G$ on Ω_{1}.

Now for almost every $p \in\left(-A_{1}, A_{1}\right), \quad G(z)$ converges nontangentially at $Z(p, 0)$ (in Ω_{1}) to $b u(p)$. Pick such a point p and let $\tilde{\Gamma}(p)$ be a nontangential approach region for $G(z)$ at $Z(p, 0)$. Define $\Gamma(p)=Z^{-1}(\tilde{\Gamma}(p))$. Then

$$
\begin{aligned}
\lim _{\Gamma(p) \ni(x, t) \rightarrow p} u(x, t) & =\lim _{\Gamma(p) \ni(x, t) \rightarrow p} F(Z(x, t)) \\
& =\lim _{\tilde{\Gamma}(p) \ni z} G(z)=b u(p) .
\end{aligned}
$$

We have thus shown that if p is a type II point, then there is an interval around it such that a.e. in the interval, pointwise convergence holds as asserted. Consider now a type I point $\left(x_{0}, 0\right)$. Then $Z\left(x_{0}, t\right) \equiv Z\left(x_{0}, 0\right)$ for t in some interval $[0, \epsilon]$. This implies that $F_{k}\left(Z\left(x_{0}, t\right)\right) \equiv F_{k}\left(Z\left(x_{0}, 0\right)\right)$ for $t \in[0, \epsilon]$, and so because of the a.e. convergence stated in (a) and (b), we conclude that for almost every type I point $x, u(x, t) \rightarrow b u(x)$ as $t \rightarrow 0$.

VI. 3 One-sided local solvability in the plane

In Section VI. 4 we will explore the boundary regularity of solutions of the inhomogeneous equation $L f=g$ where

$$
L=A(x, t) \frac{\partial}{\partial t}+B(x, t) \frac{\partial}{\partial x}
$$

is a smooth, locally integrable complex vector field defined on a subdomain Ω of \mathbb{R}^{2}.

If $L f=g$ in Ω, and f has a trace $b f$ on $\partial \Omega$ with a certain degree of regularity, we will investigate whether the regularity persists near $\partial \Omega$ under some smoothness assumption on g. As usual, the motivation comes from what is known in the elliptic case. Suppose $h(z)$ is a holomorphic function of one variable defined on the rectangle $Q=(-A, A) \times(0, T)$ with a weak trace $b h$
at $y=0$. From the local version of the classical Hardy space $\left(H^{p}\right)$ theory for holomorphic functions in the unit disk, we have:
(i) if $b h \in C^{\infty}(-A, A)$, then h is C^{∞} up to $y=0$;
(ii) if $b h \in L^{p}(-A, A)(1 \leq p \leq \infty)$, then for any $B<A$, the norms of the traces $h(\cdot, y)$ in $L^{p}(-B, B)$ are uniformly bounded as $y \rightarrow 0^{+}$.

The main results of Section VI. 4 will extend (i) and (ii) above to solutions of complex vector fields that satisfy a one-sided solvability condition. In the elliptic case, property (i) follows easily from part (ii) of Theorem VI.1.1. We will show in Section VI. 4 that in general, property (i) follows from property (ii) above and a boundary solvability condition. When a vector field exhibits property (ii), we will say that it has the H^{p} property. To describe the class of vector fields with the H^{p} property, consider a curve Σ in Ω such that $\Omega \backslash \Sigma$ has two connected components, $\Omega \backslash \Sigma=\Omega^{+} \cup \Omega^{-}$. It turns out that the local solutions of the equation $L u=0$ on Ω^{+}possess the $\left(H^{p}\right)$ property at $q \in \Sigma$ if and only if there is a neighborhood U of q such that L satisfies the solvability condition (\mathcal{P}) of Nirenberg and Treves ([NT]) on $U \cap \Omega^{+}$. This leads to a one-sided version of (\mathcal{P}) that we denote by $\left(\mathcal{P}^{+}\right)$(or $\left(\mathcal{P}^{-}\right)$if Ω^{+}is replaced by Ω^{-}) to indicate the side where it holds. If (\mathcal{P}) holds at q, then both $\left(\mathcal{P}^{+}\right)$ and $\left(\mathcal{P}^{-}\right)$hold at q. However, $\left(\mathcal{P}^{+}\right)$and $\left(\mathcal{P}^{-}\right)$may hold at $q \in \Sigma$ and yet (\mathcal{P}) may not hold in a neighborhood of q. The Mizohata vector field provides an example illustrating this. Write $L=X+i Y$ with X and Y real. Let $\mathcal{O} \subset U$ be a two-dimensional orbit of L in U and consider $X \wedge Y \in C^{\infty}\left(U ; \wedge^{2}(T(U))\right)$. Since $\wedge^{2}(T(U))$ has a global nonvanishing section $e_{1} \wedge e_{2}, X \wedge Y$ is a real multiple of $e_{1} \wedge e_{2}$ and this gives a meaning to the requirement that $X \wedge Y$ does not change sign on any two-dimensional orbit \mathcal{O} of $\{X, Y\}$ in U. Recall from Chapter IV that the vector field L satisfies condition (\mathcal{P}) at $p \in \Sigma$ if there is a disk $U \subseteq \Omega$ centered at p such that $X \wedge Y$ does not change sign on any two-dimensional orbit of L in U.

Definition VI.3.1. We say that L satisfies condition $\left(\mathcal{P}^{+}\right)$at $p \in \Sigma$ if there is a disk $U \subseteq \Omega$ centered at p such that $X \wedge Y$ does not change sign on any two-dimensional orbit of L in $U^{+}=U \cap \Omega^{+}$.

Definition VI.3.2. We say that L is one-sided locally solvable in $L^{p}, 1<$ $p<\infty\left(\right.$ resp. in $\left.C^{\infty}\right)$ at $q \in \Sigma$ if there is a neighborhood $U \subseteq \Omega$ of q such that-after interchanging Ω^{+}and Ω^{-}if necessary-for every $f \in L^{p}(U)$ (resp. $\left.f \in C^{\infty}\left(U \cap \Omega^{+}\right)\right)$there exists $u \in L^{p}(U)\left(\right.$ resp. $\left.u \in C^{\infty}\left(U \cap \Omega^{+}\right)\right)$such that $L u=f$ on $U^{+}=U \cap \Omega^{+}$.

Definition VI.3.3. We say that L is one-sided locally integrable at $p \in \Sigma$ if there is a disk $U \subset \Omega$ centered at p such that-after interchanging Ω^{+}and Ω^{-}if necessary-there exists $Z \in C^{\infty}(U)$ such that:
(1) LZ vanishes identically on $U^{+}=U \cap \Omega^{+}$;
(2) $\mathrm{d} Z(p) \neq 0$.

Let us assume that L is one-sided locally integrable at $p \in \Sigma$ and let Z satisfy (1) and (2) of Definition VI.3.3. Replacing Z by $i Z$ if necessary and decreasing U we may choose local coordinates (x, t) such that $x(p)=t(p)=0$,

$$
\begin{equation*}
Z(x, t)=x+i \varphi(x, t) \tag{VI.33}
\end{equation*}
$$

with φ real, U is the rectangle $U=(-a, a) \times(-T, T), \Sigma \cap U=\{(x, 0)$: $|x|<a\}$ and $U^{+}=(-a, a) \times(0, T)$. Thus, modulo a nonvanishing multiple, we may assume that

$$
\begin{align*}
& L=\frac{\partial}{\partial t}-i \frac{\varphi_{t}(x, t)}{1+i \varphi_{x}(x, t)} \frac{\partial}{\partial x} \tag{VI.34}\\
& X=\frac{\partial}{\partial t}+\frac{\varphi_{t} \varphi_{x}}{1+\varphi_{x}^{2}} \frac{\partial}{\partial x}, \quad Y=-\frac{\varphi_{t}}{1+\varphi_{x}^{2}} \frac{\partial}{\partial x}
\end{align*}
$$

and so

$$
X \wedge Y=\frac{\varphi_{t}(x, y)}{1+\varphi_{x}^{2}} \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial t}
$$

The proof of the following lemma is essentially the same as the one for Lemma IV.2.2.

Lemma VI.3.4. Let $Z(x, t)$ and L be given by (VI.33) and (VI.34) respectively. Then, L satisfies $\left(\mathcal{P}^{+}\right)$at the origin if and only there exist $T, a>0$ such that $(0, T) \ni t \mapsto \varphi(x, t)$ is monotone for every $x \in(-a, a)$.

We now recall from [BH6] the local equivalence between $\left(\mathcal{P}^{+}\right)$and one-sided solvability. More precisely,

Theorem VI.3.5. Let $Z(x, t)$ and L be given by (VI.33) and (VI.34) respectively. The following properties are equivalent:
(1) L satisfies $\left(\mathcal{P}^{+}\right)\left(\right.$or $\left.\left(\mathcal{P}^{-}\right)\right)$at the origin;
(2) L is one-sided locally solvable in $L^{p}, 1<p<\infty$, at the origin;
(3) L is one-sided locally solvable in C^{∞} at the origin.

The following proposition is concerned with continuous solvability up to the boundary and will be useful in the applications to boundary regularity in Section VI.4.

Proposition VI.3.6. Let $Z(x, t)$ and L be given by (VI.33) and (VI.34) respectively and assume that L satisfies $\left(\mathcal{P}^{+}\right)$at the origin, i.e., for some $U^{+}=(-r, r) \times(0, T)$, the function $(0, T) \ni t \mapsto \varphi(x, t)$ is monotone for $|x|<$ r. If $f(x, t) \in \operatorname{Lip}(U)$ there exists $u \in \bigcap_{0<\alpha<1} C^{\alpha}((-r, r) \times[0, T))$ such that $L u=f$ in U^{+}.

The proof of the proposition is based on the following lemma.
Lemma VI.3.7. Let $F(\zeta) \in L_{c}^{\infty}(\mathbb{C})$ and let $f(x, t)=F \circ Z(x, t)$. There exists $v \in \bigcap_{0<\alpha<1} C^{\alpha}((-r, r) \times(-T, T))$ such that $L v=2 i \varphi_{t} Z_{x}^{-1} f$ on $Q=(-r, r) \times$ $(-T, T)$.

Proof. Let $E=1 /(\pi \zeta)$ be the fundamental solution of $\partial / \partial \bar{\zeta}$ and set $V=$ $E * F$. Then $V \in \bigcap_{0<\alpha<1} C^{\alpha}$ locally and $\overline{\partial_{\zeta}} V=F$ in the sense of distributions. If we set $v=V \circ Z$ it follows that v is in $\bigcap_{0<\alpha<1} C^{\alpha}((-r, r) \times[0, T))$ and the chain rule gives $L v=-2 i \varphi_{t} Z_{x}^{-1}\left(\overline{\partial_{\zeta}} V\right) \circ Z=-2 i \varphi_{t} Z_{x}^{-1} f$.

Proof of Proposition VI.3.6. Let $f \in \operatorname{Lip}(U)$. Set $u_{0}(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$. Then, $u_{0} \in \operatorname{Lip}(U)$ and $L u_{0}-f=-i \varphi_{t} Z_{x}^{-1} \int_{0}^{t} \partial_{x} f \mathrm{~d} s=2 i \varphi_{t} Z_{x}^{-1} f_{1}$ where f_{1} is bounded. It is clear that we will be able to solve $L u=f$ on Q^{+}if we can solve

$$
\begin{equation*}
L u_{1}=2 i \varphi_{t} Z_{x}^{-1} f_{1} \quad \text { on } Q^{+} \tag{VI.35}
\end{equation*}
$$

by setting $u=u_{0}-u_{1}$. In view of Lemma VI.3.7 we wish to write $f_{1}=$ $F_{1} \circ Z(x, t)$ and the obstruction to doing so is the fact that f_{1} may not be constant on the fibers $Z^{-1}(\zeta), \zeta \in Z\left(Q^{+}\right)$. However, we are free to modify arbitrarily f_{1} on the set $\left\{\varphi_{t}=0\right\} \cup\{t \leq 0\}$ without modifying the right-hand side of (VI.35). Hence, we declare that f_{1} vanishes on $\left\{\varphi_{t}=0\right\}$ as well as on $t \leq 0$. Since Z is a diffeomorphism on $Q^{+} \backslash\left\{\varphi_{t}=0\right\}$, we may write $f_{1}=F_{1} \circ Z(x, t)$ with F_{1} bounded on $Z\left(Q^{+}\right)$and extend F_{1} as zero outside $Z\left(Q^{+}\right)$, so $F_{1} \in L_{c}^{\infty}(\mathbb{C})$. An application of Lemma VI.3.7 shows that there exists a function u_{1} of class $C^{\alpha}(U)$ for any $0<\alpha<1$ whose restriction to U^{+}satisfies (VI.35). Then $u=u_{0}-u_{1} \in C^{\alpha}\left(U^{+}\right)=C^{\alpha}\left(\overline{U^{+}}\right)$.

VI. 4 The $H^{\text {p }}$ property for vector fields

Consider a one-sided locally integrable smooth vector field

$$
L=\frac{\partial}{\partial t}+a(x, t) \frac{\partial}{\partial x}
$$

defined on a neighborhood $Q=(-A, A) \times(-B, B)$ of the origin with a onesided first integral $Z(x, t)=x+i \varphi(x, t)$ defined on Q satisfying $L Z=0$
for $t \geq 0$. In this section we will assume that L satisfies condition $\left(\mathcal{P}^{+}\right)$ at the origin in $\Sigma=(-A, A) \times\{0\}$. We may clearly assume that $\varphi(0,0)=$ $\varphi_{x}(0,0)=0$ and

$$
\left|\varphi_{x}(x, t)\right|<\frac{1}{2} \quad \text { on a neighborhood of } Q
$$

After a further contraction of Q about the origin, Lemma VI.3.4 shows that
for every $x \in(-A, A), \quad$ the map $(0, B) \ni t \mapsto \varphi(x, t)$ is monotone.
The main result of this section is as follows:
Theorem VI.4.1. Suppose f is a distribution solution of $L f=0$ in the rectangle $Q=(-A, A) \times(0, B)$. Assume f has a weak boundary value $b f=$ $f(x, 0)$ at $y=0$. Then there exist $A_{0}>0$ and $T_{0}>0$ such that for any $0<T \leq$ T_{0} and $0<a<A_{0}$, if $f(., 0)$ and $f(., T) \in L^{p}\left(-A_{0}, A_{0}\right), f(., t) \in L^{p}(-a, a)$ for any $0<t<T$ and for almost all $0<a<A_{0}$, there exists $C=C(a, T)$ such that
(i) if $1 \leq p<\infty$, then

$$
\begin{aligned}
\int_{-a}^{a}|f(x, t)|^{p} \mathrm{~d} x \leq & C\left(\int_{-a}^{a}|f(x, 0)|^{p} \mathrm{~d} x+\int_{-a}^{a}|f(x, T)|^{p} \mathrm{~d} x\right. \\
& +\int_{0}^{T}|f(a, s)|^{p}\left|\varphi_{s}(a, s)\right| \mathrm{d} s \\
& \left.+\int_{0}^{T}|f(-a, s)|^{p}\left|\varphi_{s}(-a, s)\right| \mathrm{d} s\right)
\end{aligned}
$$

(ii) if $p=\infty$, then $f \in L^{\infty}((-a, a) \times(0, T))$.

Before proving Theorem VI.4.1, we will need to recall some concepts and results from the classical theory of Hardy spaces for bounded, simply connected domains in the complex plane. Let D be a such a domain with rectifiable boundary. There are several definitions of a Hardy space for such a domain (see $[\mathbf{L}]$ and $[\mathbf{D u}]$). For our purpose here, we need to recall two of the definitions:

Definition VI.4.2. [Du] For $1 \leq p<\infty$, a holomorphic function g on a bounded domain D with rectifiable boundary is said to be in $E^{p}(D)$ if there exists a sequence of rectifiable curves C_{j} in D tending to $b D$ in the sense that the C_{j} eventually surround each compact subdomain of D, such that

$$
\int_{C_{n}}|g(z)|^{p}|\mathrm{~d} z| \leq M<\infty
$$

The norm of $g \in E^{p}(D)$ is defined as

$$
\|g\|_{E^{p}(D)}^{p}=\inf \sup _{j} \int_{C_{j}}|g(z)|^{p}|\mathrm{~d} z|
$$

where the inf is taken over all sequences of rectifiable curves C_{j} in D tending to ∂D.

Definition VI.4.3. Suppose for a bounded region $\Omega \subseteq \mathbb{C}$ there is $\alpha=$ $\alpha(\Omega)>0$ with the property that almost every point p in the boundary admits a nonempty nontangential approach subregion

$$
\Gamma_{\alpha}(p)=\{z \in \Omega:|z-p| \leq(1+\alpha) \operatorname{dist}(z, \partial \Omega)\}
$$

that is, for a.e. $p \in \partial \Omega, \Gamma_{\alpha}(p)$ is open and p is in the closure of $\Gamma_{\alpha}(p)$. Let u be a function defined on Ω. The nontangential maximal function of u, u^{*}, and the nontangential limit of u, u^{+}, are defined as follows:

$$
\begin{array}{lll}
u^{*}(p)=\sup _{\zeta \in \Gamma_{\alpha}(p)}|u(\zeta)|, & \text { a.e. } & p \in \partial \Omega, \\
u^{+}(p)=\lim _{\zeta \in \Gamma_{\alpha}(p)} u(\zeta), & \text { a.e. } & p \in \partial \Omega .
\end{array}
$$

Definition VI.4.4. For $1 \leq p<\infty$ the Hardy space $H^{p}(\Omega)$ is defined by

$$
H^{p}(\Omega)=\left\{G \in \mathbb{O}(\Omega): G^{*} \in L^{p}(\partial \Omega)\right\}
$$

where $\mathbb{O}(\Omega)$ denotes the holomorphic functions on Ω and G^{*} denotes the nontangential maximal function defined using the $\Gamma_{\alpha}(p)$ as in the definition above.

When Ω is the unit disk, it is a classical fact that both definitions of Hardy spaces agree ([Du]). By the Riemann mapping theorem, this is also true for any bounded, simply connected domain with a smooth boundary. In the work [L], it is shown that when $1<p<\infty$, these spaces agree if Ω is bounded, simply connected with a Lipschitz boundary.

Definition VI.4.5. For $1<q<\infty$, the maximal operator T_{*} on $L^{q}(\partial \Omega)$ is defined by

$$
T_{*} u(p)=\sup _{\epsilon>0}\left|\int_{|\zeta-p|>\epsilon} \frac{1}{\zeta-p} u(\zeta) \mathrm{d} \zeta\right|, \quad \text { a.e. } \quad p \in \partial \Omega .
$$

Let us denote the Cauchy integral of a function u by $C u$. We will be interested in the L^{p} boundedness of the nontangential maximal operator $(\mathrm{Cu})^{*}$ on certain kinds of domains which we now describe:

Definition VI.4.6. A bounded, simply connected domain Ω is called Ahlforsregular if there is a constant $c>0$ such that for every $q \in \partial \Omega$, and for every $r>0$, the arclength measure of the portion of the boundary contained in the disk of radius r centered at q is less than cr.

We note that examples of Ahlfors-regular domains include simply connected domains with Lipschitz boundary. Ahlfors-regular domains admit nontangential approach regions $\Gamma_{\alpha}(p)$ as in Definition VI.4.3. The study of the boundedness of the operator T_{*} on domains with Lipschitz boundary was initiated by A. Calderón in the 1970s. He proved that T_{*} is well-defined and bounded on $L^{q}(\partial \Omega)(1<q<\infty)$ provided the Lipschitz character of Ω is smaller than an absolute constant. Later, R. Coifman, A. McIntosh and Y. Meyer extended this result to the entire Lipschitz class. G. David has shown that the Ahlfors-regular domains are the largest rectifiable domains on which T_{*} is bounded. More precisely, he proved:

Theorem VI.4.7. [D] Let $\Omega \subseteq \mathbb{C}$ be a bounded, simply connected domain with rectifiable boundary. Then T_{*} is bounded on $L^{q}(\partial \Omega), 1<q<\infty$, if and only if Ω is an Ahlfors-regular domain.

The Hardy-Littlewood maximal function $M u$ on $\partial \Omega$ is defined by

$$
M u(z)=\sup \frac{1}{|I|} \int_{I}|u(\zeta)||\mathrm{d} \zeta|
$$

where the sup is taken over all subarcs $I \subseteq \partial \Omega$ that contain z and $|I|$ denotes the arclength of I. It is well known that the Hardy-Littlewood maximal function of $\partial \Omega$ is L^{p} bounded $(1<p<\infty)$ for a class of domains that includes the Ahlfors-regular domains ([D]). The following lemma therefore reduces the boundedness of $(\mathrm{Cu})^{*}$ to that of T_{*}.

Lemma VI.4.8. Let $\Omega \subseteq \mathbb{C}$ be an Ahlfors-regular domain. The following inequality holds for every $u \in L^{q}(\partial \Omega), \quad 1<q<\infty$, and every $p \in \partial \Omega$:

$$
\begin{equation*}
(C u)^{*}(p) \leq T_{*} u(p)+c(\alpha) M u(p), \tag{VI.36}
\end{equation*}
$$

where $(\mathrm{Cu})^{*}$ denotes the nontangential maximal function of the Cauchy integral of u and $c(\alpha)$ is a positive constant depending exclusively on the aperture of the cone $\Gamma_{\alpha}(p)$.

Proof. For $p \in \partial \Omega$ arbitrary, it suffices to show that

$$
|C u(x)| \leq T_{*} u(p)+c(\alpha) M u(p) \quad \text { for every } x \in \Gamma_{\alpha}(p)
$$

Let $r:=|x-p|$. We have

$$
\begin{aligned}
2 \pi i C u(x)= & \int_{|\zeta-p|>2 r} \frac{u(\zeta)}{\zeta-p} \mathrm{~d} \zeta \\
& +\int_{|\zeta-p|>2 r}\left(\frac{u(\zeta)}{\zeta-x}-\frac{u(\zeta)}{\zeta-p}\right) \mathrm{d} \zeta \\
& +\int_{|\zeta-p|<2 r} \frac{u(\zeta)}{\zeta-x} \mathrm{~d} \zeta
\end{aligned}
$$

$=I_{1}+I_{2}+I_{3}$. We will now proceed to estimate $\left|I_{i}\right|, i=1,2,3$. Clearly, $\left|I_{1}\right| \leq T_{*} u(p)$.

To estimate I_{2} observe that

$$
\begin{equation*}
\left|\frac{1}{\zeta-x}-\frac{1}{\zeta-p}\right|=\frac{r}{|\zeta-x||\zeta-p|} \tag{VI.37}
\end{equation*}
$$

But $|\zeta-p| \leq|\zeta-x|+|x-p|$ and since $x \in \Gamma_{\alpha}(p)$, we have: $|\zeta-p| \leq(2+$ $\alpha)|x-\zeta|$. Hence (VI.37) becomes

$$
\left|\frac{1}{\zeta-x}-\frac{1}{\zeta-p}\right| \leq \frac{(2+\alpha) r}{|\zeta-p|^{2}}
$$

I_{2} can thus be estimated as follows:

$$
\begin{aligned}
\left|I_{2}\right| & \leq(2+\alpha) \int_{|\zeta-p|>2 r} \frac{r}{|p-\zeta|^{2}}|u(\zeta)| \mathrm{d} \sigma(\zeta) \\
& \leq(2+\alpha) \sum_{j=1}^{\infty} \int_{2^{j} r<|p-\zeta|<2^{j+1} r} \frac{r}{\left(2^{j} r\right)^{2}}|u(\zeta)| \mathrm{d} \sigma(\zeta) \\
& \leq 2(2+\alpha) \sum_{j=1}^{\infty} \frac{1}{2^{j}}\left(\frac{1}{2^{j+1} r} \int_{|p-\zeta|<2^{j+1} r}|u(\zeta)| \mathrm{d} \sigma(\zeta)\right) \\
& \leq c(\alpha) M u(p) .
\end{aligned}
$$

Finally, in order to estimate I_{3} we observe that $x \in \Gamma_{\alpha}(p)$ and $\zeta \in \partial \Omega$ imply

$$
\frac{1}{|\zeta-x|} \leq \frac{1+\alpha}{r}
$$

Using the latter estimate we obtain:

$$
\left|I_{3}\right| \leq \frac{(1+\alpha)}{2 \pi r} \int_{|p-\zeta|<2 r}|u(\zeta)| \mathrm{d} \sigma(\zeta) \leq c(\alpha) M u(p)
$$

Our next aim is to prove that $E^{p}(\Omega)=H^{p}(\Omega)$ for a particular class of domains Ω that includes the domains U_{k} that will appear in the proof of Theorem VI.4.1. We consider smooth regions U that are bounded by two smooth curves C_{1} and C_{2} that cross each other at two points A and B where
they meet at angles $0 \leq \theta(A), \theta(B)<\pi$. If $\theta(A), \theta(B)>0$ then U has a Lipschitz boundary and by the result in [L] we know that $E^{p}(U)=H^{p}(U)$ for $p>1$. Our methods will show that this equivalence still holds when the values $\theta(A)=0, \theta(B)=0$, and $p=1$ are allowed. By a conformal map argument we may assume that
(1) $A=0$ and $B=1$;
(2) the part C_{1} in the boundary of U is given by $[0,1] \ni t \mapsto t$;
(3) the part C_{2} in the boundary of U is given by $[0,1] \ni t \mapsto x(t)+i y(t)$ where $x(t), y(t)$ are smooth real functions such that $x(0)=y(0)=y(1)=0$, $x(1)=1$.

We first prove that $H^{p}(U) \subseteq E^{p}(U)$. We construct for a large integer j a curve C_{j} as follows. To every point $z \in C_{2} \cap \partial U$ we assign the point $\gamma_{j, 2}(z)=z+j^{-1} \mathbf{n}(z)$ where $\mathbf{n}(z)$ is the inward unit normal to C_{2} at z. For large $j, C_{2} \ni z \mapsto \gamma_{j, 2}(z)$ is a diffeomorphism and

$$
\begin{equation*}
\operatorname{dist}\left(\gamma_{j, 2}(z), C_{2}\right)=\left|\gamma_{j, 2}(z)-z\right|=\frac{1}{j} \tag{VI.38}
\end{equation*}
$$

Observe that the set

$$
D_{j}=\left\{z: \operatorname{dist}(z,[0,1] \times\{0\}) \leq \frac{1}{j}\right\}
$$

has a C^{1} boundary ∂D_{j} formed by two straight segments and two circular arcs. Fix a point $z_{0} \in C_{2}$, choose j such that $z_{0} \notin D_{j}$ and consider the connected component of

$$
\left\{z: \operatorname{dist}\left(\gamma_{j, 2}(z), D_{j}\right) \geq \frac{1}{j}\right\}
$$

that contains z_{0}. Thus, we obtain a curve $C_{j, 2}$ given by $[0,1] \supseteq\left[a_{j}, b_{j}\right] \ni$ $t \mapsto \gamma_{j, 2}(x(t)+i y(t)) \subset U$ that meets ∂D_{j} at its endpoints A_{j}, B_{j} and remains off D_{j} for $a_{j}<t<b_{j}$. Hence, we obtain a closed curve C_{j} completing the curve $C_{j, 2}$ with the portion $C_{j, 1}$ of ∂D_{j} contained in U that joins A_{j} to B_{j}. Because we are assuming that $\theta(A), \theta(B)<\pi$ we see that, for large j, $C_{j, 1}$ is a horizontal segment at height $1 / j$. It is clear that all points in C_{j} have distance $1 / j$ to the boundary. Furthermore, if $q \in C_{j, 2}, q \neq A_{j}$, and $q \neq B_{j}$ then $\operatorname{dist}(q, \partial U)=\operatorname{dist}\left(q, C_{2}\right)=1 / j$ because of (VI.38) and the fact that $\operatorname{dist}(q,[0,1] \times\{0\})>1 / j$. Similarly, if $q \in C_{j, 1}, q \neq A_{j}$, and $q \neq B_{j}$ then $\operatorname{dist}(q, \partial U)=\operatorname{dist}\left(q, C_{1}\right)=1 / j$. Thus, every point $q \in C_{j}$ is at a distance $1 / j$ of ∂U, we can always find $z \in \partial U$ such that $|q-z|=\operatorname{dist}(q, \partial U)$, and z is uniquely determined by q except when $q=A_{j}$ or $q=B_{j}$ (in which case the distance may be attained at two distinct boundary points). In particular,
whatever the value of $\alpha>0, q \in \Gamma_{\alpha}(z)$ for all $q \in C_{j}$ and $|g(q)| \leq g^{*}(z)$ for any function g defined on U. Given $g \in H^{p}(U)$ we must show that

$$
\begin{equation*}
\sup _{j} \int_{C_{j}}|g(z)|^{p}|\mathrm{~d} z| \leq M<\infty . \tag{VI.39}
\end{equation*}
$$

We have

$$
\begin{align*}
\int_{C_{j, 2}}|g(q)|^{p}|\mathrm{~d} q| & =\int_{\gamma_{j, 2}^{-1}\left(C_{j}\right)}\left|g\left(\gamma_{j, 2}(z)\right)\right|^{p}\left|\gamma_{j, 2}^{\prime}(z)\right||\mathrm{d} z| \\
& \leq \int_{\gamma_{j, 2}^{-1}\left(C_{j}\right)}\left|g^{*}(z)\right|^{p}\left|\gamma_{j, 2}^{\prime}(z)\right||\mathrm{d} z| \\
& \leq C \int_{C_{2}}\left|g^{*}(z)\right|^{p}|\mathrm{~d} z| . \tag{VI.40}
\end{align*}
$$

Similarly, using the map $\gamma_{j, 1}(x)=x+i(1 / j) \in C_{j, 1}$, we get

$$
\begin{equation*}
\int_{C_{j, 1}}|g(q)|^{p}|\mathrm{~d} q| \leq C \int_{C_{1}}\left|g^{*}(z)\right|^{p}|\mathrm{~d} z|, \tag{VI.41}
\end{equation*}
$$

so adding (VI.40) and (VI.41) we obtain

$$
\int_{C_{j}}|g(q)|^{p}|\mathrm{~d} q| \leq C \int_{\partial U}\left|g^{*}(z)\right|^{p}|\mathrm{~d} z|
$$

which implies (VI.39) with $M=C\|g\|_{H^{p}}^{p}$.
To prove the other inclusion we first assume that $p=2$. Given $f \in E^{2}(U) \subseteq$ $E^{1}(U)$ it has an a.e defined boundary value $f^{+}=b f \in L^{2}(\partial U)$ and the Cauchy integral representation

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial U} \frac{b f(\zeta)}{\zeta-z} \mathrm{~d} \zeta, \quad z \in U
$$

is valid ([Du], theorem 10.4). Furthermore, $\|f\|_{E^{p}(U)} \simeq\left\|f^{+}\right\|_{L^{p}(\partial U)}$. Next we recall Lemma VI.4.8 that gives the estimate

$$
\begin{equation*}
f^{*}(z) \leq T_{*} f^{+}(z)+C M f^{+}(z), \quad z \in \partial U \backslash\{A, B\} \tag{VI.42}
\end{equation*}
$$

It is well known that M is bounded in $L^{2}(\partial U)$. Furthermore, T_{*} is also bounded in $L^{2}(\partial U)$ by Theorem VI.4.7. Therefore (VI.42) implies that

$$
\|f\|_{H^{2}(U)}=\left\|f^{*}\right\|_{L^{2}(\partial U)} \leq C\left\|f^{+}\right\|_{L^{2}(\partial U)} \leq C^{\prime}\|f\|_{E^{2}(U)} .
$$

The same technique leads to the inclusion $E^{p}(U) \subset H^{p}(U)$ for $p>1$ because T_{*} and M are bounded as well in $L^{p}(\partial U)$ for $1<p<\infty$ but the method breaks down for $p=1$. This case will be handled in the proof of Theorem VI.4.1 using the fact that if $f \in E^{p}(U), 1 \leq p<\infty, f$ has a canonical factorization $f=F B$ where F has no zeros, and $|B| \leq 1$. This is classical for the unit disk
Δ, where B is obtained as a Blaschke product and the general case is obtained from the classical result.

We are now ready to present the proof of Theorem VI.4.1. We begin by defining

$$
m(x)=\min _{0 \leq y \leq B} \varphi(x, y), \quad M(x)=\max _{0 \leq y \leq B} \varphi(x, y), \quad-A \leq x \leq A
$$

The function $Z(x, y)$ takes the rectangle $Q=[-A, A] \times[0, B]$ onto

$$
Z(Q)=\{\xi+i \eta: \quad-A \leq \xi \leq A, \quad m(\xi) \leq \eta \leq M(\xi)\}
$$

The interior of $Z(Q)$ is

$$
\{\xi+i \eta: \quad-A<\xi<A, \quad m(\xi)<\eta<M(\xi)\}
$$

We will consider three essential cases, in each of which we will show that the assertions of the theorem are valid on a half-interval $[0, a]$. Since the same arguments also apply to the half-intervals $[-a, 0]$, the theorem will follow.

Case 1: Assume that $M(0)=m(0)$ and $M(a)=m(a)$ for some $a>0$. In this case we will first assume that the solution f is smooth on \bar{Q}. If $M(x)=m(x)$ for every $x \in[0, a]$, then L would be $\frac{\partial}{\partial t}$ in $[0, a]$ and $f(x, t)=f(x, 0)$ for all $t \in[0, B]$, which trivially leads to the inequality we seek on the half-interval $[0, a]$. Hence we may assume that there is $x \in(0, a)$ for which $m(x)<M(x)$. Then the set $Z((0, a) \times(0, B))$ has nonempty interior. Every component of the interior of this set has the form

$$
\{\xi+i \eta: \alpha<\xi<\beta, m(\xi)<\eta<M(\xi)\}
$$

where (α, β) is a component of the open set $\{x \in(0, a): M(x)>m(x)\}$. Let

$$
\{x \in(0, a): M(x)>m(x)\}=\bigcup_{k}\left(\alpha_{k}, \beta_{k}\right)
$$

be a decomposition into components. Fix k and consider one of these components $\left(\alpha_{k}, \beta_{k}\right)$. Note that $m\left(\alpha_{k}\right)=M\left(\alpha_{k}\right)$ and $m\left(\beta_{k}\right)=M\left(\beta_{k}\right)$. Since for each x, the function

$$
t \longmapsto \varphi(x, t) \quad \text { is monotonic }
$$

either $m(x)=\varphi(x, 0)$ and $M(x)=\varphi(x, B)$ or $m(x)=\varphi(x, B)$ and $M(x)=$ $\varphi(x, 0)$ on $\left(\alpha_{k}, \beta_{k}\right)$. Without loss of generality, we may assume that $m(x)=$ $\varphi(x, 0)$ and $M(x)=\varphi(x, B)$ for every $x \in\left(\alpha_{k}, \beta_{k}\right)$. Let $U_{k}=$ the interior of $Z\left(\left(\alpha_{k}, \beta_{k}\right) \times(0, B)\right)$. Thus

$$
U_{k}=\left\{x+i y: \alpha_{k}<x<\beta_{k}, \varphi(x, 0)<y<\varphi(x, B)\right\}
$$

Since the solution f is assumed smooth on \bar{Q} in the case under consideration, by the Baouendi-Treves approximation theorem, there exists $F_{k} \in C^{\infty}\left(\overline{U_{k}}\right)$, holomorphic in U_{k} such that

$$
f(x, y)=F_{k}(Z(x, y)) \quad \forall(x, y) \in\left[\alpha_{k}, \beta_{k}\right] \times[0, B] .
$$

Note that U_{k} is a bounded, simply connected region lying between two smooth graphs and its boundary ∂U_{k} is smooth except at the two end points $\left(\alpha_{k}, M\left(\alpha_{k}\right)\right)$ and $\left(\beta_{k}, M\left(\beta_{k}\right)\right)$. Note also that U_{k} has a rectifiable boundary of length bounded by

$$
\begin{aligned}
\left|\partial U_{k}\right| & \leq \int_{\alpha_{k}}^{\beta_{k}} \sqrt{1+\varphi_{x}^{2}(x, B)} \mathrm{d} x+\int_{\alpha_{k}}^{\beta_{k}} \sqrt{1+\varphi_{x}^{2}(x, 0)} \mathrm{d} x \\
& \leq 2\left(\beta_{k}-\alpha_{k}\right) \sqrt{1+\sup _{Q}|\nabla \varphi|^{2}}=K\left(\beta_{k}-\alpha_{k}\right)
\end{aligned}
$$

where the constant K is independent of k. For each $p \in \partial U_{k}$, and $p \notin\left\{\left(\alpha_{k}, M\left(\alpha_{k}\right)\right),\left(\beta_{k}, M\left(\beta_{k}\right)\right)\right\}$, define the approach region

$$
\Gamma_{p}=\left\{z \in U_{k}:|z-p| \leq 2 \operatorname{dist}\left(z, \partial U_{k}\right)\right\}
$$

Define the maximal functions F_{k}^{*} and $T_{*} F_{k}$ on ∂U_{k} (except at the two cusps) by

$$
F_{k}^{*}(p)=\sup _{\zeta \in \Gamma_{p}}\left|F_{k}(\zeta)\right|
$$

and

$$
T_{*} F_{k}(z)=\sup _{\epsilon>0}\left|\int_{\left\{\zeta \in \partial U_{k}:|\zeta-z|>\epsilon\right\}} \frac{1}{\zeta-z} F_{k}(\zeta) \mathrm{d} \zeta\right|, \quad z \in \partial U_{k}
$$

Recall the Hardy-Littlewood maximal function

$$
M F_{k}(z)=\sup \frac{1}{|I|} \int_{I}\left|f^{+}(\zeta)\right||\mathrm{d} \zeta|, \quad z \neq \alpha_{k}+i M\left(\alpha_{k}\right), \beta_{k}+i M\left(\beta_{k}\right)
$$

where the sup is taken over all subarcs $I \subseteq \partial U_{k}$ that contain z and $|I|$ denotes the arclength of I. Next, since each U_{k} is Ahlfors-regular, Lemma VI.4.8 gives the estimate

$$
\begin{equation*}
F_{k}^{*}(z) \leq T_{*} F_{k}(z)+C M F_{k}(z), \quad z \in \partial U_{k} \backslash\left\{\alpha_{k}+i M\left(\alpha_{k}\right), \beta_{k}+i M\left(\beta_{k}\right)\right\} \tag{VI.43}
\end{equation*}
$$

The constant C in (VI.43) is independent of k because the aperture of the Γ_{p} is independent of k. Next we will show that any $z \in U_{k}$ lies in Γ_{p} for some $p \in \partial U_{k}$. Let $z \in U_{k}$. Then for some $(x, t) \in\left(\alpha_{k}, \beta_{k}\right) \times(0, B), z=x+i \varphi(x, t)$
and $\varphi(x, 0)<\varphi(x, t)<\varphi(x, B)$. Let $p=x+i \varphi(x, B)$ and $q=x+i \varphi(x, 0)$. We claim that $z \in \Gamma_{p} \cup \Gamma_{q}$. Indeed suppose first

$$
\begin{equation*}
|\varphi(x, B)-\varphi(x, t)| \leq|\varphi(x, t)-\varphi(x, 0)| \tag{VI.44}
\end{equation*}
$$

Then for any y :

$$
\begin{align*}
\mid x & +i \varphi(x, t)-y-i \varphi(y, B) \left\lvert\, \geq \frac{1}{2}(|x-y|+|\varphi(x, t)-\varphi(y, B)|)\right. \\
& \geq \frac{1}{2}(|x-y|+|\varphi(x, t)-\varphi(x, B)|-|\varphi(x, B)-\varphi(y, B)|) \\
& \geq \frac{1}{2}\left(|\varphi(x, t)-\varphi(x, B)| \quad \text { since }\left|\varphi_{x}\right| \leq \frac{1}{2}\right. \\
& =\frac{1}{2}|z-p| \tag{VI.45}
\end{align*}
$$

We also have:

$$
\begin{align*}
|x+i \varphi(x, t)-y-i \varphi(y, 0)| & \geq \frac{1}{2}(|x-y|+|\varphi(x, t)-\varphi(y, 0)|) \\
& \geq \frac{1}{2}(|\varphi(x, t)-\varphi(x, 0)| \\
& \geq \frac{1}{2}(|\varphi(x, B)-\varphi(x, t)| \quad \text { by (VI.44) } \\
& =\frac{1}{2}|z-p| \tag{VI.46}
\end{align*}
$$

From (VI.45) and (VI.46) we see that if (VI.44) holds, then $z \in \Gamma_{p}$. By a similar reasoning, if (VI.44) does not hold, then $z \in \Gamma_{q}$. We have thus shown that

$$
\begin{equation*}
U_{k} \subseteq \bigcup_{p \in \partial U_{k}} \Gamma_{p} \tag{VI.47}
\end{equation*}
$$

Next fix $(x, t) \in\left(\alpha_{k}, \beta_{k}\right) \times(0, B)$. If $x+i \varphi(x, t) \in U_{k}$, i.e., if $\varphi(x, 0)<$ $\varphi(x, t)<\varphi(x, B)$, then by (VI.47),

$$
\begin{equation*}
\mid F_{k}\left(x+i \varphi(x, t) \mid \leq F_{k}^{*}(x+i \varphi(x, 0))+F_{k}^{*}(x+i \varphi(x, B))\right. \tag{VI.48}
\end{equation*}
$$

On the other hand, if $\varphi(x, t)=\varphi(x, 0)$, then since $\varphi(x, 0)<\varphi(x, B)$, there exists $t \leq y<B$ such that $\varphi(x, y)=\varphi(x, 0)=\varphi(x, t)$ and y is the maximum such. Let $y_{m} \rightarrow y, \quad y_{m}>y$. Then by (VI.48),

$$
\mid F_{k}\left(x+i \varphi\left(x, y_{m}\right) \mid \leq F_{k}^{*}(x+i \varphi(x, 0))+F_{k}^{*}(x+i \varphi(x, B))\right.
$$

Letting $m \rightarrow \infty$, we get

$$
\begin{aligned}
\mid F_{k}(x+i \varphi(x, t) \mid & =\left|F_{k}(x+i \varphi(x, y))\right| \\
& \leq F_{k}^{*}(x+i \varphi(x, 0))+F_{k}^{*}(x+i \varphi(x, B))
\end{aligned}
$$

Thus for any $(x, t) \in\left(\alpha_{k}, \beta_{k}\right) \times(0, B)$, we have:

$$
\begin{align*}
|f(x, t)|= & \left|F_{k}(x+i \varphi(x, t))\right| \leq F_{k}^{*}(x+i \varphi(x, 0)) \tag{VI.49}\\
& +F_{k}^{*}(x+i \varphi(x, B))
\end{align*}
$$

From (VI.43) and (VI.49), for any $(x, t) \in\left(\alpha_{k}, \beta_{k}\right) \times(0, B)$, we have:

$$
\begin{align*}
|f(x, t)| \leq & T_{*} F_{k}(x+i \varphi(x, 0))+T_{*} F_{k}(x+i \varphi(x, B)) \\
& +C\left(M F_{k}(x+i \varphi(x, 0))+M F_{k}(x+i \varphi(x, B))\right) \tag{VI.50}
\end{align*}
$$

where we recall that the constant C is independent of k. Let $1<p<\infty$. The cases $p=1, \infty$ will be treated separately at the end. Since U_{k} is an Ahlforsregular domain, both T_{*} and M are bounded in $L^{p}\left(\partial U_{k}\right)([\mathbf{D}])$ and so (VI.50) leads to

$$
\begin{equation*}
\int_{\alpha_{k}}^{\beta_{k}}|f(x, t)|^{p} \mathrm{~d} x \leq C \int_{\partial U_{k}}\left|F_{k}(z)\right|^{p}|\mathrm{~d} z| \quad \text { for any } 0<t<B \tag{VI.51}
\end{equation*}
$$

Since $f(x, t)=F_{k}(Z(x, t))$ on $\left[\alpha_{k}, \beta_{k}\right] \times[0, B]$, we conclude that for any $0<t<B$:

$$
\begin{equation*}
\int_{\alpha_{k}}^{\beta_{k}}|f(x, t)|^{p} \mathrm{~d} x \leq C\left(\int_{\alpha_{k}}^{\beta_{k}}|f(x, 0)|^{p} \mathrm{~d} x+\int_{\alpha_{k}}^{\beta_{k}}|f(x, B)|^{p} \mathrm{~d} x\right) \tag{VI.52}
\end{equation*}
$$

where C is independent of k. We can write

$$
(0, a)=\left(\bigcup_{k}\left(\alpha_{k}, \beta_{k}\right)\right) \bigcup S
$$

where $S=\{x \in(0, a): \varphi(x, 0)=\varphi(x, B)\}$. Observe that for $x \in S$, the function $t \longmapsto f(x, t)$ is constant since $L=\frac{\partial}{\partial t}$ on $\{x\} \times(0, B)$. Hence for any $0 \leq t \leq B$,

$$
\begin{equation*}
\int_{S}|f(x, t)|^{p} \mathrm{~d} x=\int_{S}|f(x, B)|^{p} \mathrm{~d} x . \tag{VI.53}
\end{equation*}
$$

Using (VI.53) and summing up over k in (VI.52), we conclude:

$$
\begin{equation*}
\int_{0}^{a}|f(x, t)|^{p} \mathrm{~d} x \leq C\left(\int_{0}^{a}|f(x, 0)|^{p} \mathrm{~d} x+\int_{0}^{a}|f(x, B)|^{p} \mathrm{~d} x\right) \tag{VI.54}
\end{equation*}
$$

for any $0<t<B$. Finally, we use a refinement of the approximation theorem as in Theorem II.4.12 to remove the smoothness of f.

Case 2: Assume that $M(0)=m(0)$ and $M(x)>m(x)$ for every $0<x \leq A$. We will need to use the boundary version of the Baouendi-Treves approximation formula. Let $h(x) \in C_{0}^{\infty}(-A, A), h(x) \equiv 1$ in a neighborhood of 0 . For $\tau>0$, define

$$
E_{\tau} f(x, t)=(\tau / \pi)^{1 / 2} \int_{\mathbb{R}} \mathrm{e}^{-\tau\left[Z(x, t)-Z\left(x^{\prime}, 0\right)\right]^{2}} f\left(x^{\prime}, 0\right) h\left(x^{\prime}\right) Z_{x}\left(x^{\prime}, 0\right) \mathrm{d} x^{\prime}
$$

and

$$
G_{\tau} f(x, t)=(\tau / \pi)^{1 / 2} \int_{\mathbb{R}} \mathrm{e}^{-\tau\left[Z(x, t)-Z\left(x^{\prime}, t\right)\right]^{2}} f\left(x^{\prime}, t\right) h\left(x^{\prime}\right) Z_{x}\left(x^{\prime}, t\right) \mathrm{d} x^{\prime}
$$

where $f\left(x^{\prime}, t\right)$ is the distribution trace of f at $t \geq 0$. Let

$$
R_{\tau} f(x, t)=E_{\tau} f(x, t)-G_{\tau} f(x, t) .
$$

The Baouendi-Treves approximation theorem asserts that after decreasing A and $B, E_{\tau} f(x, t)$ converges to $f(x, t)$ in the sense of distributions in the open set $(-A, A) \times(0, B)$. However, here we need the refined boundary result in Chapter II (Theorem II.4.12) which guarantees convergence up to $t=0$ in appropriate function spaces. More precisely, according to the result, there exist $a, b>0$ such that

$$
R_{\tau} f(x, t) \rightarrow 0 \quad \text { in } C^{\infty}([-a, a] \times[0, b]) .
$$

Since it is clear that $G_{\tau} f(x, t) \rightarrow f(x, t)$ in $L^{p}(-a, a)$ whenever $f(., t) \in$ $L^{p}(-a, a)$, it follows that

$$
\begin{equation*}
E_{\tau} f(x, t) \rightarrow f(x, t) \quad \text { in } L^{p}([-a, a]), \quad \text { if } f(., t) \in L^{p}(-a, a) . \tag{VI.55}
\end{equation*}
$$

Let $F_{\tau}(z)$ be the entire function satisfying $F_{\tau}(Z(x, t))=E_{\tau} f(x, t)$. Let $U_{a}=$ the interior of $Z((0, a) \times(0, b))$. Recall that $m(0)=M(0)$ but $m(x)<M(x)$ for any $0<x \leq A$. The domain U_{a} is also an Ahlfors-regular domain. Therefore, we can apply the arguments in Case 1 to the smooth functions $E_{\tau} f$ to arrive at:

$$
\begin{equation*}
\int_{0}^{a}\left|E_{\tau} f(x, t)\right|^{p} \mathrm{~d} x \leq C \int_{\partial U_{a}}\left|F_{\tau} f(z)\right|^{p}|\mathrm{~d} z| \tag{VI.56}
\end{equation*}
$$

Note that this time ∂U_{a} has three pieces and so (VI.56) leads to:

$$
\begin{align*}
\int_{0}^{a}\left|E_{\tau} f(x, t)\right|^{p} \mathrm{~d} x \leq & C\left(\int_{0}^{a}\left|E_{\tau} f(x, 0)\right|^{p} \mathrm{~d} x+\int_{0}^{a}\left|E_{\tau} f(x, b)\right|^{p} \mathrm{~d} x\right. \\
& \left.+\int_{0}^{b}\left|E_{\tau} f(a, s)\right|^{p}\left|\varphi_{s}(a, s)\right| \mathrm{d} s\right), \quad 0<t<b . \tag{VI.57}
\end{align*}
$$

We now wish to let $\tau \rightarrow \infty$ in (VI.57). From (VI.55) we know that if $f(., 0)$ and $f(., b)$ are in $L^{p}(-a, a)$, then

$$
\begin{aligned}
& \int_{0}^{a}\left|E_{\tau} f(x, 0)\right|^{p} \mathrm{~d} x \rightarrow \int_{0}^{a}|f(x, 0)|^{p} \mathrm{~d} x \quad \text { and } \\
& \int_{0}^{a}\left|E_{\tau} f(x, b)\right|^{p} \mathrm{~d} x \rightarrow \int_{0}^{a}|f(x, b)|^{p} \mathrm{~d} x
\end{aligned}
$$

We thus need only compute the limit of the s integral in (VI.57). We will show that for almost all a^{\prime},

$$
\begin{equation*}
\int_{0}^{b}\left|E_{\tau} f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \rightarrow \int_{0}^{b}\left|f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \tag{VI.58}
\end{equation*}
$$

We know that $M(x)>m(x)$ for every $0<x \leq A$. We may also assume that $\varphi(x, t)>\varphi(x, 0)$ for every $x \in(0, A], t \in(0, b]$. Indeed, otherwise, we will be placed in the context of Case 1. The approximation theorem then implies that for each $x>0, f$ is continuous at (x, t) for $t>0$ small. Since $R_{\tau} f(x, t) \rightarrow 0$ uniformly in $[0, a] \times[0, b],(\mathrm{VI} .58)$ will follow if we show that for almost all a^{\prime},

$$
\begin{equation*}
\int_{0}^{b}\left|G_{\tau} f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \rightarrow \int_{0}^{b}\left|f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \tag{VI.59}
\end{equation*}
$$

Choose two numbers a_{1}, a_{2} such that $0<a_{1}<a<a_{2} \leq A$. By the approximation theorem, after decreasing b, since f is continuous at (x, t) for $t=t(x)>0$ small, there exists F continuous in $Z\left(\left(a_{1}, a_{2}\right) \times(0, b)\right)$, holomorphic in $W=$ the interior of $Z\left(\left(a_{1}, a_{2}\right) \times(0, b)\right)$ such that $F(Z(x, t))=f(x, t)$. Observe that

$$
W=\left\{x+i y: x \in\left(a_{1}, a_{2}\right), \varphi(x, 0)<y<\varphi(x, b)\right\}
$$

and F has a distributional boundary value $=f(x, 0)$ on the curve $\{x+i \varphi(x, 0)$: $\left.a_{1}<x<a_{2}\right\}$. For $x \in\left(a_{1}, a_{2}\right)$, define

$$
F^{*}(x)=\sup _{0<t<b}|F(x+i \varphi(x, t))|
$$

Since F has an L^{p} boundary value, it is well known (see, for example, $[\mathbf{R o}]$) that $F^{*} \in L_{\text {loc }}^{p}\left(a_{1}, a_{2}\right)$. Let $\psi \in C_{0}^{\infty}\left(a_{1}, a_{2}\right), \psi \geq 0, \psi(x) \equiv 1$ near a. Write $G_{\tau} f(x, t)=G_{\tau}^{1} f(x, t)+G_{\tau}^{2} f(x, t)$, where

$$
G_{\tau}^{1} f(x, t)=(\tau / \pi)^{1 / 2} \int_{\mathbb{R}} \mathrm{e}^{-\tau\left[Z(x, t)-Z\left(x^{\prime}, t\right)\right]^{2}} \psi\left(x^{\prime}\right) f\left(x^{\prime}, t\right) h\left(x^{\prime}\right) Z_{x}\left(x^{\prime}, t\right) \mathrm{d} x^{\prime}
$$

and $G_{\tau}^{2} f(x, t)=G_{\tau} f(x, t)-G_{\tau}^{1} f(x, t)$. Consider first $G_{\tau}^{2} f(x, t)$ for x near a. Observe that the integrand is zero for x^{\prime} near a and hence for x near a and $t \in[0, b]$,

$$
\begin{equation*}
G_{\tau}^{2} f(x, t) \rightarrow 0 \quad \text { uniformly. } \tag{VI.60}
\end{equation*}
$$

In the integrand of $G_{\tau}^{1} f(x, t), f\left(x^{\prime}, t\right)$ can be replaced by $F\left(Z\left(x^{\prime}, t\right)\right)=F\left(x^{\prime}+\right.$ $\left.i \varphi\left(x^{\prime}, t\right)\right)$ and hence we have:

$$
\begin{equation*}
\left|G_{\tau}^{1} f(x, t)\right| \leq C(\tau / \pi)^{1 / 2} \int_{\mathbb{R}} \mathrm{e}^{-\frac{1}{2} \tau\left|x-x^{\prime}\right|^{2}} \psi\left(x^{\prime}\right) F^{*}\left(x^{\prime}\right) \mathrm{d} x^{\prime} \tag{VI.61}
\end{equation*}
$$

where C is independent of τ. Thus if we define

$$
\begin{align*}
& \eta(x)=\pi^{-1 / 2} \mathrm{e}^{-\frac{x^{2}}{2}}, \text { and } \eta_{\tau}(x)=\tau^{1 / 2} \eta\left(\tau^{1 / 2} x\right) \text {, then (VI.61) says that } \\
& \qquad\left|G_{\tau}^{1} f(x, t)\right| \leq C\left(\eta_{\tau} * \psi F^{*}\right)(x) \quad \forall t \in[0, b] \tag{VI.62}
\end{align*}
$$

Since $\psi F^{*} \in L^{p}(-\infty, \infty)$ and η is a radial decreasing function in $|x|$, by a proposition in [S2, page 57],

$$
\sup _{\tau>0} \eta_{\tau} * \psi F^{*}(x) \quad \text { is finite a.e. }
$$

Pick a point x_{0} where this supremum is finite and where $F^{*}\left(x_{0}\right)<\infty$. Then at such a point, the functions $\left|G_{\tau}^{1} f\left(x_{0}, t\right)\right|$ are bounded on $[0, b]$. Since pointwise,

$$
G_{\tau}^{1} f\left(x_{0}, t\right) \rightarrow f\left(x_{0}, t\right) \quad \forall t \in[0, b],
$$

it follows that

$$
\begin{equation*}
\int_{0}^{b}\left|G_{\tau} f\left(x_{0}, s\right)\right|^{p}\left|\varphi_{s}\left(x_{0}, s\right)\right| \mathrm{d} s \rightarrow \int_{0}^{b}\left|f\left(x_{0}, s\right)\right|^{p}\left|\varphi_{s}\left(x_{0}, s\right)\right| \mathrm{d} s . \tag{VI.63}
\end{equation*}
$$

From (VI.59) and (VI.63), we conclude that

$$
\begin{equation*}
\int_{0}^{b}\left|E_{\tau} f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \rightarrow \int_{0}^{b}\left|f\left(a^{\prime}, s\right)\right|^{p}\left|\varphi_{s}\left(a^{\prime}, s\right)\right| \mathrm{d} s \tag{VI.64}
\end{equation*}
$$

for almost all a^{\prime}. We can therefore let $\tau \rightarrow \infty$ in (VI.57) and conclude that for almost all a :

$$
\begin{align*}
\int_{0}^{a}|f(x, t)|^{p} \mathrm{~d} x \leq & C\left(\int_{0}^{a}|f(x, 0)|^{p} \mathrm{~d} x+\int_{0}^{a}|f(x, b)|^{p} \mathrm{~d} x\right. \\
& \left.+\int_{0}^{b}|f(a, s)|^{p}\left|\varphi_{s}(a, s)\right| \mathrm{d} s\right), \quad 0<t<b \tag{VI.65}
\end{align*}
$$

Case 3: Assume $M(0)>m(0)$. Let $a>0$ such that $M(x)>m(x)$ for every $x \in(-a, a)$. If $W_{a}=Z((-a, a) \times(0, B))$, there is a function F holomorphic on the interior of W_{a} such that $f(x, y)=F(Z(x, y))$. This time the boundary of W_{a} has four pieces. One can then reason as in the previous case to get the required estimate on the interval $(-a, a)$. Finally, observe that estimates on the interval of the form $[-a, 0]$ are also valid under Cases 1 and 2. The theorem for $1<p<\infty$ follows from these three cases.

We consider next the case when $p=1$.
Assume we are in the situation of Case 1 where $M(0)=m(0)$ and $M(a)=$ $m(a)$ for some $a>0$. As before we assume first that $f(x, t)$ is smooth on $\overline{Q^{+}}, F_{k} \in C^{\infty}\left(\overline{U_{k}}\right)$, holomorphic in U_{k} and $f(x, y)=F_{k}(Z(x, y))$ on $\left[\alpha_{k}, \beta_{k}\right] \times$ $[0, B]$. Since U_{k} is simply connected, by a classical result (see the corollary of theorem 10.1 in $[\mathbf{D u}]), F_{k}$ has a factorization $F_{k}=G_{k} B_{k}$ where each factor is
holomorphic in U_{k}, G_{k} has no zeros, $G_{k} \in E^{1}\left(U_{k}\right),\left|B_{k}(z)\right| \leq 1$, and $\left|B_{k}(z)\right|=1$ on ∂U_{k}. The fact that $G_{k} \in E^{1}\left(U_{k}\right)$ implies (see theorem 10.4 in $\left.[\mathbf{D u}]\right)$ that it has a nontangential limit $b G_{k}$ a.e. on ∂U_{k}, and G_{k} equals the Cauchy transform of $b G_{k}$. Observe that since $\left|B_{k}(z)\right|=1$ on $\partial U_{k},\left|b G_{k}(z)\right|=\left|F_{k}(z)\right|$ on ∂U_{k}. Since G_{k} has no zeros on the simply connected region U_{k}, it has a holomorphic square root H_{k}. Note that $H_{k} \in E^{2}\left(U_{k}\right)=H^{2}\left(U_{k}\right)$ (by the discussion preceding this proof). We have

$$
\begin{equation*}
H_{k}^{*}(z) \leq T_{*}\left(b H_{k}\right)(z)+C M\left(b H_{k}\right)(z) \tag{VI.66}
\end{equation*}
$$

Using (VI.66) and the equality $\left|G_{k}\right|=\left|F_{k}\right|$ on ∂U_{k} we get:

$$
\begin{align*}
\int_{\alpha_{k}}^{\beta_{k}}|f(x, t)| \mathrm{d} x & =\int_{\alpha_{k}}^{\beta_{k}}\left|F_{k}(x+i \varphi(x, t))\right| \mathrm{d} x \\
& \leq \int_{\alpha_{k}}^{\beta_{k}}\left|G_{k}(x+i \varphi(x, t))\right| \mathrm{d} x=\int_{\alpha_{k}}^{\beta_{k}}\left|H_{k}(x+i \varphi(x, t))\right|^{2} \mathrm{~d} x \\
& \leq \int_{\partial U_{k}}\left|H_{k}^{*}(z)\right|^{2}|\mathrm{~d} z| \\
& \leq C \int_{\partial U_{k}}\left|b H_{k}(z)\right|^{2}|\mathrm{~d} z| \quad \text { by the } L^{2} \text { boundedness of } T_{*} \text { and } M \\
& =C\left(\int_{\alpha_{k}}^{\beta_{k}}|f(x, 0)| \mathrm{d} x+\int_{\alpha_{k}}^{\beta_{k}}|f(x, B)| \mathrm{d} x\right) \text { for any } 0<t<B \tag{VI.67}
\end{align*}
$$

Summing up over k and adding the contributions from the set $S=(0, a) \backslash \cup_{k}$ $\left(\alpha_{k}, \beta_{k}\right)$, we get:

$$
\begin{aligned}
& \int_{0}^{a}|f(x, t)| \mathrm{d} x \leq C\left(\int_{0}^{a}|f(x, 0)| \mathrm{d} x+\int_{0}^{a}|f(x, B)| \mathrm{d} x\right) \\
& \quad \text { for } 0<t<B
\end{aligned}
$$

whenever f is a solution and $f \in C^{\infty}\left(\bar{Q}^{+}\right)$. In general, for $f \in \mathcal{D}^{\prime}\left(Q^{+}\right)$satisfying the hypotheses of Theorem VI.4.1, let $\left\{f_{m}(x, t)\right\}$ be a sequence of C^{∞} solutions on $\overline{Q^{+}}$satisfying:
(i) for each $0 \leq t \leq B, f_{m}(., t) \rightarrow f(., t)$ in $\mathcal{D}^{\prime}(-a, a)$;
(ii) $f_{m}(x, 0) \rightarrow f(x, 0)$ and $f_{m}(x, B) \rightarrow f(x, B)$ in $L^{1}(-a, a)$.

We now apply inequality (VI.68) to $f_{m}-f_{n}$, let m and n tend to ∞, and use (i) and (ii) above to conclude that (VI.68) also holds for f. Cases 2 and 3 are also treated in a similar fashion. Finally we consider the case where $p=\infty$. Suppose we are in the situation of Case 1 where $M(0)=m(0)$ and
$M(a)=m(a)$ for some $a>0$. Assume first that $f(x, t) \in C^{\infty}(\bar{Q})$ and for k fixed as before, let

$$
U_{k}=\left\{x+i y: \alpha_{k}<x<\beta_{k}, \varphi(x, 0)<y<\varphi(x, B)\right\}
$$

and $f(x, y)=F_{k}(Z(x, y))$ on $\left[\alpha_{k}, \beta_{k}\right] \times[0, B], F_{k}$ holomorphic on U_{k} and continuous on the closure. We apply the maximum modulus principle to F_{k} and use the constancy of f on the vertical segments $x=\alpha_{k}$ and $x=\beta_{k}$ to conclude that

$$
|f(x, y)| \leq\|f(., 0)\|_{L^{\infty}(0, a)}+\|f(., B)\|_{L^{\infty}(0, a)} \quad \forall(x, y) \in\left[\alpha_{k}, \beta_{k}\right] \times[0, B]
$$

If S is the set as before with

$$
(0, a)=\left(\bigcup_{k}\left(\alpha_{k}, \beta_{k}\right)\right) \bigcup S
$$

then $f(x, y)=f(x, B) \quad \forall(x, y) \in S \times(0, B)$, and so we conclude that

$$
\begin{gather*}
|f(x, y)| \leq\|f(., 0)\|_{L^{\infty}(0, a)}+\|f(., B)\|_{L^{\infty}(0, a)} \tag{VI.69}\\
\forall(x, y) \in(0, a) \times(0, B) .
\end{gather*}
$$

For a solution $f \in \mathcal{D}^{\prime}\left(Q^{+}\right)$satisfying $f(., 0)$ and $f(., B) \in L^{\infty}(-A, A)$, we use the refinement of the approximation theorem in Chapter II according to which

$$
\begin{equation*}
f(x, y)=\lim _{\tau \rightarrow \infty} E_{\tau} f(x, y) \quad \text { a.e. in } \quad(0, a) \times(0, B) \tag{VI.70}
\end{equation*}
$$

provided that A and B are small enough. Moreover,

$$
\begin{align*}
\left|G_{\tau} f(x, B)\right| & \leq c_{1} \tau^{\frac{1}{2}} \int \mathrm{e}^{-c_{2} \tau\left|x-x^{\prime}\right|^{2}}\left|f\left(x^{\prime}, B\right) \| h\left(x^{\prime}\right)\right| \mathrm{d} x^{\prime} \\
& \leq c_{3} \mid\|f(., B)\|_{L^{\infty}} \quad \forall \tau>0 \tag{VI.71}
\end{align*}
$$

and likewise,

$$
\begin{equation*}
\left|G_{\tau} f(x, 0)\right| \leq c| | f(., 0) \|_{L^{\infty}} \tag{VI.72}
\end{equation*}
$$

Letting $\tau \rightarrow \infty$, and recalling that $R_{\tau} f \rightarrow 0$ uniformly, we get

$$
\begin{align*}
& \varlimsup_{\tau \rightarrow \infty}\left|E_{\tau} f(x, 0)\right| \leq C| | f(., 0) \|_{L^{\infty}} \quad \text { and } \\
& \varlimsup_{\tau \rightarrow \infty}\left|E_{\tau} f(x, B)\right| \leq C| | f(., B) \|_{L^{\infty}} \tag{VI.73}
\end{align*}
$$

for some $C>0$. From (VI.69) (applied to $E_{\tau} f$), (VI.70) and (VI.73), we conclude that for every $(x, y) \in(0, a) \times(0, B)$,

$$
\begin{equation*}
|f(x, y)| \leq C\left(\|f(., 0)\|_{L^{\infty}(0, a)}+\|f(., B)\|_{L^{\infty}(0, a)}\right) . \tag{VI.74}
\end{equation*}
$$

Next we consider Case 2 where $M(0)=m(0)$ and $M(x)>m(x)$ for every $0<x \leq A$. As before, let $a, b>0$ such that

$$
\begin{equation*}
E_{\tau} f(x, t) \rightarrow f(x, t) \quad \text { a.e. in }[-a, a] \times[0, b] \tag{VI.75}
\end{equation*}
$$

Let $U_{a}=Z((0, a) \times(0, b))$ and consider the holomorphic function F_{τ} such that $F_{\tau}(Z(x, t))=E_{\tau} f(x, t)$. The maximum principle applied to F_{τ} on U_{a} leads to

$$
\begin{align*}
\left|E_{\tau} f(x, y)\right| & \leq\left\|E_{\tau} f(., 0)\right\|_{L^{\infty}(0, a)}+\left\|E_{\tau} f(., b)\right\|_{L^{\infty}(0, a)} \\
& +\left\|E_{\tau} f(a, .)\right\|_{L^{\infty}(0, b)} \quad \forall(x, y) \in[0, a] \times[0, b] . \tag{VI.76}
\end{align*}
$$

As observed already, the terms $\left\|E_{\tau} f(., 0)\right\|_{L^{\infty}(0, a)}$ and $\left\|E_{\tau} f(., b)\right\|_{L^{\infty}(0, a)}$ are dominated by a constant multiple of

$$
\|f(., 0)\|_{L^{\infty}(0, a)}+\|f(., b)\|_{L^{\infty}(0, a)}
$$

We therefore only need to estimate the term $\left\|E_{\tau} f(a, .)\right\|_{L^{\infty}(0, b)}$ for which it suffices to estimate $\left\|G_{\tau} f(a, .)\right\|_{L^{\infty}(0, b)}$. Let $0<a_{1}<a<a_{2}<A$ be as before, F holomorphic such that

$$
f(x, y)=F(x+i \varphi(x, y)) \quad \text { on } \quad\left[a_{1}, a_{2}\right] \times(0, b]
$$

Since $b F=b f \in L^{\infty}\left(a_{1}, a_{2}\right)$, by the generalized maximum principle applied to F there exists $M>0$ such that

$$
|F(x+i \varphi(x, y))|=|f(x, y)| \leq M \quad \text { on } \quad\left[a_{1}^{\prime}, a_{2}^{\prime}\right] \times(0, b]
$$

for some $a_{1}<a_{1}^{\prime}<a<a_{2}^{\prime}<a_{2}$. We write $G_{\tau} f=G_{\tau}^{1} f+G_{\tau}^{2} f$ as before, except that this time ψ is supported in $\left(a_{1}^{\prime}, a_{2}^{\prime}\right)$. Recall that $G_{\tau}^{2} f \rightarrow 0$ uniformly while

$$
\left|G_{\tau}^{1} f(x, t)\right| \leq C \sup \left|\psi\left(x^{\prime}\right) f\left(x^{\prime}, t\right)\right| \leq C M
$$

Hence for some $C>0$,

$$
\left\|E_{\tau} f(a, .)\right\|_{L^{\infty}(0, b)} \leq C \quad \forall \tau>0
$$

We have shown that $f \in L^{\infty}((0, a) \times(0, b))$ in this case. Case 3 is treated likewise. We conclude that f is bounded. Theorem VI.4.1 has now been proved.

Corollary VI.4.9. Suppose f is a distribution solution of $L f=g$ in the rectangle $Q=(-A, A) \times(0, B)$. Suppose f has a weak boundary value $b f=$ $f(x, 0)$ at $y=0$ and that g is a Lipschitz function. Then there exist $A_{0}>0$ and $T_{0}>0$ such that for any $0<T \leq T_{0}$ and $0<a<A_{0}$, if $f(., 0)$ and $f(., T) \in L^{p}\left(-A_{0}, A_{0}\right), f(., t) \in L^{p}(-a, a)$ for any $0<t<T$.

Proof. Using Proposition VI.3.6 we may find a function f_{0}, uniformly continuous on Q, such that $L f_{0}=g$. Then, $f_{1}=f-f_{0}$ satisfies the hypothesis of Theorem VI.4.1. It follows that (i) holds for f_{1} if $1 \leq p<\infty$ or (ii) if $p=\infty$ and the same conclusion applies to $f=f_{0}+f_{1}$ because f_{0} is continuous up to the boundary.

Corollary VI.4.10. Let L be as above, $f \in \mathcal{D}^{\prime}\left(Q^{+}\right), L f=g$ in Q^{+}where $g \in C^{\infty}\left(\overline{Q^{+}}\right)$. Let A_{0} and T_{0} be as in Theorem VI.4.1. If f has a weak trace $f(x, 0) \in C^{\infty}\left(-A_{0}, A_{0}\right)$ and $f\left(., T_{0}\right)$ is in $C^{\infty}\left(-A_{0}, A_{0}\right)$, then for all $0<a<A_{0}$ and $0<T<T_{0}, f \in C^{\infty}([-a, a] \times[0, T])$. In particular, f is smooth up to the boundary $t=0$.

Proof. By Proposition VI.3.6, we can get $u \in C^{0}((-A, A) \times[0, B))$ that solves $L u=g$ in Q^{+}. Hence $L(u-f)=0$ in Q^{+}and so by Theorem VI.4.1 and the continuity of u up to the boundary, for any $0<a<A_{0}$ and $0<t \leq T_{0}$ there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{-a}^{a}|f(x, t)|^{2} \mathrm{~d} x \leq C \quad \forall t \in\left[0, T_{0}\right] . \tag{VI.77}
\end{equation*}
$$

Define the vector field $M=\frac{1}{Z_{x}(x, t)} \frac{\partial}{\partial x}$. Since the bracket $[L, M]=0$ and $L f=g$, the distribution $M f$ is also a solution of $L(M f)=M g$ in Q^{+}. Moreover, since the traces $M f\left(., T_{0}\right)$ and $M f(., 0)$ are smooth, by repeating the same arguments, for any $0<a<A_{0}$ and $0<T<T_{0}$ there is a constant $C>0$ such that

$$
\begin{equation*}
\int_{-a}^{a}|M f(x, t)|^{2} \mathrm{~d} x \leq C \quad \forall t \in[0, T] . \tag{VI.78}
\end{equation*}
$$

Since $\frac{\partial f}{\partial t}=-a(x, t) \frac{\partial f}{\partial x}+g(x, t)$, (VI.78) implies that for some constant C^{\prime},

$$
\int_{-a}^{a}\left|\frac{\partial f}{\partial t}(x, t)\right|^{2} \mathrm{~d} x \leq C^{\prime} \quad \forall t \in[0, T] .
$$

By iterating this argument, we derive that for every $m, n=1,2, \ldots$, there exists $C=C(m, n)>0$ such that

$$
\begin{equation*}
\int_{-a}^{a}\left|D_{x}^{m} D_{t}^{n} f(x, t)\right|^{2} \mathrm{~d} x \leq C \quad \forall t \in[0, T] . \tag{VI.79}
\end{equation*}
$$

From (VI.79) we conclude that $f \in C^{\infty}([-a, a] \times(0, T])$. Smoothness up to the boundary now follows from the case $p=\infty$ in Theorem VI.4.1.

Remark VI.4.11. Conversely, if a locally integrable vector field L shares the H^{p} property as in Theorem VI.4.1, then L has to satisfy condition $\left(\mathcal{P}^{+}\right)$at the origin in $\Sigma=(-A, A) \times\{0\}$. See $[\mathbf{B H 6}]$ for the proof.

Corollary VI.4.12. Let L satisfy $\left(\mathcal{P}^{+}\right)$at the origin as above. Suppose $L f=g$ in $Q^{+}, g \in C^{\infty}\left(\overline{Q^{+}}\right)$, and $f \in C^{\infty}\left(Q^{+}\right)$. If the trace $b f=f(x, 0)$ exists and $f(x, 0) \in C^{\infty}(-A, A)$, then f is C^{∞} up to the boundary $t=0$.

Example 4.3 in [BH6] provides a real-analytic vector field L for which Corollary VI.4.12 is not valid even for a solution of the homogeneous equation $L f=0$. Example 4.4 in the same paper shows that in Theorem VI.4.1, one needs to assume the integrability of two traces. That is, if we only assume that $b f=f(x, 0) \in L^{1}$, the traces $f(., t)$ may not be in L^{1}.

Notes

The results of this chapter in the holomorphic case are classical. For a discussion of the conditions that guarantee the existence of a boundary value we refer to the books [BER] and [H2]. The basic theory of Hardy spaces for bounded, simply connected domains in the complex plane is exposed in [Du] (see also $[\mathbf{P o}]$). The paper [$\mathbf{L}]$ and the references in it contain more recent developments on the subject. The planar case of Theorem VI.1.3 as well as the necessity in the real-analytic, planar situation was proved in [BH5]. Lemma VI.4.8 is taken from [L]. Theorem VI.4.1 and its corollaries appeared in [BH6]. The work [HH] extends Theorem VI.4.1 to the case $0<p<1$ for vector fields with real-analytic coefficients.

