
VI
Some boundary properties of solutions

In this chapter we will explore certain boundary properties of the solutions
of locally integrable vector fields. In the first section we present a growth
condition that ensures the existence of a distribution boundary value for a
solution of a locally integrable complex vector field in RN . This condition
extends the well-known tempered growth condition for holomorphic func-
tions which we will recall in Theorem VI.1.1 below. Section VI.2 considers
the pointwise convergence of solutions of planar, locally integrable vector
fields to their boundary values. Sections VI.3 and VI.4 explore the class of
vector fields in the plane for which Hardy space-like properties are valid.
The chapter concludes with applications to the boundary regularity of solu-
tions. The boundary variant of the Baouendi–Treves approximation theorem,
namely, Theorem II.4.12, will be crucial for the results in Sections VI.2 and
VI.4.

VI.1 Existence of a boundary value

Suppose L is a smooth complex vector field,

L=
N∑

j=1

aj�x�
�

�xj

defined on a domain � ⊆ RN and u∈C��� is such that Lu = 0 in �. Assume
�� is smooth. We would like to explore conditions on u that guarantee that
u will have a distribution boundary value on ��. Theorem V.2.6 showed us
that when u is holomorphic on a domain D ⊆ Cn, then u has a boundary
value if


u�z�
 ≤ C

dist�z� �D�k
(VI.1)
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272 Some boundary properties of solutions

for some C, k> 0. Conversely, it is well known that if a holomorphic function
on � has a distribution trace on �D, then u�z� has a tempered growth as in
(VI.1). For simplicity, we recall here a precise version in the planar case:

Theorem VI.1.1 (Theorems 3�1�11, 3�1�14 [H2].). Let A, B> 0, Q= �−A�A�

×�0�B� and f holomorphic on Q.

(i) If for some integer N ≥ 0 and C > 0,


f�x+ iy�
 ≤ Cy−N � x+ iy ∈Q�

then there exists bf ∈D′�−A�A� of order N +1 such that

lim
y→0+

∫
f�x+ iy�*�x�dx= #bf�*$ ∀* ∈ CN+1

0 �−A�A��

(ii) If limy→0+ f�·+ iy� exists in D′k�−A�A�, then for any 0 < A′ < A, and
0 < B′ < B, there exists C ′ such that


f�x+ iy�
 ≤ C ′y−k−1� x+ iy ∈ �−A′�A′�× �0�B′��

Because of the local equivalence of L1 and sup norms for solutions in the
elliptic (Cauchy–Riemann) case, the preceding theorem asserts that a holo-
morphic function f on Q has a trace at y = 0 if and only if for some integer
N > 0, ∫∫

Q

f�x+ iy�
yN dxdy <��

It is natural to investigate generalizations of this theorem for nonelliptic vector
fields. It turns out that the tempered growth condition (VI.1) is sufficient to
ensure the existence of a boundary value for a general nonvanishing vector
field that may not be locally integrable. Indeed, we have:

Theorem VI.1.2 (Theorem 1�1 [BH4]). Let L be a C� complex vector field
in a domain �⊆ Rn, f ∈ C���, Lf = 0 in �. Suppose


f�x�
 ≤ C dist�x� ���−N

for some C�N > 0. If 0 ⊆ �� is open, smooth and noncharacteristic for L,
then f has a distribution boundary value on 0.

The preceding result suggests that for a locally integrable vector field, in
general, one should seek a growth condition that is weaker than a tempered
growth expressed in terms of dist �x� ���.
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VI.1 Existence of a boundary value 273

As a motivation, suppose Z = x+ i��x� y� is smooth in a neighborhood of
the origin in R2, � real-valued. Then Z is a first integral for

L= �

�y
− i�y

1+ i�x

�

�x
�

Assume that ��x� y� > 0 when y > 0 and ��x�0�= 0, for all x. Then for any
integer N > 0, since the holomorphic function 1

�x+iy�N
has a boundary value

as y→ 0+, it is not hard to see that

uN�x� y�=
1

Z�x� y�N

also has the same boundary value.
Note that LuN = 0 when y > 0, 
uN�0� y�
 = 1


��0�y�
N , while


uN�x� y�
 ≤
1


��x� y�
N =
1


Z�x� y�−Z�x�0�
N �

Observe that � may be chosen so that uN�x� y� is not bounded by any power
of y as y→ 0+. In general, if L is locally integrable, Z is a first integral of
L near the origin and Lu= 0 in the region y > 0, then the growth condition


u�x� y�

Z�x� y�−Z�x�0�
N ≤ C <� (VI.2)

is sufficient for u to have a distribution boundary value at y = 0. When L

is real-analytic, (VI.2) is also a necessary condition for the existence of a
boundary trace at y = 0 (see [BH5]). Before we state the main result of
this section, as a motivation for its proof, we review the classical case of
holomorphic functions. Consider a holomorphic function f on the rectangle
Q= �−A�A�× �−B�B� satisfying the growth condition


f�x+ iy� yN 
 ≤ C <��

We wish to show that f has a boundary value at y = 0. Let * ∈ C�0 �−A�A�.
Fix 0 < T < B. For each integer m ≥ 0, choose *m�x� y� ∈ C���−A�A�×

0�B�� such that

(i) *m�x�0�= *�x� and
(ii) 
�*m�x� y�
 ≤ Cym

where C depends only on the size of the derivatives of * up to order m+1.
Indeed, if we define

*m�x� y�=
m∑

k=0

*�k��x�

k! �iy�k�
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274 Some boundary properties of solutions

then it is easy to see that (i) and (ii) hold. Note that since f is holomorphic,
for any 0 < % < T , and g ∈ C1

0�−A�A�, integration by parts gives:∫ A

−A
f�x+ i%�g�x� %�dx=

∫ A

−A
f�x+ iT�g�x�T�dx

+2i
∫ A

−A

∫ T

%
f�x+ iy��g�x� y�dxdy�

Plugging g�x� y�= *N�x� y− %� in the preceding formula yields∫ A

−A
f�x+ i%�*�x�dx=

∫ A

−A
f�x+ iT�*N �x�T − %�dx

+2i
∫ A

−A

∫ T

%
f�x+ iy�e�x� y� %�dxdy

where 
e�x� y� %�
 ≤ C
y− %
N . Since 
f�x+ iy� yN 
 ≤ C, as y→ 0, the right-
hand side in the formula converges. This proves that f�x+ iy� has a boundary
value at y = 0.

We will prove now the sufficiency of (VI.2) in a more general set-up.
Let L be a smooth, locally integrable vector field defined near the origin in
Rm+1. In appropriate coordinates �x� t� we may assume that L possesses m

smooth first integrals of the form Zj�x� t�= Aj�x� t�+ iBj�x� t�� j = 1� � � � �m
defined on a neighborhood of the closure of the cylinder Q= Br�0�×�−T�T�

where Br�0� is a ball in x space Rm and Zx�0�0� is invertible. Thus, after
multiplication by a nonvanishing factor, L may be written as

L= �

�t
−

m∑
k=1

�Zk

�t
Mk (VI.3)

where the Mk are the vector fields in x space satisfying MkZj = �kj�1 ≤
k� j ≤m. The next theorem gives, in particular, a sufficient condition for the
existence of a boundary value of a continuous function f when f is a solution
of Lf = 0.

Theorem VI.1.3. Let L be as above and let f be continuous on Q+ =
Br�0�× �0� T�. Suppose

(i) Lf ∈ L1�Q+�;
(ii) there exists N ∈ N such that∫ T

0

∫
Br �0�


Z�x� t�−Z�x�0�
N 
f�x� t�
dxdt <��

Then limt→0+ f�x� t�= bf exists in D′�Br�0�� and it is a distribution of order
N +1.
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VI.1 Existence of a boundary value 275

Proof. Note first that by taking complex, linear combinations of the Zj’s,
we may assume that Zx�0�0� = Id, the identity matrix. This will not affect
hypothesis (ii) in the theorem. Let * ∈ C�0 �Br�0��. For each integer k ≥ 0,
we will show that there exists *k�x� t� ∈ C��Br�0�× 
0� T�� such that

(i) *k�x�0�= *�x� and
(ii) 
L*k�x� t�
 ≤ C 
Z�x� t�−Z�x�0�
k

where C depends only on the size of D�*�x� for 
�
 ≤ k+1. To get *k�x� t�

with these properties, we will use a smooth function uk = uk�x� y� defined
near 0 ∈ 0= �Z�x�0�	 in Cm and satisfying:

(a) uk�Z�x�0��= *�x� and
(b) 
� �

�xj
+ i �

�yj
�uk�x� y�
 ≤ C dist��x� y��0�k for j = 1� � � � �m.

Assuming for the moment that such a uk with these properties exists, we set

*k�x� t�= uk�A�x� t��B�x� t��

where

A�x� t�= �A1�x� t�� � � � �Am�x� t��� B�x� t�= �B1�x� t�� � � � �Bm�x� t���

Then *k�x�0�= *�x� so that (i) above holds. To check (ii), observe that from
the equations

L�Zj�= L�Aj+ iBj�= 0� j = 1� � � � �m�

we have

L�*k�=
m∑

j=1

(
�uk

�xj

L�Aj�+
�uk

�yj

L�Bj�

)
= 2

m∑
j=1

L�Aj�
�uk

�zj

� (VI.4)

It follows that


 L�*k��x� t� 
 ≤ C1 
 �uk�A�x� t��B�x� t�� 

≤ C2 dist�A�x� t�+ iB�x� t��0�k

≤ C2 
 Z�x� t�−Z�x�0� 
k �

Thus if uk satisfies (a) and (b), then *k�x� t� will satisfy (i) and (ii). We will
next write a formula for the uk. Since the map x �→A�x�0� is invertible, there
is a smooth map G= �G1� � � � �Gm� such that

��Z�x�0��= B�x�0�=G�A�x�0���

This and some of what follows may require decreasing the neighborhood
around the origin. Note that since dB�0�0�= 0, and dA�0�0� �= 0, dG�0�0�= 0.
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276 Some boundary properties of solutions

Let Vj be the vector fields satisfying Vj�xs+ iGs�x��= �js�1≤ j� s ≤m. For
each k= 1�2� � � � define

uk�x� y�=
∑

�
≤k

i
�


�! V
�*̃�x��y−G�x���

where by definition, *̃�x� = *�A�x�0�−1�. Clearly, uk�Z�x�0�� = *�x�. We
claim that for each j = 1� � � � �m,

2
�uk

�zj

= ik
∑

�
=k

1
�!

�

�xj

(
V�*̃�x�

)
�y−G�x���� (VI.5)

In particular, the claim implies property (b) for uk. Indeed, after contracting
the neighborhood of the origin, we may assume that 0= �x+ iG�x�	. Since
dG�0�0�= 0, it follows that


y−G�x�
 ≤ dist ��x� y��0�

which gives (b). The claim will be proved by induction. We have:

�u1

�yj

�x+ iy�= iVj�*̃�x��

and

�u1

�xj

�x+ iy�= �*̃

�xj

− i
m∑

s=1

Vs�*̃�
�Gs

�xj

+ i
m∑

s=1

�

�xj

(
Vs�*̃�

)
�ys−Gs�x���

Next observe that
�

�xj

= i
m∑

s=1

�Gs�x�

�xj

Vs+Vj (VI.6)

which can be seen by applying both sides to the m linearly independent
functions x1+ iG1�x�� � � � � xm+ iGm�x�. Hence

�u1

�xj

+ i
�u1

�yj

= i
m∑

s=1

�

�xj

(
Vs�*̃�

)
�ys−Gs�x��

which proves the claim for k = 1. Assume next that (VI.5) holds for k− 1,
k≥ 1. We can write

uk�x� y�= uk−1�x� y�+Ek�x� y� (VI.7)

where

Ek�x� y�= ik
∑

�
=k

1
�!

(
V�*̃�x�

)
�y−G�x����
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VI.1 Existence of a boundary value 277

For any 1≤ j ≤m, by the induction assumption, we have

2
�uk−1

�zj

= ik−1
∑


�
=k−1

1
�!

�

�xj

(
V�*̃

)
�y−G�x���� (VI.8)

Observe that

�Ek

�xj

�x� y�= ik
∑

�
=k

1
�!

(
�

�xj

V�*̃ �y−G�x���+V��*̃�
�

�xj

�y−G�x���
)

(VI.9)

and
�Ek

�yj

�x� y�= ik
∑

�
=k

V ��*̃�

�!
�

�yj

�y−G�x���� (VI.10)

Using the expression for �
�xj

from (VI.6), (VI.8) can be written as

2
�uk−1

�zj

=ik
∑


�
=k−1

m∑
s=1

1
�!

�Gs

�xj

�x�Vs

(
V�*̃

)
�y−G�x���

+ ik−1
∑


�
=k−1

1
�!Vj

(
V�*̃

)
�y−G�x���� (VI.11)

From (VI.7), (VI.9), (VI.10) and (VI.11), we get

2
�uk

�zj

= ik
∑

�
=k

1
�!

�

�xj

(
V�*̃�x�

)
�y−G�x���

which establishes property (b) for uk. Hence for each k we have *k which
satisfies (i) and (ii) and has the form

*k�x� t�=
∑

�
≤k

�P��x� t�Dx�*̃�A�x� t����B�x� t�−G�A�x� t���� (VI.12)

where P��x� t�Dx� is a differential operator of order 
�
 involving differentia-
tions only in x. Observe next that if g�x� t� is a C1 function, the differential of
the m form g�x� t�dZ1∧· · ·∧dZm where Zj = Aj�x� t�+ iBj�x� t� is given by

d�g dZ1∧· · ·∧dZm�= Lg dt∧dZ1∧· · ·∧dZm�

This observation and integration by parts lead to:∫
Br �0�

f�x� %�*N �x� %�dZ�x� %�=
∫
Br �0�

f�x�T�*N�x�T�dZ�x�T�

+
∫
Br �0�

∫ T

%
f�x� t�L*N�x� t�dt∧dZ (VI.13)

+
∫
Br �0�

∫ T

%
Lf�x� t�*N �x� t�dt∧dZ
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278 Some boundary properties of solutions

where dZ = dZ1 ∧ dZ2 ∧ · · · ∧ dZm. Now by the hypotheses on f�x� t� and
property (ii) of *N�x� t�, 
f�x� t�L*N�x� t�
 ∈ L1 and so the second integral
on the right in (VI.13) has a limit as %→ 0. The third integrand on the right
is in L1 since Lf is. Therefore,

lim
%→0

∫
Br �0�

f�x� %�*N �x� %�dZ�x� %� exists. (VI.14)

We can clearly modify *n by dropping the tilde in its definition and use
(VI.14) to conclude:

lim
%→0

∫
Br �0�

f�x� %�.N�x� %�dZ�x� %� exists (VI.15)

where for any smooth function *�x�,

.n�x� t�=
∑

�
≤n

�P��x� t�Dx�*�A�x� t����B�x� t�−G�A�x� t�����

Let P�x� t�= B�x� t�−G�A�x� t��. For g�x� t� ∈ C��Br�0�× �−T�T�� whose
x-support is contained in a fixed compact set independent of t, and n a
non-negative integer, define

Tng�x� t�=
∑

�
≤n

P��x� t�Dx��g�x� t��P�x� t�
�� T0g�x� t�= g�x� t�� (VI.16)

Using (VI.15), we will show next that in fact,

lim
t→0

∫
Br �0�

f�x� t�TNg�x� t�dZ�x� t� exists (VI.17)

for any g= g�x� t�. To see this, for *=*�x�, we change variables y=A�x� t�

in (VI.15) to write∫
f�x� t�.N�x� t�dZ�x� t�=

∫
f�H�y� t�� t�Q�y� t�Dy�*�y�dy

where Q is a differential operator (with differentiation only in y) and y �→
H�y� t� is the inverse of x �→ A�x� t�. Since

lim
t→0

∫
f�H�y� t�� t�Q�y� t�Dy�*�y�dy exists�

it follows that

lim
t→0

∫
f�H�y� t�� t�Q�y� t�Dy�*�y� t�dy exists�

for any smooth *�y� t� with a fixed compact support in y. Going back to the
x coordinates, we have shown that

lim
t→0

∫
Br �0�

f�x� t�SNg�x� t�dZ�x� t� exists (VI.18)
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VI.1 Existence of a boundary value 279

where by definition

Sng�x� t�=
∑

�
≤n

�P��x� t�Dx�g�A�x� t�� t��P�x� t��

for any smooth g= g�x� t�. Observe that the integral in (VI.18) can be written
in the form ∫

u�x� t�g�A�x� t�� t�dx

where this latter integral denotes the action of a distribution u��� t� on the
smooth function x �→ g�A�x� t�� t�. Now since �x� t� �→ �A�x� t�� t� is a diffeo-
morphism near the origin, any function *�x� t� is of the form g�A�x� t�� t�

for some g = g�x� t�. We can therefore use (VI.18) to conclude that for any
g�x� t�,

lim
t→0

∫
Br �0�

f�x� t�TNg�x� t�dZ�x� t� exists� (VI.19)

which proves (VI.17). For *�x� t� ∈ C��Br�0�× �−T�T�� whose x-support is
contained in a fixed compact set and a given multi-index � with 
�
 =N , plug
g�x� t�=*�x� t�P�x� t��=*�x� t��B�x� t�−G�A�x� t���� in (VI.19). Note that
we may write

TN�*P���x� t�= *P�+*
∑

�
=N

e��x� t�P
�+ ∑


�
>N

h��x� t�P
� (VI.20)

where the h� and e� are smooth functions and

lim
t→0

D�′
x e��x� t�= 0 ∀���′�

Observe that for each � with 
�
> N ,

lim
t→0

∫
Br �0�

f�x� t�h��x� t�P�x� t�
� dZ�x� t� exists. (VI.21)

Indeed, this follows from applying the integration by parts formula (VI.13)
to the m-form f�x� t�h��x� t�P�x� t�

� dZ1∧· · ·∧dZm, using the hypotheses on
f , and the bound 
P�x� t�
 ≤ 
Z�x� t�−Z�x�0�
. From (VI.19) and (VI.21) we
conclude that

lim
t→0

∫
Br �0�

f�x� t�

(
*P�+*

∑

�
=N

e��x� t�P
�

)
dZ�x� t� exists. (VI.22)

We can plug *� for * in (VI.22) and sum over � with 
�
 = N to conclude

lim
t→0

∫
Br �0�

f�x� t�
∑

�
=N

P�

(
*�+

( ∑

�
=N

*�

)
E��x� t�

)
dZ�x� t� exists

(VI.23)
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280 Some boundary properties of solutions

where all order derivatives of the E� go to zero as t→ 0. Observe that given
�*�	
�
=N as above, we can find ���	
�
=N such that

∑

�
=N

P�

(
��+

( ∑

�
=N

��

)
E�

)
= ∑

�
=N

P�*��

It follows that

lim
t→0

∫
Br �0�

f�x� t�
∑

�
=N

*�P
� dZ�x� t� exists (VI.24)

whenever the functions *��x� t� ∈ C��Br�0�× �−T�T�� have their x-support
contained in a fixed compact set independent of t. We now return to a general
g�x� t� ∈ C��Br�0�× �−T�T�� with x-support contained in a fixed compact
set independent of t. From (VI.19) and (VI.24) we conclude that

lim
t→0

∫
Br �0�

f�x� t�TN−1g�x� t�dZ�x� t� exists (VI.25)

for any g�x� t� ∈ C��Br�0�× �−T�T�� with x-support contained in a fixed
compact set independent of t. We will prove by descending induction that for
any such g�x� t� and 0 ≤ k≤ N ,

lim
t→0

∫
Br �0�

f�x� t�Tkg�x� t�dZ�x� t� exists,

which for k= 0 and g�x� t�=*�x� ∈C�c �Br�0�� gives us the desired limit. To
proceed by induction, suppose 1≤ k≤N and assume that for any multi-index
� with 
�
 = k, the limits

lim
t→0

∫
Br �0�

f�x� t�P��x� t�g�x� t�dZ�x� t� and

lim
t→0

∫
Br �0�

f�x� t�Tk−1g�x� t�dZ�x� t�
(VI.26)

both exist for any g�x� t� ∈ C��Br�0�× �−T�T�� with x-support contained in
a fixed compact set independent of t. We have already seen that (VI.26) is
true for k= N as follows from (VI.24) and (VI.25). Fix �′ with 
�′
 = k−1.
Plug g�x� t�= *�x� t�P�x� t��

′
in the limit on the right in (VI.26) and observe

that Tk−1g may be written as

Tk−1g�x� t�= *P�′ +*
∑


�
=k−1

e��x� t�P
�+ ∑


�
≥k

h��x� t�P
� (VI.27)

where the e� and h� are smooth, the x-supports of the h��x� t� are contained
in a compact set that is independent of t, and all order derivatives of the e�
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go to zero as t→ 0. From the existence of the two limits in (VI.26) we derive
that

lim
t→0

∫
Br �0�

f�x� t�

(
*P�′ +*

∑

�
=k−1

e��x� t�P
�

)
dZ�x� t� (VI.28)

exists. We now argue as before by replacing * by *�′ and summing over

�′
 = k−1 to conclude that

lim
t→0

∫
Br �0�

f�x� t�P�x� t��*�x� t�dZ�x� t� exists (VI.29)

for all � with 
�
 = k−1 and *�x� t� ∈ C��Br�0�× �−B�B�� with x-support
contained in a fixed compact set independent of t. Hence, taking account of
(VI.26) and (VI.29) we conclude that

lim
t→0

∫
Br �0�

f�x� t�Tk−2g�x� t�dZ�x� t� exists. (VI.30)

We have thus proved that (VI.26) holds for k−1, completing the inductive
step. Therefore,

lim
%→0

∫
Br �0�

f�x� %�*�x�dZ�x� %� exists (VI.31)

and thus bf = limt→0 f��� t� exists. Moreover, since the functions

x �−→ *N�x� %�−*�x� and x �−→ Z�x� %�−Z�x�0�

and all their x-derivatives converge to zero as %→ 0, (VI.13), (VI.14), and
(VI.31) imply the following formula for bf :

#Zx�x�0�bf�*$ =
∫
Br �0�

f�x�T�*N�x�T�dZ (VI.32)

+
∫
Br �0�

∫ T

0
f�x� t�L*N�x� t�dt ∧dZ

+
∫
Br �0�

∫ T

0
Lf�x� t�*N �x� t�dt∧dZ�

This formula shows that bf is a distribution of order N +1.

VI.2 Pointwise convergence to the boundary value

Suppose L is a locally integrable vector field in a planar domain � with a
smooth boundary. Let f ∈ L1

loc���, and assume that f has a weak trace bf
which is in L1

loc����. In this section we will discuss the pointwise convergence
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of f to bf . It is classical that when L is the Cauchy–Riemann operator, the
holomorphic function f converges nontangentially to bf�p� for almost all p

in ��. In general, this approach region cannot be relaxed. Indeed, we recall:

Theorem VI.2.1. (Theorem 7�44 in [Zy].) Let C0 be any simply closed curve
passing through z= 1 situated, except for that point, totally inside the circle

z
 = 1, and tangent to the circle at that point. Let C� be the curve C0 rotated
around z = 0 by the angle �. There is a Blaschke product B�z� which, for
almost all �0, doesn’t tend to any limit as z �→ exp�i�0� inside C�0

.

This theorem shows us that for nonelliptic vector fields, we can’t expect
nontangential convergence. Indeed, by the theorem, if

Lk =
�

�t
− i�k+1�tk

�

�x
�k= 1�2�3� � � � �

then for each k, we can get a bounded solution fk = Fk�x+ itk+1� of Lk with
Fk holomorphic in a semidisk in the upper half-plane, bfk�x� = bFk�x� ∈
L1�−1�1�, but each fk�x� t� doesn’t converge nontangentially on a subset of
�−1�1� of positive measure. It suffices to take Fk holomorphic and bounded
on the semidisk �z 
 
z
 < 1��z > 0	 such that on a set of full measure in
�−1�1�, Fk has no limit in certain appropriate regions. By considering the Lk

with k even, we see that nontangential convergence may fail even for vector
fields that are C� and analytic hypoelliptic. Note that for each k, and for
almost all p ∈ �−1�1�, there is an open region +k�p� with p ∈ +k�p� such
that fk�x� t� converges to bfk�p� in +k�p�. On the other hand, if we take the
real vector field �

�t
, and the solution u�x� t� ≡ bu�x� = (, the characteristic

function of a Cantor set C of positive measure in �−1�1�, the only sets of
approach for which u�x� t�→ bu�x�� x ∈ C, are the vertical segments. Thus
for a general locally integrable vector field, we cannot get approach sets for
convergence larger than curves. Suppose now L=X+ iY is a smooth, locally
integrable vector field near the closure of a planar domain �. Assume 0⊆ ��

is a smooth curve that is noncharacteristic for L, f ∈ L1
loc����Lf = 0 and f

has a trace bf ∈ L1�0�. Multiplying by i if necessary, we may assume that
X is not tangent to 0 anywhere and that it points toward �. For each p ∈ 0,
let �p be the integral curve of X through p and set �+p = �p ∩�. We shall
classify the points of 0 into two types:

(I) A point p ∈ 0 is a type I point if the vector fields X and Y are linearly
dependent on an arc ��+p �s� 
 0 < s < %	 for some % > 0.

(II) A point q ∈0 is a type II point if there is a sequence qk ∈ �+p converging
to q such that L is elliptic at each qk.
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Theorem VI.2.2. Let Lu = 0 in �, u ∈ L1
loc���� bu ∈ L1�0�, and 0 is

noncharacteristic for L. Assume L is locally integrable in a neighborhood of
0. For each p ∈ 0, there is an approach set +�p�⊆� such that:

(i) p ∈ +�p� and if q ∈ 0∩+�p�, then q = p;
(ii) �+p ⊆ +�p�;

(iii) for a.e. p ∈ 0, lim+�p��q→p u�q�= u�p�;
(iv) if p is a type II point, +�p� is an open set, otherwise +�p�= �+p .

Proof. Since the problem is local, we may assume that we are in coordi-
nates �x� t� where � = �−1�1�× �0�1�, 0 = �−1�1�× �0	, and Z�x� t� =
x+ i��x� t� is a first integral of L with � real, ��0�0�= 0 and �x�0�0�= 0.
Modulo a nonvanishing factor,

L= �

�t
− i

�t

1+ i�x

�

�x

and so

X = �

�t
−
(

�t�x

1+�2
x

)
�

�x
� Y = −�t

1+�2
x

�

�x
�

Observe that L is elliptic, i.e., X and Y are linearly independent precisely
at the points where �t �= 0. Assume now that 0 ∈ 0 is a type II point. Then
t �→ ��0� t� can’t vanish on any interval 
0� %�� % > 0. Indeed, otherwise, we
would conclude that L=X on �0	× 
0� %�—contradicting the hypothesis that
0 is a type II point. For � > 0 small, define

m�x�= inf
0≤t≤�

��x� t�� M�x�= sup
0≤t≤�

��x� t��

Then since m�0� < M�0�, we may choose A > 0 so that m�x� < M�x� for

x
 ≤A. After decreasing A and �, by the boundary version of the Baouendi–
Treves approximation theorem in Chapter II (Theorem II.4.12), there is a
sequence of entire functions Fk satisfying:

(a) Fk�Z�x� t��→ u�x� t� pointwise a.e. on �−A�A�× �0� ��;
(b) Fk�Z�x�0��→ bu�x� a.e. on �−A�A�.

Set

�A = �� = �+ i� 
 
�
< A� m��� < � < M���	�

We may assume that the sequence Fk converges uniformly on compact
subsets of �A to a holomorphic function F and u�x� t� = F�Z�x� t�� for
�x� t� ∈ Z−1��A�. Indeed, this is clearly true if u�x� t� is continuous for t > 0.
In general, we can use the fact that we can express u as Qh where h is a
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continuous solution and Q is an elliptic differential operator that maps solu-
tions to solutions. The operator Q can be taken to be a convenient power of
the operator D defined in Section IV.2. Since 0 is a type II point, by theorem
3.1 in [BH1] and [BCT] (page 465), for some 0 < A1 < A� 0 < �1 < �,
there is a holomorphic function G of tempered growth defined on the
region �1 = �Z�x�0�+ iZx�x�0�v 
 
x
< A1� 0 < v < �1	 such that for every
* ∈ C�0 �−A1�A1�,

#bu�*$ = lim
v↓0

∫
G�Z�x�0�+ iZx�x�0�v�*�x�dx�

Since bu ∈ L1, the holomorphic function G�z� converges nontangentially to
bu�x� a.e. in �−A1�A1�. We may assume that A1 and �1 are small enough
so that �1 ⊆ �A. We will show that G = F on �1. Define the subsets of

−A1�A1�:

E1 = �x 
 ��x� t�= ��x�0�� t ∈ 
0� �� for some � > 0	�

E2 = �x 
 ��x� t�≥ ��x�0�� t ∈ 
0� �� for some � > 0	�

E3 = �x 
 ��x� t�≤ ��x�0�� t ∈ 
0� �� for some � > 0	�

E4 = �x 
 for some tj → 0� sj → 0� ��x� sj� < ��x�0� < ��x� tj�	�

Observe that 
−A1�A1� = E1 ∪E2 ∪E3 ∪E4. If x0 ∈ E4, then by theorem
3.1 in [BH1], there is a holomorphic function H defined in a neighborhood
of Z�x0�0� such that u�x� t� = H�Z�x� t�� for �x� t� in a neighborhood of
�x0�0�� t > 0. Hence in this case, F�z� has a holomorphic extension to a
neighborhood of Z�x0�0� and since u�x� t� = F�Z�x� t�� for t > 0, we have
F�Z�x�0��= bu�x�= bG�Z�x�0��. Therefore, by theorem 2.2 in [Du], F�z�=
G�z� on �1. We may therefore assume that E4=∅. Each of the other three sets
E1�E2, and E3 can be written as a countable union of closed sets as follows:
E1 =

⋃�
j=1 E1j , where E1j = �x ∈ 
−A1�A1� 
 ��x� t� = ��x�0�� t ∈ 
0� 1

j
�	;

E2 =
⋃�

j=1 E2j , where E2j = �x ∈ 
−A1�A1� 
 ��x� t� ≥ ��x�0�� t ∈ 
0� 1
j
�	;

and E3=
⋃�

j=1 E3j , where E3j = �x ∈ 
−A1�A1� 
 ��x� t�≤��x�0�� t ∈ 
0� 1
j
�	.

Thus the interval 
−A1�A1� is a countable union of the closed sets Eij and
hence by Baire’s Category Theorem, one of these sets contains an interval
with nonempty interior.

Case 1: Suppose ��x� t� = ��x�0� on 
A2�A3�× 
0� T� for some T > 0,
A2 < A3. Then L = �

�t
on 
A2�A3�× 
0� T� and so u�x� t� = bu�x� on this

rectangle. This implies that F�z� extends as a continuous function in �1 up to
the boundary piece �Z�x�0� 
 A2 <x<A3	 and therefore bF�Z�x�0��= bu�x�

for x ∈ �A2�A3�. But then F ≡G in �1.
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Case 2: Suppose ��x� t� ≥ ��x�0� on 
A2�A3�× 
0� T�, for some T > 0,
A2 < A3. For % > 0 sufficiently small, define

u%�x� t�=G�Z�x� t�+ i%�� �x� t� ∈ �A2�A3�× �0� T��

Observe that Lu% = 0. Recall that G is holomorphic on the region �1 =
�Z�x�0�+ iZx�x�0�v 
 
x
<A1� 0 < v< �1	. Let �2 = �Z�x�0�+ iZx�x�0�v 



x
< A1� 0 < v < �2	 for some 0 < �2 < �1, and for each p= Z�x�0�� 
x
<
A1, define the nontangential approach region

+�p�= �z ∈�2 
 
z−p
< 2 dist�z� ��2�	�

Denote by G∗�x� the nontangential maximal function of G�z�, that is,

G∗�x�= sup�
G�z�
 
 z ∈ +�Z�x�0��	�

We have:


u%�x� t�
 ≤G∗�x� ∈ L1�A2�A3��

Let

w�x� t�= lim
%→0

u%�x� t� (the pointwise limit)

=
{

G�x+ i��x� t��� if ��x� t� > ��x�0�
bu�x�� if ��x� t�= ��x�0��

Then u% → w in L1��A2�A3�× �0� T�� and so Lw = 0 in �A2�A3�× �0� T�.
Since


G�x+ i��x� t��
 ≤G∗�x� and a.e. G�x+ i��x� t��→ bu�x� as t→ 0�

we conclude that

w�x� t�→ bu�x� in L1�A2�A3� as t→ 0�

Therefore u�x� t� = w�x� t� in a neighborhood of �A2�A3�× �0	� t > 0. In
particular, since we may assume that

��x� t� ∈ �A2�A3�× �0� T� 
 ��x� t� > ��x�0�	

is not empty (otherwise, we would be placed under Case 1), F�z�≡G�z� on
�1.

Case 3: Suppose ��x� t�≤ ��x�0� on 
A2�A3�× 
0� T��T > 0�A2 <A3. We
may assume that there exists x0 ∈ �A2�A3� and sj → 0 such that ��x0� sj� <

��x0�0�. Indeed, otherwise, matters will reduce to Case 1. By theorem 3.1
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in [BH1] and [BCT] (page 465), after decreasing 
A2�A3�× 
0� T�, we get a
tempered holomorphic function G1�z� defined on the region

�′
1 = �Z�x�0�+ iZx�x�0�v 
 A2 < x < A3� −T < v < 0	

such that for every * ∈ C�0 �A2�A3�,

#bu�*$ = lim
v→0

∫
G1�Z�x�0�+ iZx�x�0�v�*�x�dx�

By the edge-of-the-wedge theorem, there is a holomorphic function v�z�

defined in a neighborhood of �Z�x�0� 
 A2 < x < A3	 that extends G and G1.
Hence F�z�=G�z� in �1. We have thus shown that F ≡G on �1.

Now for almost every p ∈ �−A1�A1�� G�z� converges nontangentially at
Z�p�0� (in �1) to bu�p�. Pick such a point p and let +̃�p� be a nontangential
approach region for G�z� at Z�p�0�. Define +�p�= Z−1�+̃�p��. Then

lim
+�p���x�t�→p

u�x� t�= lim
+�p���x�t�→p

F�Z�x� t��

= lim
+̃�p��z

G�z�= bu�p��

We have thus shown that if p is a type II point, then there is an interval around
it such that a.e. in the interval, pointwise convergence holds as asserted.
Consider now a type I point �x0�0�. Then Z�x0� t� ≡ Z�x0�0� for t in some
interval 
0� %�. This implies that Fk�Z�x0� t��≡ Fk�Z�x0�0�� for t ∈ 
0� %�, and
so because of the a.e. convergence stated in (a) and (b), we conclude that for
almost every type I point x, u�x� t�→ bu�x� as t→ 0.

VI.3 One-sided local solvability in the plane

In Section VI.4 we will explore the boundary regularity of solutions of the
inhomogeneous equation Lf = g where

L= A�x� t�
�

�t
+B�x� t�

�

�x

is a smooth, locally integrable complex vector field defined on a subdomain
� of R2.

If Lf = g in �, and f has a trace bf on �� with a certain degree of
regularity, we will investigate whether the regularity persists near �� under
some smoothness assumption on g. As usual, the motivation comes from what
is known in the elliptic case. Suppose h�z� is a holomorphic function of one
variable defined on the rectangle Q= �−A�A�× �0� T� with a weak trace bh
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at y = 0. From the local version of the classical Hardy space (Hp� theory for
holomorphic functions in the unit disk, we have:

(i) if bh ∈ C��−A�A�, then h is C� up to y = 0;
(ii) if bh ∈ Lp�−A�A� �1 ≤ p ≤��, then for any B < A, the norms of the

traces h�·� y� in Lp�−B�B� are uniformly bounded as y→ 0+.

The main results of Section VI.4 will extend (i) and (ii) above to solutions
of complex vector fields that satisfy a one-sided solvability condition. In the
elliptic case, property (i) follows easily from part (ii) of Theorem VI.1.1. We
will show in Section VI.4 that in general, property (i) follows from property
(ii) above and a boundary solvability condition. When a vector field exhibits
property (ii), we will say that it has the Hp property. To describe the class of
vector fields with the Hp property, consider a curve 0 in � such that �\0
has two connected components, �\0 =�+ ∪�−. It turns out that the local
solutions of the equation Lu= 0 on �+ possess the �Hp� property at q ∈0 if
and only if there is a neighborhood U of q such that L satisfies the solvability
condition ��� of Nirenberg and Treves ([NT]) on U ∩�+. This leads to a
one-sided version of ��� that we denote by ��+� (or ��−� if �+ is replaced
by �−) to indicate the side where it holds. If ��� holds at q, then both ��+�
and ��−� hold at q. However, ��+� and ��−� may hold at q ∈0 and yet ���

may not hold in a neighborhood of q. The Mizohata vector field provides an
example illustrating this. Write L= X+ iY with X and Y real. Let � ⊂ U be
a two-dimensional orbit of L in U and consider X∧Y ∈ C��U�

∧2�T�U���.
Since

∧2�T�U�� has a global nonvanishing section e1 ∧ e2, X∧ Y is a real
multiple of e1 ∧ e2 and this gives a meaning to the requirement that X∧ Y

does not change sign on any two-dimensional orbit � of �X�Y	 in U . Recall
from Chapter IV that the vector field L satisfies condition ��� at p ∈ 0 if
there is a disk U ⊆� centered at p such that X∧Y does not change sign on
any two-dimensional orbit of L in U .

Definition VI.3.1. We say that L satisfies condition ��+� at p ∈ 0 if there
is a disk U ⊆� centered at p such that X∧Y does not change sign on any
two-dimensional orbit of L in U+ = U ∩�+.

Definition VI.3.2. We say that L is one-sided locally solvable in Lp, 1 <

p <� (resp. in C�) at q ∈ 0 if there is a neighborhood U ⊆� of q such
that—after interchanging �+ and �− if necessary—for every f ∈ Lp�U�

(resp. f ∈ C��U ∩�+� ) there exists u ∈ Lp�U� (resp. u ∈ C��U ∩�+�) such
that Lu= f on U+ = U ∩�+.
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Definition VI.3.3. We say that L is one-sided locally integrable at p ∈ 0 if
there is a disk U ⊂� centered at p such that—after interchanging �+ and
�−if necessary—there exists Z ∈ C��U� such that:

(1) LZ vanishes identically on U+ = U ∩�+;
(2) dZ�p� �= 0.

Let us assume that L is one-sided locally integrable at p ∈0 and let Z satisfy
(1) and (2) of Definition VI.3.3. Replacing Z by iZ if necessary and decreasing
U we may choose local coordinates �x� t� such that x�p�= t�p�= 0,

Z�x� t�= x+ i��x� t� (VI.33)

with � real, U is the rectangle U = �−a�a�× �−T�T�, 0∩U = ��x�0� 



x
< a	 and U+ = �−a�a�× �0� T�. Thus, modulo a nonvanishing multiple,
we may assume that

L= �

�t
− i

�t�x� t�

1+ i�x�x� t�

�

�x
� (VI.34)

X = �

�t
+ �t�x

1+�2
x

�

�x
� Y =− �t

1+�2
x

�

�x
�

and so

X∧Y = �t�x� y�

1+�2
x

�

�x
∧ �

�t
�

The proof of the following lemma is essentially the same as the one for
Lemma IV.2.2.

Lemma VI.3.4. Let Z�x� t� and L be given by (VI.33) and (VI.34) respectively.
Then, L satisfies ��+� at the origin if and only there exist T�a > 0 such that
�0� T� � t �→ ��x� t� is monotone for every x ∈ �−a�a�.

We now recall from [BH6] the local equivalence between ��+� and one-sided
solvability. More precisely,

Theorem VI.3.5. Let Z�x� t� and L be given by (VI.33) and (VI.34) respec-
tively. The following properties are equivalent:

(1) L satisfies ��+� ( or ��−�) at the origin;
(2) L is one-sided locally solvable in Lp, 1 < p <�, at the origin;
(3) L is one-sided locally solvable in C� at the origin.

The following proposition is concerned with continuous solvability up to the
boundary and will be useful in the applications to boundary regularity in
Section VI.4.
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Proposition VI.3.6. Let Z�x� t� and L be given by (VI.33) and (VI.34)
respectively and assume that L satisfies ��+� at the origin, i.e., for some
U+ = �−r� r�× �0� T�, the function �0� T� � t �→ ��x� t� is monotone for 
x
<
r. If f�x� t� ∈ Lip�U� there exists u ∈⋂

0<�<1 C
���−r� r�× 
0� T�� such that

Lu= f in U+.

The proof of the proposition is based on the following lemma.

Lemma VI.3.7. Let F��� ∈ L�c �C� and let f�x� t� = F 
Z�x� t�. There exists
v ∈⋂

0<�<1 C
���−r� r�× �−T�T�� such that Lv= 2i�tZ

−1
x f on Q= �−r� r�×

�−T�T�.

Proof. Let E = 1/�)�� be the fundamental solution of �/�� and set V =
E ∗F . Then V ∈⋂

0<�<1 C
� locally and ��V = F in the sense of distributions.

If we set v= V 
Z it follows that v is in
⋂

0<�<1 C
���−r� r�× 
0� T�� and the

chain rule gives Lv=−2i�tZ
−1
x ���V�
Z =−2i�tZ

−1
x f .

Proof of Proposition VI.3.6. Let f ∈ Lip�U�. Set u0�x� t� =
∫ t

0 f�x� s�ds.
Then, u0 ∈ Lip�U� and Lu0−f =−i�tZ

−1
x

∫ t

0 �xf ds = 2i�tZ
−1
x f1 where f1 is

bounded. It is clear that we will be able to solve Lu = f on Q+ if we can
solve

Lu1 = 2i�tZ
−1
x f1 on Q+ (VI.35)

by setting u = u0− u1. In view of Lemma VI.3.7 we wish to write f1 =
F1 
Z�x� t� and the obstruction to doing so is the fact that f1 may not be
constant on the fibers Z−1���, � ∈ Z�Q+�. However, we are free to modify
arbitrarily f1 on the set ��t = 0	∪ �t ≤ 0	 without modifying the right-hand
side of (VI.35). Hence, we declare that f1 vanishes on ��t = 0	 as well
as on t ≤ 0. Since Z is a diffeomorphism on Q+\��t = 0	, we may write
f1 = F1 
Z�x� t� with F1 bounded on Z�Q+� and extend F1 as zero outside
Z�Q+�, so F1 ∈ L�c �C�. An application of Lemma VI.3.7 shows that there
exists a function u1 of class C��U� for any 0 < � < 1 whose restriction to
U+ satisfies (VI.35). Then u= u0−u1 ∈ C��U+�= C�

(
U+).

VI.4 The Hp property for vector fields

Consider a one-sided locally integrable smooth vector field

L= �

�t
+a�x� t�

�

�x

defined on a neighborhood Q= �−A�A�× �−B�B� of the origin with a one-
sided first integral Z�x� t� = x+ i��x� t� defined on Q satisfying LZ = 0
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290 Some boundary properties of solutions

for t ≥ 0. In this section we will assume that L satisfies condition ��+�
at the origin in 0 = �−A�A�× �0	. We may clearly assume that ��0�0� =
�x�0�0�= 0 and


�x�x� t�
<
1
2

on a neighborhood of Q.

After a further contraction of Q about the origin, Lemma VI.3.4 shows that

for every x ∈ �−A�A�� the map �0�B� � t �→ ��x� t� is monotone.

The main result of this section is as follows:

Theorem VI.4.1. Suppose f is a distribution solution of Lf = 0 in the
rectangle Q= �−A�A�× �0�B�. Assume f has a weak boundary value bf =
f�x�0� at y= 0. Then there exist A0 > 0 and T0 > 0 such that for any 0 <T ≤
T0 and 0 < a < A0, if f���0� and f��� T� ∈ Lp�−A0�A0�, f��� t� ∈ Lp�−a�a�

for any 0 < t < T and for almost all 0 < a < A0, there exists C = C�a�T�

such that

(i) if 1≤ p <�, then∫ a

−a

f�x� t�
p dx ≤C

(∫ a

−a

f�x�0�
p dx+

∫ a

−a

f�x�T�
p dx

+
∫ T

0

f�a� s�
p
�s�a� s�
ds

+
∫ T

0

f�−a� s�
p
�s�−a� s�
ds

)
�

(ii) if p=�, then f ∈ L���−a�a�× �0� T��.

Before proving Theorem VI.4.1, we will need to recall some concepts and
results from the classical theory of Hardy spaces for bounded, simply connected
domains in the complex plane. Let D be a such a domain with rectifiable
boundary. There are several definitions of a Hardy space for such a domain
(see [L] and [Du]). For our purpose here, we need to recall two of the
definitions:

Definition VI.4.2. [Du] For 1 ≤ p < �, a holomorphic function g on a
bounded domain D with rectifiable boundary is said to be in Ep�D� if there
exists a sequence of rectifiable curves Cj in D tending to bD in the sense that
the Cj eventually surround each compact subdomain of D, such that∫

Cn


g�z�
p
dz
 ≤M <��
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The norm of g ∈ Ep�D� is defined as



g

pEp�D� = inf sup
j

∫
Cj


g�z�
p
dz


where the inf is taken over all sequences of rectifiable curves Cj in D tending
to �D.

Definition VI.4.3. Suppose for a bounded region � ⊆ C there is � =
���� > 0 with the property that almost every point p in the boundary admits
a nonempty nontangential approach subregion

+��p�= �z ∈� 
 
z−p
 ≤ �1+��dist �z� ���	

that is, for a.e. p ∈ ��, +��p� is open and p is in the closure of +��p�. Let
u be a function defined on �. The nontangential maximal function of u, u∗,
and the nontangential limit of u, u+, are defined as follows:

u∗�p�= sup
�∈+��p�


u���
� a.e. p ∈ ���

u+�p�= lim
�∈+��p�

u���� a.e. p ∈ ���

Definition VI.4.4. For 1≤ p <� the Hardy space Hp��� is defined by

Hp���= �G ∈O��� 
 G∗ ∈ Lp����	

where O��� denotes the holomorphic functions on � and G∗ denotes the
nontangential maximal function defined using the +��p� as in the definition
above.

When � is the unit disk, it is a classical fact that both definitions of Hardy
spaces agree ([Du]). By the Riemann mapping theorem, this is also true for
any bounded, simply connected domain with a smooth boundary. In the work
[L], it is shown that when 1 < p <�, these spaces agree if � is bounded,
simply connected with a Lipschitz boundary.

Definition VI.4.5. For 1 < q <�, the maximal operator T∗ on Lq���� is
defined by

T∗u�p�= sup
%>0

∣∣∣∣∫
�−p
>%

1
�−p

u���d�

∣∣∣∣ � a.e. p ∈ ���

Let us denote the Cauchy integral of a function u by Cu. We will be interested
in the Lp boundedness of the nontangential maximal operator �Cu�∗ on certain
kinds of domains which we now describe:
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292 Some boundary properties of solutions

Definition VI.4.6. A bounded, simply connected domain � is called Ahlfors-
regular if there is a constant c > 0 such that for every q ∈ ��, and for every
r > 0, the arclength measure of the portion of the boundary contained in the
disk of radius r centered at q is less than cr.

We note that examples of Ahlfors-regular domains include simply connected
domains with Lipschitz boundary. Ahlfors-regular domains admit nontan-
gential approach regions +��p� as in Definition VI.4.3. The study of the
boundedness of the operator T∗ on domains with Lipschitz boundary was
initiated by A. Calderón in the 1970s. He proved that T∗ is well-defined and
bounded on Lq���� (1 < q <�) provided the Lipschitz character of � is
smaller than an absolute constant. Later, R. Coifman, A. McIntosh and Y.
Meyer extended this result to the entire Lipschitz class. G. David has shown
that the Ahlfors-regular domains are the largest rectifiable domains on which
T∗ is bounded. More precisely, he proved:

Theorem VI.4.7. [D] Let � ⊆ C be a bounded, simply connected domain
with rectifiable boundary. Then T∗ is bounded on Lq����, 1 < q <�, if and
only if � is an Ahlfors-regular domain.

The Hardy–Littlewood maximal function Mu on �� is defined by

Mu�z�= sup
1


I

∫
I

u���
 
d�


where the sup is taken over all subarcs I ⊆ �� that contain z and 
I
 denotes the
arclength of I . It is well known that the Hardy–Littlewood maximal function
of �� is Lp bounded (1 < p <�) for a class of domains that includes the
Ahlfors-regular domains ([D]). The following lemma therefore reduces the
boundedness of �Cu�∗ to that of T∗.

Lemma VI.4.8. Let � ⊆ C be an Ahlfors-regular domain. The following
inequality holds for every u ∈ Lq����� 1 < q <�, and every p ∈ ��:

�Cu�∗�p�≤ T∗u�p�+ c���Mu�p�� (VI.36)

where �Cu�∗ denotes the nontangential maximal function of the Cauchy inte-
gral of u and c��� is a positive constant depending exclusively on the aperture
of the cone +��p�.

Proof. For p ∈ �� arbitrary, it suffices to show that


Cu�x�
 ≤ T∗u�p�+ c���Mu�p� for every x ∈ +��p�.
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Let r 
= 
x−p
. We have

2)iCu�x�=
∫

�−p
>2r

u���

�−p
d�

+
∫

�−p
>2r

(
u���

�−x
− u���

�−p

)
d�

+
∫

�−p
<2r

u���

�−x
d�

= I1+ I2+ I3. We will now proceed to estimate 
Ii
� i = 1�2�3� Clearly,

I1
 ≤ T∗u�p�.

To estimate I2 observe that∣∣∣ 1
�−x

− 1
�−p

∣∣∣= r


�−x
 
�−p
 � (VI.37)

But 
�−p
 ≤ 
�−x
+ 
x−p
 and since x ∈ +��p�, we have: 
�−p
 ≤ �2+
��
x− �
. Hence (VI.37) becomes∣∣∣ 1

�−x
− 1

�−p

∣∣∣≤ �2+��r


�−p
2 �

I2 can thus be estimated as follows:


I2
 ≤ �2+��
∫

�−p
>2r

r


p− �
2 
u���
d����

≤ �2+��
�∑
j=1

∫
2j r<
p−�
<2j+1r

r

�2jr�2

u���
d����

≤ 2�2+��
�∑
j=1

1
2j

(
1

2j+1r

∫

p−�
<2j+1r


u���
d����
)

≤ c���Mu�p��

Finally, in order to estimate I3 we observe that x ∈ +��p� and � ∈ �� imply

1

�−x
 ≤

1+�

r
�

Using the latter estimate we obtain:


I3
 ≤
�1+��

2)r

∫

p−�
<2r


u���
d����≤ c���Mu�p��

Our next aim is to prove that Ep��� = Hp��� for a particular class of
domains � that includes the domains Uk that will appear in the proof of
Theorem VI.4.1. We consider smooth regions U that are bounded by two
smooth curves C1 and C2 that cross each other at two points A and B where

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.007


294 Some boundary properties of solutions

they meet at angles 0 ≤ ��A�� ��B� < ). If ��A�� ��B� > 0 then U has a
Lipschitz boundary and by the result in [L] we know that Ep�U�=Hp�U� for
p> 1. Our methods will show that this equivalence still holds when the values
��A� = 0, ��B� = 0, and p = 1 are allowed. By a conformal map argument
we may assume that

(1) A= 0 and B = 1;
(2) the part C1 in the boundary of U is given by 
0�1� � t �→ t;
(3) the part C2 in the boundary of U is given by 
0�1�� t �→ x�t�+ iy�t� where

x�t�� y�t� are smooth real functions such that x�0� = y�0� = y�1� = 0,
x�1�= 1.

We first prove that Hp�U� ⊆ Ep�U�. We construct for a large integer j

a curve Cj as follows. To every point z ∈ C2 ∩ �U we assign the point
�j�2�z� = z+ j−1n�z� where n�z� is the inward unit normal to C2 at z. For
large j, C2 � z �→ �j�2�z� is a diffeomorphism and

dist ��j�2�z��C2�= 
�j�2�z�− z
 = 1
j
� (VI.38)

Observe that the set

Dj =
{
z 
 dist�z� 
0�1�× �0	�≤ 1

j

}
has a C1 boundary �Dj formed by two straight segments and two circular arcs.
Fix a point z0 ∈ C2, choose j such that z0 % Dj and consider the connected
component of {

z 
 dist��j�2�z��Dj�≥
1
j

}
that contains z0. Thus, we obtain a curve Cj�2 given by 
0�1� ⊇ 
aj� bj� �
t �→ �j�2�x�t�+ iy�t��⊂ U that meets �Dj at its endpoints Aj , Bj and remains
off Dj for aj < t < bj . Hence, we obtain a closed curve Cj completing the
curve Cj�2 with the portion Cj�1 of �Dj contained in U that joins Aj to
Bj . Because we are assuming that ��A�� ��B� < ) we see that, for large j,
Cj�1 is a horizontal segment at height 1/j. It is clear that all points in Cj

have distance 1/j to the boundary. Furthermore, if q ∈ Cj�2, q �= Aj , and
q �= Bj then dist�q� �U� = dist�q�C2� = 1/j because of (VI.38) and the fact
that dist�q� 
0�1�× �0	� > 1/j. Similarly, if q ∈ Cj�1, q �= Aj , and q �= Bj then
dist�q� �U�= dist�q�C1�= 1/j. Thus, every point q ∈ Cj is at a distance 1/j
of �U , we can always find z ∈ �U such that 
q− z
 = dist�q� �U�, and z is
uniquely determined by q except when q = Aj or q = Bj (in which case
the distance may be attained at two distinct boundary points). In particular,
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whatever the value of � > 0, q ∈ +��z� for all q ∈ Cj and 
g�q�
 ≤ g∗�z� for
any function g defined on U . Given g ∈Hp�U� we must show that

sup
j

∫
Cj


g�z�
p
dz
 ≤M <�� (VI.39)

We have ∫
Cj�2


g�q�
p
dq
 =
∫
�−1
j�2 �Cj�


g��j�2�z��
p 
�′j�2�z�
 
dz


≤
∫
�−1
j�2 �Cj�


g∗�z�
p 
�′j�2�z�
 
dz


≤ C
∫
C2


g∗�z�
p 
dz
� (VI.40)

Similarly, using the map �j�1�x�= x+ i�1/j� ∈ Cj�1, we get∫
Cj�1


g�q�
p
dq
 ≤ C
∫
C1


g∗�z�
p 
dz
� (VI.41)

so adding (VI.40) and (VI.41) we obtain∫
Cj


g�q�
p
dq
 ≤ C
∫
�U

g∗�z�
p 
dz


which implies (VI.39) with M = C 

g

pHp .
To prove the other inclusion we first assume that p= 2. Given f ∈E2�U�⊆

E1�U� it has an a.e defined boundary value f+ = bf ∈L2��U� and the Cauchy
integral representation

f�z�= 1
2)i

∫
�U

bf���

�− z
d�� z ∈ U

is valid ([Du], theorem 10.4). Furthermore, 

f 

Ep�U� � �f+�Lp��U�. Next we
recall Lemma VI.4.8 that gives the estimate

f ∗�z�≤ T∗f
+�z�+CMf+�z�� z ∈ �U\�A�B	� (VI.42)

It is well known that M is bounded in L2��U�. Furthermore, T∗ is also bounded
in L2��U� by Theorem VI.4.7. Therefore (VI.42) implies that

�f�H2�U� = �f ∗�L2��U� ≤ C�f+�L2��U� ≤ C ′�f�E2�U��

The same technique leads to the inclusion Ep�U�⊂Hp�U� for p > 1 because
T∗ and M are bounded as well in Lp��U� for 1 <p<� but the method breaks
down for p = 1. This case will be handled in the proof of Theorem VI.4.1
using the fact that if f ∈ Ep�U�, 1 ≤ p <�, f has a canonical factorization
f = FB where F has no zeros, and 
B
 ≤ 1. This is classical for the unit disk
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296 Some boundary properties of solutions

$, where B is obtained as a Blaschke product and the general case is obtained
from the classical result.

We are now ready to present the proof of Theorem VI.4.1. We begin by
defining

m�x�= min
0≤y≤B

��x� y�� M�x�= max
0≤y≤B

��x� y�� −A≤ x ≤ A�

The function Z�x� y� takes the rectangle Q= 
−A�A�× 
0�B� onto

Z�Q�= ��+ i� 
 −A≤ � ≤ A� m���≤ �≤M���	�

The interior of Z�Q� is

��+ i� 
 −A < � < A� m��� < � < M���	�

We will consider three essential cases, in each of which we will show that the
assertions of the theorem are valid on a half-interval 
0� a�. Since the same
arguments also apply to the half-intervals 
−a�0�, the theorem will follow.

Case 1: Assume that M�0�=m�0� and M�a�=m�a� for some a> 0. In this
case we will first assume that the solution f is smooth on Q. If M�x�=m�x�

for every x ∈ 
0� a�, then L would be �
�t

in 
0� a� and f�x� t�= f�x�0� for all
t ∈ 
0�B�, which trivially leads to the inequality we seek on the half-interval

0� a�. Hence we may assume that there is x ∈ �0� a� for which m�x� <M�x�.
Then the set Z��0� a�× �0�B�� has nonempty interior. Every component of
the interior of this set has the form

��+ i� 
 � < � < ��m��� < � < M���	

where ����� is a component of the open set �x ∈ �0� a� 
 M�x� > m�x�	. Let

�x ∈ �0� a� 
 M�x� > m�x�	=⋃
k

��k��k�

be a decomposition into components. Fix k and consider one of these compo-
nents ��k��k�. Note that m��k�=M��k� and m��k�=M��k�. Since for each
x, the function

t �−→ ��x� t� is monotonic�

either m�x� = ��x�0� and M�x� = ��x�B� or m�x� = ��x�B� and M�x� =
��x�0� on ��k��k�. Without loss of generality, we may assume that m�x�=
��x�0� and M�x� = ��x�B� for every x ∈ ��k��k�. Let Uk = the interior of
Z���k��k�× �0�B��. Thus

Uk = �x+ iy 
 �k < x < �k� ��x�0� < y < ��x�B�	�
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Since the solution f is assumed smooth on Q in the case under consideration,
by the Baouendi–Treves approximation theorem, there exists Fk ∈ C��Uk�,
holomorphic in Uk such that

f�x� y�= Fk�Z�x� y�� ∀�x� y� ∈ 
�k��k�× 
0�B��

Note that Uk is a bounded, simply connected region lying between two
smooth graphs and its boundary �Uk is smooth except at the two end points
��k�M��k�� and ��k�M��k��. Note also that Uk has a rectifiable boundary of
length bounded by


�Uk
 ≤
∫ �k

�k

√
1+�2

x�x�B�dx+
∫ �k

�k

√
1+�2

x�x�0�dx

≤ 2��k−�k�
√

1+ sup
Q


,�
2 = K��k−�k�

where the constant K is independent of k. For each p ∈ �Uk, and
p % ���k�M��k��� ��k�M��k��	, define the approach region

+p = �z ∈ Uk 
 
z−p
 ≤ 2 dist�z� �Uk�	�

Define the maximal functions F ∗k and T∗Fk on �Uk (except at the two cusps)
by

F ∗k �p�= sup
�∈+p


Fk���


and

T∗Fk�z�= sup
%>0

∣∣∣∣∫
��∈�Uk

�−z
>%	

1
�− z

Fk���d�

∣∣∣∣ � z ∈ �Uk�

Recall the Hardy–Littlewood maximal function

MFk�z�= sup
1

I


∫
I

f+���
 
d�
� z �= �k+ iM��k���k+ iM��k�

where the sup is taken over all subarcs I ⊆ �Uk that contain z and 
I
 denotes
the arclength of I . Next, since each Uk is Ahlfors-regular, Lemma VI.4.8
gives the estimate

F ∗k �z�≤ T∗Fk�z�+CMFk�z�� z ∈ �Uk\��k+ iM��k���k+ iM��k�	�

(VI.43)
The constant C in (VI.43) is independent of k because the aperture of the +p

is independent of k. Next we will show that any z ∈ Uk lies in +p for some
p ∈ �Uk. Let z ∈ Uk. Then for some �x� t� ∈ ��k��k�× �0�B�, z= x+ i��x� t�
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and ��x�0� < ��x� t� < ��x�B�. Let p = x+ i��x�B� and q = x+ i��x�0�.
We claim that z ∈ +p∪+q. Indeed suppose first


��x�B�−��x� t�
 ≤ 
��x� t�−��x�0�
� (VI.44)

Then for any y:


x+ i��x� t�−y− i��y�B�
 ≥ 1

2
�
x−y
+ 
��x� t�−��y�B�
�

≥ 1
2
�
x−y
+ 
��x� t�−��x�B�
− 
��x�B�−��y�B�
�

≥ 1
2
�
��x� t�−��x�B�
 since
�x
 ≤

1
2

= 1
2

z−p
� (VI.45)

We also have:


x+ i��x� t�−y− i��y�0�
 ≥ 1
2
�
x−y
+ 
��x� t�−��y�0�
�

≥ 1
2
�
��x� t�−��x�0�


≥ 1
2
�
��x�B�−��x� t�
 by (VI.44)

= 1
2

z−p
� (VI.46)

From (VI.45) and (VI.46) we see that if (VI.44) holds, then z ∈ +p. By a similar
reasoning, if (VI.44) does not hold, then z ∈ +q. We have thus shown that

Uk ⊆
⋃

p∈�Uk

+p� (VI.47)

Next fix �x� t� ∈ ��k��k�× �0�B�. If x+ i��x� t� ∈ Uk, i.e., if ��x�0� <

��x� t� < ��x�B�, then by (VI.47),


Fk�x+ i��x� t�
 ≤ F ∗k �x+ i��x�0��+F ∗k �x+ i��x�B��� (VI.48)

On the other hand, if ��x� t� = ��x�0�, then since ��x�0� < ��x�B�, there
exists t ≤ y < B such that ��x� y�= ��x�0�= ��x� t� and y is the maximum
such. Let ym→ y� ym > y. Then by (VI.48),


Fk�x+ i��x� ym�
 ≤ F ∗k �x+ i��x�0��+F ∗k �x+ i��x�B���

Letting m→�, we get


Fk�x+ i��x� t�
 = 
Fk�x+ i��x� y��

≤ F ∗k �x+ i��x�0��+F ∗k �x+ i��x�B���
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Thus for any �x� t� ∈ ��k��k�× �0�B�, we have:


f�x� t�
 =
Fk�x+ i��x� t��
 ≤ F ∗k �x+ i��x�0�� (VI.49)

+F ∗k �x+ i��x�B���

From (VI.43) and (VI.49), for any �x� t� ∈ ��k��k�× �0�B�, we have:


f�x� t�
 ≤ T∗Fk�x+ i��x�0��+T∗Fk�x+ i��x�B��

+C�MFk�x+ i��x�0��+MFk�x+ i��x�B���� (VI.50)

where we recall that the constant C is independent of k. Let 1 < p <�. The
cases p= 1�� will be treated separately at the end. Since Uk is an Ahlfors-
regular domain, both T∗ and M are bounded in Lp��Uk� ([D]) and so (VI.50)
leads to∫ �k

�k


f�x� t�
p dx ≤ C
∫
�Uk


Fk�z�
p 
dz
 for any 0 < t < B� (VI.51)

Since f�x� t� = Fk�Z�x� t�� on 
�k��k�× 
0�B�, we conclude that for any
0 < t < B:∫ �k

�k


f�x� t�
p dx ≤ C

(∫ �k

�k


f�x�0�
p dx+
∫ �k

�k


f�x�B�
p dx
)

(VI.52)

where C is independent of k. We can write

�0� a�=
(⋃

k

��k��k�

)⋃
S

where S= �x ∈ �0� a� 
 ��x�0�=��x�B�	. Observe that for x ∈ S, the function
t �−→ f�x� t� is constant since L= �

�t
on �x	×�0�B�. Hence for any 0≤ t≤B,∫

S

f�x� t�
p dx=

∫
S

f�x�B�
p dx� (VI.53)

Using (VI.53) and summing up over k in (VI.52), we conclude:∫ a

0

f�x� t�
p dx ≤ C

(∫ a

0

f�x�0�
p dx+

∫ a

0

f�x�B�
p dx

)
(VI.54)

for any 0 < t < B. Finally, we use a refinement of the approximation theorem
as in Theorem II.4.12 to remove the smoothness of f .

Case 2: Assume that M�0�=m�0� and M�x� > m�x� for every 0 < x≤ A.
We will need to use the boundary version of the Baouendi–Treves approx-
imation formula. Let h�x� ∈ C�0 �−A�A�, h�x� ≡ 1 in a neighborhood of 0.
For � > 0, define

E�f�x� t�= ��/)�1/2
∫

R

e−�
Z�x�t�−Z�x′�0��2f�x′�0�h�x′�Zx�x
′�0�dx′
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and

G�f�x� t�= ��/)�1/2
∫

R

e−�
Z�x�t�−Z�x′�t��2f�x′� t�h�x′�Zx�x
′� t�dx′

where f�x′� t� is the distribution trace of f at t ≥ 0. Let

R�f�x� t�= E�f�x� t�−G�f�x� t��

The Baouendi–Treves approximation theorem asserts that after decreasing A

and B, E�f�x� t� converges to f�x� t� in the sense of distributions in the open
set �−A�A�× �0�B�. However, here we need the refined boundary result in
Chapter II (Theorem II.4.12) which guarantees convergence up to t = 0 in
appropriate function spaces. More precisely, according to the result, there
exist a�b > 0 such that

R�f�x� t�→ 0 in C��
−a�a�× 
0� b���

Since it is clear that G�f�x� t�→ f�x� t� in Lp�−a�a� whenever f��� t� ∈
Lp�−a�a�, it follows that

E�f�x� t�→ f�x� t� in Lp�
−a�a��� if f��� t� ∈ Lp�−a�a�� (VI.55)

Let F��z� be the entire function satisfying F��Z�x� t��= E�f�x� t�. Let Ua =
the interior of Z��0� a�× �0� b��. Recall that m�0�=M�0� but m�x� < M�x�

for any 0 < x≤ A. The domain Ua is also an Ahlfors-regular domain. There-
fore, we can apply the arguments in Case 1 to the smooth functions E�f to
arrive at: ∫ a

0

E�f�x� t�
p dx ≤ C

∫
�Ua


F�f�z�
p 
dz
� (VI.56)

Note that this time �Ua has three pieces and so (VI.56) leads to:∫ a

0

E�f�x� t�
p dx ≤ C

(∫ a

0

E�f�x�0�
p dx+

∫ a

0

E�f�x� b�
p dx

+
∫ b

0

E�f�a� s�
p
�s�a� s�
ds

)
� 0 < t < b� (VI.57)

We now wish to let �→� in (VI.57). From (VI.55) we know that if f���0�
and f��� b� are in Lp�−a�a�, then∫ a

0

E�f�x�0�
p dx→

∫ a

0

f�x�0�
p dx and∫ a

0

E�f�x� b�
p dx→

∫ a

0

f�x� b�
p dx�
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We thus need only compute the limit of the s integral in (VI.57). We will
show that for almost all a′,∫ b

0

E�f�a

′� s�
p
�s�a
′� s�
ds→

∫ b

0

f�a′� s�
p
�s�a

′� s�
ds� (VI.58)

We know that M�x� > m�x� for every 0 < x ≤ A. We may also assume that
��x� t� > ��x�0� for every x ∈ �0�A�� t ∈ �0� b�. Indeed, otherwise, we will be
placed in the context of Case 1. The approximation theorem then implies that
for each x > 0, f is continuous at �x� t� for t > 0 small. Since R�f�x� t�→ 0
uniformly in 
0� a�× 
0� b�, (VI.58) will follow if we show that for almost all
a′, ∫ b

0

G�f�a

′� s�
p
�s�a
′� s�
ds→

∫ b

0

f�a′� s�
p
�s�a

′� s�
ds� (VI.59)

Choose two numbers a1� a2 such that 0 <a1 <a<a2 ≤A. By the approxima-
tion theorem, after decreasing b, since f is continuous at �x� t� for t= t�x� > 0
small, there exists F continuous in Z��a1� a2�× �0� b��, holomorphic in W =
the interior of Z��a1� a2�×�0� b�� such that F�Z�x� t��= f�x� t�. Observe that

W = �x+ iy 
 x ∈ �a1� a2�� ��x�0� < y < ��x�b�	

and F has a distributional boundary value= f�x�0� on the curve �x+i��x�0� 

a1 < x < a2	. For x ∈ �a1� a2�, define

F ∗�x�= sup
0<t<b


F�x+ i��x� t��
�

Since F has an Lp boundary value, it is well known (see, for example, [Ro])
that F ∗ ∈ L

p
loc�a1� a2�. Let * ∈ C�0 �a1� a2�� * ≥ 0, *�x� ≡ 1 near a. Write

G�f�x� t�=G1
�f�x� t�+G2

�f�x� t�, where

G1
�f�x� t�= ��/)�1/2

∫
R

e−�
Z�x�t�−Z�x′�t��2*�x′�f�x′� t�h�x′�Zx�x
′� t�dx′

and G2
�f�x� t�=G�f�x� t�−G1

�f�x� t�. Consider first G2
�f�x� t� for x near a.

Observe that the integrand is zero for x′ near a and hence for x near a and
t ∈ 
0� b�,

G2
�f�x� t�→ 0 uniformly� (VI.60)

In the integrand of G1
�f�x� t�, f�x

′� t� can be replaced by F�Z�x′� t��= F�x′ +
i��x′� t�� and hence we have:


G1
�f�x� t�
 ≤ C��/)�1/2

∫
R

e−
1
2 �
x−x′ 
2*�x′�F ∗�x′�dx′ (VI.61)

where C is independent of �. Thus if we define
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��x�= )−1/2e−
x2
2 , and ���x�= �1/2���1/2x�, then (VI.61) says that


G1
�f�x� t�
 ≤ C��� ∗*F ∗��x� ∀t ∈ 
0� b�� (VI.62)

Since *F ∗ ∈ Lp�−���� and � is a radial decreasing function in 
x
, by a
proposition in [S2, page 57],

sup
�>0

�� ∗*F ∗�x� is finite a.e.

Pick a point x0 where this supremum is finite and where F ∗�x0� <�. Then at
such a point, the functions 
G1

�f�x0� t�
 are bounded on 
0� b�. Since pointwise,

G1
�f�x0� t�→ f�x0� t� ∀t ∈ 
0� b��

it follows that∫ b

0

G�f�x0� s�
p
�s�x0� s�
ds→

∫ b

0

f�x0� s�
p
�s�x0� s�
ds� (VI.63)

From (VI.59) and (VI.63), we conclude that∫ b

0

E�f�a

′� s�
p
�s�a
′� s�
ds→

∫ b

0

f�a′� s�
p
�s�a

′� s�
ds (VI.64)

for almost all a′. We can therefore let �→� in (VI.57) and conclude that
for almost all a:∫ a

0

f�x� t�
p dx ≤ C

(∫ a

0

f�x�0�
p dx+

∫ a

0

f�x� b�
p dx

+
∫ b

0

f�a� s�
p
�s�a� s�
ds

)
� 0 < t < b� (VI.65)

Case 3: Assume M�0� >m�0�. Let a > 0 such that M�x� >m�x� for every
x ∈ �−a�a�. If Wa = Z��−a�a�× �0�B��, there is a function F holomorphic
on the interior of Wa such that f�x� y�= F�Z�x� y��. This time the boundary
of Wa has four pieces. One can then reason as in the previous case to get
the required estimate on the interval �−a�a�. Finally, observe that estimates
on the interval of the form 
−a�0� are also valid under Cases 1 and 2. The
theorem for 1 < p <� follows from these three cases.

We consider next the case when p= 1.
Assume we are in the situation of Case 1 where M�0�=m�0� and M�a�=

m�a� for some a > 0. As before we assume first that f�x� t� is smooth on
Q+, Fk ∈ C��Uk�, holomorphic in Uk and f�x� y�= Fk�Z�x� y�� on 
�k��k�×

0�B�. Since Uk is simply connected, by a classical result (see the corollary of
theorem 10.1 in [Du]), Fk has a factorization Fk =GkBk where each factor is
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holomorphic in Uk, Gk has no zeros, Gk ∈E1�Uk�, 
Bk�z�
 ≤ 1, and 
Bk�z�
 = 1
on �Uk. The fact that Gk ∈ E1�Uk� implies (see theorem 10.4 in [Du]) that it
has a nontangential limit bGk a.e. on �Uk, and Gk equals the Cauchy transform
of bGk. Observe that since 
Bk�z�
 = 1 on �Uk, 
bGk�z�
 = 
Fk�z�
 on �Uk.
Since Gk has no zeros on the simply connected region Uk, it has a holomorphic
square root Hk. Note that Hk ∈E2�Uk�=H2�Uk� (by the discussion preceding
this proof). We have

H∗
k �z�≤ T∗�bHk��z�+CM�bHk��z�� (VI.66)

Using (VI.66) and the equality 
Gk
 = 
Fk
 on �Uk we get:∫ �k

�k


f�x� t�
dx=
∫ �k

�k


Fk�x+ i��x� t��
dx

≤
∫ �k

�k


Gk�x+ i��x� t��
dx=
∫ �k

�k


Hk�x+ i��x� t��
2 dx

≤
∫
�Uk


H∗
k �z�
2 
dz


≤C
∫
�Uk


bHk�z�
2 
dz
 by the L2 boundedness of T∗ and M

=C

(∫ �k

�k


f�x�0�
dx+
∫ �k

�k


f�x�B�
dx
)

for any 0 < t < B�

(VI.67)

Summing up over k and adding the contributions from the set S = �0� a�\∪k

��k��k�, we get:∫ a

0

f�x� t�
dx ≤ C

(∫ a

0

f�x�0�
dx+

∫ a

0

f�x�B�
dx

)
(VI.68)

for 0 < t < B�

whenever f is a solution and f ∈ C��Q
+
�. In general, for f ∈
 ′�Q+� satis-

fying the hypotheses of Theorem VI.4.1, let �fm�x� t�	 be a sequence of C�

solutions on Q+ satisfying:

(i) for each 0 ≤ t ≤ B, fm��� t�→ f��� t� in 
′�−a�a�;

(ii) fm�x�0�→ f�x�0� and fm�x�B�→ f�x�B� in L1�−a�a�.

We now apply inequality (VI.68) to fm− fn, let m and n tend to �, and
use (i) and (ii) above to conclude that (VI.68) also holds for f . Cases 2 and
3 are also treated in a similar fashion. Finally we consider the case where
p =�. Suppose we are in the situation of Case 1 where M�0� = m�0� and
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M�a� = m�a� for some a > 0. Assume first that f�x� t� ∈ C��Q� and for k

fixed as before, let

Uk = �x+ iy 
 �k < x < �k� ��x�0� < y < ��x�B�	

and f�x� y� = Fk�Z�x� y�� on 
�k��k�× 
0�B�, Fk holomorphic on Uk and
continuous on the closure. We apply the maximum modulus principle to Fk

and use the constancy of f on the vertical segments x = �k and x = �k to
conclude that


f�x� y�
 ≤ 

f���0�

L��0�a�+

f���B�

L��0�a� ∀�x� y� ∈ 
�k��k�× 
0�B��

If S is the set as before with

�0� a�=
(⋃

k

��k��k�

)⋃
S�

then f�x� y�= f�x�B� ∀�x� y� ∈ S× �0�B�, and so we conclude that


f�x� y�
 ≤

f���0�

L��0�a�+

f���B�

L��0�a� (VI.69)

∀�x� y� ∈ �0� a�× �0�B��

For a solution f ∈ 
′�Q+� satisfying f���0� and f���B� ∈ L��−A�A�, we
use the refinement of the approximation theorem in Chapter II according to
which

f�x� y�= lim
�→�E�f�x� y� a.e. in �0� a�× �0�B�� (VI.70)

provided that A and B are small enough. Moreover,


G�f�x�B�
 ≤ c1�
1
2

∫
e−c2�
x−x′ 
2 
f�x′�B�

h�x′�
dx′

≤ c3

f���B�

L� ∀� > 0 (VI.71)

and likewise,


G�f�x�0�
 ≤ c

f���0�

L� � (VI.72)

Letting �→�, and recalling that R�f → 0 uniformly, we get

lim
�→�
E�f�x�0�
 ≤ C

f���0�

L� and

lim
�→�
E�f�x�B�
 ≤ C

f���B�

L� (VI.73)

for some C > 0. From (VI.69) (applied to E�f ), (VI.70) and (VI.73), we
conclude that for every �x� y� ∈ �0� a�× �0�B�,


f�x� y�
 ≤ C
(

f���0�

L��0�a�+

f���B�

L��0�a�

)
� (VI.74)
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Next we consider Case 2 where M�0� = m�0� and M�x� > m�x� for every
0 < x ≤ A. As before, let a�b > 0 such that

E�f�x� t�→ f�x� t� a.e. in 
−a�a�× 
0� b�� (VI.75)

Let Ua = Z��0� a�× �0� b�� and consider the holomorphic function F� such
that F��Z�x� t�� = E�f�x� t�. The maximum principle applied to F� on Ua

leads to


E�f�x� y�
 ≤ 

E�f���0�

L��0�a�+

E�f��� b�

L��0�a�

+

E�f�a� ��

L��0�b� ∀�x� y� ∈ 
0� a�× 
0� b�� (VI.76)

As observed already, the terms 

E�f���0�

L��0�a� and 

E�f��� b�

L��0�a� are
dominated by a constant multiple of



f���0�

L��0�a�+

f��� b�

L��0�a��

We therefore only need to estimate the term 

E�f�a� ��

L��0�b� for which it
suffices to estimate 

G�f�a� ��

L��0�b�. Let 0 < a1 < a< a2 <A be as before,
F holomorphic such that

f�x� y�= F�x+ i��x� y�� on 
a1� a2�× �0� b��

Since bF = bf ∈ L��a1� a2�, by the generalized maximum principle applied
to F there exists M > 0 such that


F�x+ i��x� y��
 = 
f�x� y�
 ≤M on 
a′1� a
′
2�× �0� b��

for some a1 <a′1 <a<a′2 <a2. We write G�f =G1
�f+G2

�f as before, except
that this time * is supported in �a′1� a

′
2�. Recall that G2

�f→ 0 uniformly while


G1
�f�x� t�
 ≤ C sup 
*�x′�f�x′� t�
 ≤ CM�

Hence for some C > 0,



E�f�a� ��

L��0�b� ≤ C ∀� > 0�

We have shown that f ∈ L���0� a�× �0� b�� in this case. Case 3 is treated
likewise. We conclude that f is bounded. Theorem VI.4.1 has now been
proved.

Corollary VI.4.9. Suppose f is a distribution solution of Lf = g in the
rectangle Q= �−A�A�×�0�B�. Suppose f has a weak boundary value bf =
f�x�0� at y = 0 and that g is a Lipschitz function. Then there exist A0 > 0
and T0 > 0 such that for any 0 < T ≤ T0 and 0 < a < A0, if f���0� and
f��� T� ∈ Lp�−A0�A0�, f��� t� ∈ Lp�−a�a� for any 0 < t < T .
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Proof. Using Proposition VI.3.6 we may find a function f0, uniformly contin-
uous on Q, such that Lf0 = g. Then, f1 = f − f0 satisfies the hypothesis of
Theorem VI.4.1. It follows that (i) holds for f1 if 1≤ p <� or (ii) if p=�
and the same conclusion applies to f = f0+ f1 because f0 is continuous up
to the boundary.

Corollary VI.4.10. Let L be as above, f ∈
 ′�Q+�, Lf = g in Q+ where
g ∈ C��Q+�. Let A0 and T0 be as in Theorem VI.4.1. If f has a weak trace
f�x�0�∈C��−A0�A0� and f��� T0� is in C��−A0�A0�, then for all 0 <a<A0

and 0 < T < T0, f ∈ C��
−a�a�× 
0� T��. In particular, f is smooth up to
the boundary t = 0.

Proof. By Proposition VI.3.6, we can get u ∈ C0��−A�A�× 
0�B�� that
solves Lu= g in Q+. Hence L�u− f�= 0 in Q+ and so by Theorem VI.4.1
and the continuity of u up to the boundary, for any 0 <a<A0 and 0 < t ≤ T0

there is a constant C > 0 such that∫ a

−a

f�x� t�
2 dx ≤ C ∀t ∈ 
0� T0�� (VI.77)

Define the vector field M = 1
Zx�x�t�

�
�x

. Since the bracket 
L�M�= 0 and Lf = g,
the distribution Mf is also a solution of L�Mf� = Mg in Q+. Moreover,
since the traces Mf���T0� and Mf���0� are smooth, by repeating the same
arguments, for any 0 < a<A0 and 0 < T < T0 there is a constant C> 0 such
that ∫ a

−a

Mf�x� t�
2 dx ≤ C ∀t ∈ 
0� T�� (VI.78)

Since �f

�t
=−a�x� t� �f

�x
+g�x� t�, (VI.78) implies that for some constant C ′,∫ a

−a

∣∣∣∣�f�t �x� t�
∣∣∣∣2

dx ≤ C ′ ∀t ∈ 
0� T��

By iterating this argument, we derive that for every m�n = 1�2� � � � , there
exists C = C�m�n� > 0 such that∫ a

−a

Dm

x D
n
t f�x� t�
2 dx ≤ C ∀t ∈ 
0� T�� (VI.79)

From (VI.79) we conclude that f ∈ C��
−a�a�× �0� T��. Smoothness up to
the boundary now follows from the case p=� in Theorem VI.4.1.

Remark VI.4.11. Conversely, if a locally integrable vector field L shares the
Hp property as in Theorem VI.4.1, then L has to satisfy condition ��+� at
the origin in 0= �−A�A�× �0	. See [BH6] for the proof.
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Corollary VI.4.12. Let L satisfy ��+� at the origin as above. Suppose
Lf = g in Q+, g ∈C��Q+�, and f ∈C��Q+�. If the trace bf = f�x�0� exists
and f�x�0� ∈ C��−A�A�, then f is C� up to the boundary t = 0.

Example 4.3 in [BH6] provides a real-analytic vector field L for which
Corollary VI.4.12 is not valid even for a solution of the homogeneous equation
Lf = 0. Example 4.4 in the same paper shows that in Theorem VI.4.1, one
needs to assume the integrability of two traces. That is, if we only assume
that bf = f�x�0� ∈ L1, the traces f��� t� may not be in L1.

Notes

The results of this chapter in the holomorphic case are classical. For a discus-
sion of the conditions that guarantee the existence of a boundary value we
refer to the books [BER] and [H2]. The basic theory of Hardy spaces for
bounded, simply connected domains in the complex plane is exposed in [Du]
(see also [Po]). The paper [L] and the references in it contain more recent
developments on the subject. The planar case of Theorem VI.1.3 as well
as the necessity in the real-analytic, planar situation was proved in [BH5].
Lemma VI.4.8 is taken from [L]. Theorem VI.4.1 and its corollaries appeared
in [BH6]. The work [HH] extends Theorem VI.4.1 to the case 0 < p < 1 for
vector fields with real-analytic coefficients.
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