QUASI-INPUT PROCESS IN THE $M/G/1/\infty$ QUEUE

G. I. FALIN,* Moscow State University

Abstract

We consider the flow of service starting times in the $M/G/1/\infty$ queue and study some of its equilibrium properties.

RANDOM FLOWS; QUEUEING SYSTEMS

Introduction

We shall consider the $M/G/1/\infty$ queue with FIFO discipline. Let ξ_i be the instant at which the *i*th service begins, and let η_i be the instant when this service is completed. The sequence of points η_i on the time axis forms the *departure* process. It is studied in detail in [1], for example, whereas the closely connected process of service starting times $\{\xi_i\}_{i\geq 1}$ has, as far as we know, never been considered. The process $\{\xi_i\}_{i\geq 1}$ is an input process for the server, so we shall call it the *quasi-input* process. The present note gives some results obtained for such a quasi-input flow. The problem is all the more important in that often we can observe only the moments when one server is turned 'on' or 'off', i.e. the quasi-input and output processes.

Let λ be the rate of input flow, $\beta(s)$ the Laplace-Stieltjes transform of the servicetime distribution function B(x), $\beta_k = (-1)^k \beta^k(0)$, $\rho = \lambda \beta_1$. $S_i = \eta_i - \xi_i$ is the service time of the *i*th call, and N_i is the queue length immediately before the instant η_i .

Distribution of intervals between service beginnings

Let $A_i = \xi_{i+1} - \xi_i$. It is easy to see that, if $N_i \ge 1$, then $\xi_{i+1} = \eta_i$ and so $A_i = S_i$; but if $N_i = 0$, then $A_i = S_i$ plus the interval until the (i + 1)th call arrives in the system. This simple fact yields that Laplace transform of the random variable A_i is

$$E \exp(-sA_i) = [P\{N_{i-1} = 0\} + P\{N_{i-1} = 1\}] \cdot \left[\beta(s) - \beta(s+\lambda) + \beta(s+\lambda)\frac{\lambda}{s+\lambda}\right] + P\{N_{i+1} \ge 2\} \cdot \beta(s).$$

One can see that the dependence of $E \exp(-sA_i)$ on *i* is connected with the dependence of the embedded Markov chain $\{N_i\}$ on *i*. Thus, if $\rho < 1$ and the queue is in a steady state, i.e. $P\{N_i = k\} = \pi_k$ is an invariant probability measure of the chain $\{N_i\}$,

Received 14 May 1984.

^{*} Postal address: Department of Probability, Mechanics and Mathematics Faculty, Moscow State University, Moscow, 119899, USSR.

then all intervals A_i have the same distribution function with Laplace-Stieltjes transform

$$\omega(s) = E \exp(-sA_i) = \beta(s) - \frac{1-\rho}{\beta(\lambda)}\beta(s+\lambda)\frac{s}{s+\lambda}$$

Here we have used the well-known equalities $\pi_0 = 1 - \rho$, $\pi_1 = (1 - \rho)(1 - \beta(\lambda))/\beta(\lambda)$. In particular, when the queue is in steady state

$$EA_i = 1/\lambda,$$
 $Var A_i = \beta_2 - 2(1-\rho)\beta'(\lambda)/\beta(\lambda) + (1-2\rho)/\lambda^2$

These formulae lead us to some interesting qualitative conclusions about the quasi-input process.

Let $\beta(s) = \nu/(s + \lambda)$, i.e. the service time has negative exponential distribution with parameter ν . Then

$$\operatorname{Var} A_{i} = \frac{2}{\nu^{2}} + \frac{2(1-\rho)}{\lambda(\nu+\lambda)} + \frac{1-2\rho}{\lambda^{2}},$$
$$\operatorname{Var} A_{i}/(EA_{i})^{2} = \lambda^{2} \cdot \operatorname{Var} A_{i} = 1 - \frac{1-\rho}{1+\rho} 2\rho^{2} < 1$$

so that A_i is not negatively exponentially distributed. Therefore, the quasi-input process in the $M/M/1/\infty$ queue is not Poisson, while the departure process is Poisson. In the general case, if $\lambda \to 0$ then $\lambda^2 \operatorname{Var} A_i = 1 - \lambda^2 \beta_2 + o(\lambda^2)$. Thus there is no B(x)

In the general case, if $\lambda \to 0$ then $\lambda^2 \operatorname{Var} A_i = 1 - \lambda^2 \beta_2 + o(\lambda^2)$. Thus there is no B(x) such that A_i has a negative exponential distribution for all λ (except for the trivial case of instantaneous service, of course).

In connection with this result it would be interesting to find out when the quasi-input process is a renewal process.

Reference

DISNEY, R. L. (1975) Random flow in queueing networks: a review and critique. AIIE Trans. 7, 268–288.