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TOWARD A CLASSIFICATION OF DYNAMICAL SYMMETRIES
IN CLASSICAL MECHANICS

GEOFF PRINCE

A one-parameter group on evolution space which permutes the

classical trajectories of a Lagrangian system is called a

dynamical symmetry. Following a review of the modern approach to

the "symmetry-conservation law" duality an attempt is made to

classify such invariance groups according to the induced trans-

formation of the Cartan form. This attempt is fairly successful

inasmuch as the important cases of Lie, Noether and Cartan

symmetries can be distinguished. The theory is illustrated with

a presentation of results for the classical Kepler problem.

Introduction

The last few years have seen considerable progress in the under-

standing of the relation between the symmetries (one parameter-invariance

groups) and the conserved quantities of Lagrangian and Hamiltonian systems

(see Sarlet and Cantrijn [7] for a review and references). Extensions to

Lie's theory of ordinary differential equations and their application to

generally non-Lagrangian systems are less well known (see Prince [5])

although the overlap between the two areas is considerable. I am concerned

here with invariance groups of Lagrangian systems, not only those arising

from Noether's Theorem and its "Cartanian" counterpart, and their relation
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to conserved quantities and the Lagrangian itself. The thrust of the paper

is an attempt to classify the invariance groups according to their trans-

formation laws for the Cartan form. The motivation for this is two-fold:

firstly, these laws are straightforward for some important classes of

symmetries and this inspires a more general exploration. Secondly, the

classical results in Riemannian geometry concerning the transformation

properties of the metric under various geometrical actions suggest that the

corresponding geometric object in Lagrangian mechanics may have interesting

transformation properties under dynamical actions.

I have included only the minimum differential geometric background

needed for the considerations here and the reader is referred, for example,

to the two references already cited along with Estabrook [2] for more

details.

1. Introduction

I will be considering the symmetries and conservation laws of a
Lagrangian system with an w-dimensional configuration space M . Local

co-ordinates (x , . . . , x ) will be used for points in M . The system
wi l l , in general, be non-autonomous with Newtonian time t and i t will be

useful to use A/ x |R with local co-ordinates [x , ... , x , t) . The
evolution space E is T(M) x |R with co-ordinates

[x , . . . , x , x , . . . , x , t) .

The classical trajectories of the system are the projections of the

integral curves (curves on T(M) x |R ] onto M of the vector field

dX dX

where the A satisfy the Euler-Lagrange equations

(1 2) ^L tP - - ^ ^L a? - ^
8xdxJ 9x 3x 9xJ 9xdt

(the Lagrangian is taken to be regular).

Alternatively, T is the (normalized) characteristic vector field of

the exterior derivative of the Cartan form
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(1.3) 8(L) = Ldt +

9x

that is,

(i.U) r J de(D = o ,

(1.5) <T, dt) = 1 (normalizat ion),

where J denotes the contraction of vectors and forms and < , > is the

natural pair ing function. This completely iden t i f i e s Y with ( l . l ) since

(l.U) requires tha t

(1.6)
< T, dx'-'x'dt) = 0 ,

, dx'-^dt) = 0 ,

where again the A satisfy the Euler-Lagrange equations (1.2).

The relations (1.5), (1.6), suggest a natural local basis of one-forms

on E , namely {dx -x dt, dx -A dt, dt} , dual to the natural basis of

vectors {3/3x , 3/3x , V] . As a useful illustration of calculations

involving these bases consider a vectorfield X on T(M) X IR with

components (C » 1 > f) relative to the local co-ordinate basis

{8/3x , 9/3x , 9/3t} . Then, relative to the natural basis, the components

are given by

X = < X, dxi-'xl'dt> -K + < X, dx'-ttdt) -K + < X, dt)Y

(1.7) x = C V T - ^ + (n -A*T) - ^ + xr .
3x*" ' 9x

Similarly a one-form on E ,

a = p .dx + a .d i + udt ,

appears as

a = <—j-, aMdx -x dt) + ("T^' a / l ^ "A <̂ *J + < r . «>dt ,
9x 3x
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or

(1.8) a = p Adx'-x'dt) + o.{dx--l^dt) + (iV+Alo.+co]dt •
% ' ' Is - ' ^ % % J

In particular if a = df is exact then

(1.9) df = M- [dJ-'J-dt) + -̂ J" [d^-^dt] + T(f)dt .
3x 8a:

Returning to the Cartan form we note that if L and L' are

equivalent Lagrangians for a given dynamical system inasmuch as

(1.10) dQ(L) = dQ(L') ,

then locally there is a function / : E -*• IR such that

(1.11) 6(L') = 6(L) + df .

Since both 9(£) and d(L') are independent of [dx -A dt] then so is

df and (1.9) requires that the values of f be independent of x . Thus

(1.11) corresponds to the usual gauge variance of the Lagrangian

(1.12) L' = L + f .

At this stage it is worth pointing out some of the limitations of this

Cartan form approach. Firstly it is not apparent under what circumstances,

if any, equations (l.U) and (1.5) provide a two-form dQ{L) given a vector

field F for the dynamical system. This is essentially the inverse

problem in Lagrangian mechancis and I will not address it here. Secondly,

and related to this first point, is the possibility that T may be

characteristic of the exterior derivative of a Cartan form 6(L*) where

dQ(L) # d8(L*) . This raises the question of Lagrangians equivalent in a

sense different to that of equation (1.12). I will take up this question

in a later section.

Finally, the following formulae involving Lie derivatives will be

useful.

The Lie derivative of a p-form fi with respect to a vector field X

is given by

(1.13) LJP = d(X J SI) + X J dSl ;

in particular for a one-form a ,
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(l.lU) Ljfx = d<X, a) + X J da .

Furthermore,

(1.15) LX{Q± A n2) = ( L ^ ) A Q2 + Q1 A L ^ 2

and

(1.16) Lx(da) = dlLjfl) ,

for any p-forms fi, Q and 4-form fi . Last, but not least , for vector

fields X, Y ,

(1.17) L^Y = [X, Y] .

2. Invariance groups and conservation laws

The general theory of invariance groups and conservation laws is based

on the following two ideas.

(i) Any one parameter group on T(M) x |R which permutes the integral

curves of T is called an invariance group of the system. The local

condition that a group generated by a vector field X on T{M) X |R be an

invariance group is

(2.1) [x, v] = xr

(A : T(M) x |R -• |R) .

(More details are given later and in the Appendix, suffice it to note here

that the idea of looking at invariance groups on T{M) x |R (the so-called

"velocity-dependent" transformations) is due to Cartan and grew out of

Lie's theory of ordinary differential equations where the invariance groups

are on M x |R .)

(ii) A function F : T(M) x |R -»• |R is conserved along the classical

trajectories if

(2.2) T(F) = 0 .

Comparing the expression (1-9) for dF with (2.2) i t is clear that F

is a constant of the motion if dF does not involve dt when described

relative to the natural basis for T*(E) ; clearly with this choice of

basis the classical idea of an ignorable co-ordinate is quite unambiguous.
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The thrust of the neoclassical Lie theory of differential equations,
Noether's Theorem and of the Cartanian approach, is to relate conservation
laws and invariance groups. To this end i t is useful to classify the
various cases of (2.1). The following results are more or less classical
(see in part , Crampin [ / ] , Sarlet and Cantrijn [7] and Prince [5]).

A. A Lie symmetry of the system is a one-parameter group on M x IR
generated locally by a vector field

(2.3) X = 5 < 3 + T £

9x

[C, T : M x R •* IR) . In this case (2.1) is just

(2.U) [*(1), T] = - ir ,
where

( 2 . 5 ) * x, (r^x

is the f i r s t prolongation of X (from M x IR to T{M) x R ; see the

Appendix] .

These one-parameter groups are finite in number, say r of them, and
form an r-parameter Lie groups, denoted G , on M x IR . In particular
the associated vector fields X , . . . , X form an r-dimensional Lie

algebra, denoted A .

In general conservation laws are obtainable from the Lie algebra and
the transformation properties X( '(F) = o , T(F) = 0 (see Prince [5]) ,
although not in closed form and there is not a one-to-one association of
conservation laws with Lie symmetries, for example, the cases
jfP(F) = X(

d
l](F) = 0 and * ( l ) (*\) = X(l) [F.) = 0 , may occur.

The theory of Lie symmetries is, in fact, the modern version of Lie's

theory of ordinary differential equations and transcends questions of

variational principles.

B. A Noether symmetry of the system is a one-parameter group

belonging to G with generator Y E A and the additional property that

(2.6) L (1)6(L) = df ,
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( / : M * IR -*• R) . This gives a closed form conservation law

(2.7) F = f - < y ( l ) , 9(L)>

with the transformation property

(2.8) y ( l ) ( F ) = 0 .

In general, however, not all conservation laws are obtainable in this way

(see Case D below).

I should point out that this presentation of Noether symmetries is

novel in two ways. Firstly, Noether symmetries usually arise as one-

parameter groups on M x R which leave the Lagrangian invariant as opposed

to groups leaving the variational principle invariant; thus it is not

immediately obvious that (2.1) is satisfied. Secondly, Noether symmetries

are usually formulated locally so that

(2.9) <- {l)(Ldt) - df € C

where C is the subspace of T*(E) spanned by the contact forms

dx - x dt (see Cramp in [7]). The formulation (2.6) is equivalent and is

needed to demonstrate the Noether symmetries are a subcase of Cartan

symmetries (see Case D below).

C. A dynamical symmetry of the system is just the most general case

of (2.1). It is a one-parameter group on T(M) x IR (as opposed to

M x IR ) generated locally by a vector field

(2.10) x-e jj • n i - ? f + T £
dX dX

[C, r\V, T : T(M) x R ->• IR) with the propert ies that

[x, r] = -r(-r)r ,

(2 i i ) A = T{C) ^

It is important to realise that the action of a dynamical symmetry is

to permute the classical trajectories on M x R but not in general as a

one-parameter group on M x R . (This only occurs when a vector field
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generating the group can be found which projects onto M x IR ). For this

reason the collection of dynamical symmetries do not form a Lie algebra

and, unlike Lie symmetries, it is not usually possible to find the form of

all the vector fields X .

D. A Carton symmetry is a dynamical symmetry generated by a vector

field Y with the additional property

(2.12) ' LyQ(L) = df

{f : T(M) x R -> R) . This gives a closed form conservation law

(2.13) F = f - <Y, 0(L)>

and the transformation property

(2.1U) Y(F) = 0 .

These results derive from the following theorem.

THEOREM 1. For each point P in evolution space < Y , a) = 0 if

and only if there exists a vector X € T (E) such that a = X J dQ (L) .

Proof. Consider the linear map

(2.15) S : T (E) •+ T (E) , S(X) = X J dQ (L) .

P P P
The null and rank spaces of S are

Ns = {X € Tp(E) : X = fT, f : Tp(M) x |R -> |R} ,

i?c = {a € T*{E) : a = X J dQ (L), X € T (E)} ,
i> p P P

respect ively , thus dim i?c = dim T (E) - dim N = 2n . Now if a € fl-
o p o o

then

(2.16) < r , a> = < r , x J dQ (£)> = de[x, r ) = o

so that

Rs c {a € THE) : <F ct> = o} .

As this subspace has dimension 2n and since both spaces are generated by

{dx -x dt, dx -A dt} ,

R = {a € THE) : <T , a> = o} . •o p p
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The other important results follow as corollaries.

COROLLARY, (i) If L 6(1) = df for some vector field Y then

f - ( Y, 0(L) > i s a constant of the motion.

(ii) If F is a constant of the motion then there is a vector field

Y such that L 0(1) = d[P+(Y, 0(L) >) and any vector field

Y + gT[g : T(M) x R -»• R) has the same property.

Proof. From Theorem 1 a constant of the motion i s a one-form

Y J dO(L) which i s exact. Hence

LyQ(L) = Y J dQ(L) + d(Y, 0(£)>

is exact. Results (i) and (ii) follow immediately. D

Clearly Noether symmetries (B) are a special case of Cartan

symmetries. The latter differ from the former in that there is a one-to-

one correspondence between all the conservation laws and the set of

"normalized" Cartan symmetries (normalized so that [Y, T] = 0 ). However,

while it is possible to find all the Noether symmetries, the fact that the

Cartan symmetries do not form a Lie algebra means that it may not be

possible to find all of them (and hence all the conservation laws).

3. Invariance groups - towards a classification

The results A-D of the last section suggest a possible classification

scheme for dynamical symmetries using the transformation properties of

0(£) under the action of the groups. For Cartan (and Noether) symmetries

0(L) transforms according to

(3-D Lfliu = df- L^ded) = o .

The corresponding result for Lie symmetries is given in the following

theorem (see Prince [5] and also Lutzky [3] and Marmo and Saletan [4]).

THEOREM 2. If a vector field X on M x R generates a Lie symmetry

then

(3.2) L ( l ) e ( L ) = G(L*) + df

where f : M x IR + R v
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(3 .3)

and

(3.U)

I

( 3 . 5 )

L* + / = + LT

Proof . Taking XK

T J <2Q(L*) = 0 .

t o be given by ( 2 . 5 ) g ives

Now

( 3 . 6 )

where g1 : M x IR -»• IR . Hence, including the gauge variance a r i s ing from

g , (3-5) can "be wr i t ten

X( 1 )
e(D = + df

L* + f = X{1){L) + LT

(3 .7 )

where

( 3 . 8 )

and / : M x R •* IR .

Moreover,

(3.9) o = L ( 1 ) ( r J dQ(D) = 0 ( 1 ) , rj J de(D + r J L {1)de(D
A A

=» o = r -i de(L*)

by virtue of (2.k) and (3-7). D

There are a number of remarks.

(i) A converse to this result does not hold, namely, given a pair of

equivalent Lagrangians L, L* , we cannot, in general, obtain an X € A

using (3-3) (equivalent Lagrangians for the free particle and harmonic

oscillator provide counterexamples).

(ii) It is not clear whether a closed form conserved quantity can be

constructed from (3-2) although in the case of the so-called "higher-order
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Noether-symmetries" of Sariet and Cantrijn [8], this can be done (Prince

[6]).

Turning to the more general case of dynamical symmetries we have

THEOREM 3. If X generates a dynamical symmetry then

(3-10) LfiiL) = 9(L*) + df

with

(3-11) r J dQ(L*) = 0

(f : T(M) x IR •*• R) i/ and only if

(3-12) Sr . -I = 0

where

[3.13) 5. . =
2J

,-xk*L

Proof. Taking Jf to be of the form (2.10) gives

(3.l>0 i-xQ{L) = {X{L)+L?{i))dt

K + X

Attempting a solution of the form (3-10) requires that

X(L) + LT(T) = L* +

(3.15) L-^
3X1

f 3 L l
'V

Jx" 3x"

A necessary and sufficient condition that such a solution exists is

surprisingly just the integrability of / , namely

(3.16)
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which, in the light of the last of equations (3.15) , is (3-12) where 5. .

is given by (3.13). If (3-10) is true then (3.11) follows analogously to

(3.M. 0

The condition (3.12) is not in general satisfied by all dynamical

symmetries (the two-dimensional free particle is a good counterexample).

Indeed it is not even possible to find a function g : T[M) * IR -»• IR such

that X + gT satisfies (3.12) for any dynamical symmetry X (the

transformation X •* X + gT preserves transformation properties like

X(F) = 0 for a conservation law F ). However, the transformation

X •* X - <X, dt)T does simplify (3.12) and (3.13):

(3.17) S'[W - 0

where

r ? -ia\ <?> d L... °V p " - f" *T
v 8x 3a: lx°

Condition (3.12) is met by the dynamical symmetries of all one-dimensional

systems and when X is a Lie or Cartan symmetry.

It is an open question whether or not any pair of equivalent

Lagrangians lead to a dynamical symmetry through the first of equations

(3-15). It is also unclear whether dynamical symmetries satisfying Theorem

3 lead to closed form constants of motion.

In conclusion, I have developed an almost complete classification of

dynamical symmetries through the transformation property (3-10). Most

importantly, the manifestly geometric Lie symmetries have the

transformation property (3-2).

4. Example - the Kepler problem

For the sake of illustration I will consider the Kepler problem in

two dimensions with local co-ordinates r = {x , x ) for M . Taking

2 2
(U.I) L = h[x +x ) + v/r (u > 0) ,
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and local bases for T(E), T*{E) as

{ 3 3 „! r , i "ij, -,'i , i , , -,,1— j , —7j, T>, \dx -x dt, dx -A dt, dt)

where A = -ux /r , the exterior derivative of the Cartan form is

(It.3) dQ{L) = &i.[dx'-A
1'dt) A [dJ-aPdt] .

The first prolongations of the three Lie symmetries are

3x 3x

(U h) X{1) - x2 -$- + x1 -5- - x2 -5- +• x1 -?-
ox ox 3x 3x

and

3 3x̂ " ' dx1

Using the integration procedures in Prince [5], the Lie algebra

\x, X , X } leads to the conservation laws:

2 2
Energy ff = (x +x J - — ,

(U.5) Angular Momentum h = x-.x - x x ,

i i. \ i, i> ' •, "t, *, ux
Runge-Lenz vector (̂x component) R = x (r«r) - x (r-r) - -E--— .

Now Z , X generate Noether symmetries and E, In. are recoverable from

L Q(L) = df and F = f - < X(l) , Q(L))

however

(U.6) L (-|\0(£) = -J0(L) >

so that L* = -jL and there are no Noether symmetries corresponding to R

2
and R . Using the last of (U.5) and (2.13) we can construct (up to a
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multiple of T ) the Cartan symmetries corresponding to K~, FT

respectively:

8a;1

22 y] 3 -1-2 3 1 3

3x

y = (x^x^)
2 ' Sx1

The set of four Cartan symmetries does not form a Lie algebra on

T{M) x R , the commutators being

(k.8)

However, the set is useful inasmuch as the transformation properties

(U.9) y±(E) = Y2(E) = 0 ,

Y^h) = -i?2 , Y2(h) = i?
1 ,

= -2Eh , Y2[l?-) = 2Eh ,

indicate that the "basis of conservation laws" associated with the set may

be taken as {E, h] . In contrast, when the Lie algebra is used, the basis

is \E, h, FT, R } . Finally, the transformation properties of the Cartan

symmetries Y and y under the ("degenerate") Lie symmetry X- are

interesting although not surprising:
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(U.io) [*3, yj = \Ya

Appendix

One of the basic technical questions in Lie's group theoretic approach

to differential equations concerns the extension of a group action on

M x R to one on T(M) x IR . Rather interestingly a basic technical

question arising in the Cartanian approach to Lagrangian systems used here

is "Under what circumstances does a one-parameter group on T(M) x IR

'project' onto a one-parameter group on M x IR ?"

Before starting with the details a few points need to be kept in mind.

Firstly, while the natural place for trajectories of a dynamical system is

M , the action of a one-parameter group on the solutions takes place on

M x IR , part of the action being a re-parametrisation of the Newtonian time

along the trajectories. Consequently it will be necessary to extend the

solutions on M to curves on M x |R . Secondly, because

T(M) x R * T(M x |R) We will not need the usual lift from M to T(M) but

two lifts, one from M to T(M) x R and one from M x R to T{M) x R .

The technical aspects make the notation a little unwieldly but the

intuitive ideas can still be clearly expressed.

Consider a member of a family of curves on M ,

(Al) Y : R + M , y(X) = P , u(P) = (**)

(u is a chart for an open region of M containing P ). I will denote the

corresponding curve on M x |R by y •

(A2) Y : R ^ « x R , Y(X) = (P, X) , y(P, X) = (/, X) ,

where V corresponds to u in an obvious way. Now, if the family of

curves on M has tangent vector field X , then Y and Y are lifted to

the same curve on T(M) x R \,y the mappings T, T respectively:

T : C°°(R, M) -+ C°°(R, T{M) X Ft) ,

T : C°°(R, M x R) ->- C°°(R, T(M) X R) ,
(A3)

Y - Y : T ( Y ) U ) = y(\) = (P = Y(X), X , X] ,

Y * Y = 3"(Y)(X) = Y(X) ;
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and

\i(P, X , A =
P

i s the obvious chart for T(M) x |R .

A one-parameter {a € I c |R) group ^ on M x |R i s denoted

ij; : « x |R -»• Af x R

where

(A*0 ij) : (M x R) x J + M x R ;

||>(P, V; a) = ^ ( P , V) = (P, v) .

I t i s important to r ea l i s e tha t both P and V depend on each of P, V

and a .

The image of y under \p can now be writ ten y = \p ° y • The one-

parameter group can be used to define a function

ij; : <f°(B, M x IR) •* ( f (IR, M x IR)

(A5) a ( a )

where the new curve parameter X depends on A through

(A6) y{\) = (P, X) and ( ^ o y){\) = (P, X) .

The f i r s t extension of i|> , tj;^1^ : T(M) x IR •* T(M) x IR can now be

impl ic i t ly defined as follows:

(A7) ^ { T i y ) ) = T § a ( y ) ) ( f o r a l l y o n M ) ,

where

ip^1^ : C°(R, T(W) x IR) -̂  ^(IR, T(M) x IR)

i s defined s imilar ly to \fr above, namely,

(A8) ^
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Thus ijr is the mapping that completes the following diagram for any

curve Y on M ,

Y on T{M) x IR • T{$! (Y)) on T{M) x R

Y on M jjj >• Y o n M x IR
a

The definition (A7) of 4> does not specify its action on all

points of T(M) x IR however, this can be done in a natural way (for

example by considering a congruence of curves Y on M ) and it can then

be shown that ty is a one-parameter group on T{M) x [R . Further it

can be shown that, if fy is locally generated by the vector field

(A9) X - C fj + x ̂  ,

then ^ is generated by

(A10) X(l) = ̂  -X + (^-iS) -iy + X ± .
dX dX

X is called the first extension or prolongation of X .

Conversely, if <$> is a one-parameter group on T{M) x |R then it is

the first extension of a one-parameter group on M x |R if and only if

(All) (3i|ia on « X R ) ( V Y on Af) *a[T(y)) = T^Jy)) .

(j) is then said to project onto M x |R . in particular, if <j> is

generated by a vector field Z on T(M) x |R then the equivalent

infinitesimal condition to (All) is

(A12) Z = hX{l)

for some X on M x R and /l : T(W) x R -»• R .

A related matter is whether or not a one-parameter group <|> on
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T(M) x IR will take an arbitrary lifted curve onto another lifted curve,

namely,

(A13) (Vy on A/)(3p on M) 4>a[T(y)) = 2"(p) ?

The infinitesimal equivalent of this is that the vector field Z

generating <(> preserves the set of contact forms

(AlU) L^dJ-Pdt) 6 C .

Rather surprisingly, for systems with two or more degrees of freedom this

requires that <fr project onto a one-parameter group on M x R (see

Sarlet and Cantrijn [ 7 ] ) .

Finally I will consider the invariance condition (2.1). The integral

curves of T (on T(M) x IR ] are lifted from the classical trajectories of

the system, the family of these integral curves will be denoted F . A

one-parameter group <!> on T(M) * R is defined to be an invariance group

of the dynamical system if i t permutes the integral curves, that is if

(A15) (Vy € F) <f>a o Y € F .

The infinitesimal version of this is

LZT = xr

where Z generates <(> and X : T(M) x R -»• R . I t is clear from the

foregoing that the corresponding action on the classical trajectories will

be that of a one-parameter group if and only if Z satisfies (A12).
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