ON KNOPP'S INEQUALITY FOR CONVEX FUNCTIONS

BY
J. E. PEČARIĆ AND P. R. BEESACK*

AbSTRACT. Knopp's inequality for convex functions ϕ on an interval $I=[m, M]$ states that

$$
\int_{0}^{1} \phi(g(t)) d t-\phi\left(\int_{0}^{1} g(t) d t\right) \leqq H(m, M ; \phi)
$$

for an explicit functional H, and all integrable $g:[0,1] \rightarrow I$. In this paper we give results of this kind in which the integral operator, \int, is replaced by a general isotonic linear functional.

1. Introduction. In 1935, K. Knopp [5, Satz 1] proved a result which can be stated in the following equivalent form (see also, for example, T. Popoviciu [9, p. 34]):

Let ϕ be a convex function on $I=[m, M],(-\infty<m<M<\infty)$, and let g be a real function on $[0,1]$ such that $m \leqq g(t) \leqq M$ for all $t \in[0,1]$. Then

$$
\begin{align*}
\int_{0}^{1} \phi(g(t)) d t & -\phi\left(\int_{0}^{1} g(t) d t\right) \tag{1}\\
& \leqq \max _{x \in \mid m, M \backslash}\left\{\frac{M-x}{M-m} \phi(m)+\frac{x-m}{M-m} \phi(M)-\phi(x)\right\} .
\end{align*}
$$

In case ϕ is strictly monotonic on I, the bound on the right hand side of (1) is attained for a single value of x, say $x=x_{0}$, where
(2) $x_{0}=\lambda m+(1-\lambda) M, \quad \lambda=(M-m)^{-1}\left\{M-\left(\phi^{\prime}\right)^{-1}\left(\frac{\phi(M)-\phi(m)}{M-m}\right)\right\}$.

If ϕ is concave, the direction of the inequality sign in (1) is reversed. In [5], only the strictly monotonic case of (1), (2) was stated explicitly. (In [7], (1) is (incorrectly) stated by requiring that g be nondecreasing.) The special case $\phi(x)=x^{2}$ of (1) gives the well-known inequality of G. Gruss [4]. See also D. S. Mitrinović [7, p. 70].

In this paper we shall give a generalization of this result in Section 2, and some applications or examples of the basic inequality in Section 3.
2. Main result. In the sequel E will denote a nonempty set, L a class of real functions on E containing the chararacteristic function 1_{E} and A a positive linear functional over L satisfying $A\left(1_{E}\right)=1$. The following result was given in [3, Lemma 1].

Received by the editors June 18, 1985, and, in revised form, June 25, 1986.
*Deceased October 16, 1985.
AMS Subject Classification (1980): Primary 26D15; Secondary 26D20, 47B38.
(C) Canadian Mathematical Society 1985.

Lemma 1. Let $\phi(t)$ be convex on $I=[m, M](-\infty<m<M<\infty$. If $g \in L$, $g(E) \subset I$ and $\phi(g) \in L$, then

$$
\begin{equation*}
A(\phi(g)) \leqq\{(M-A(g)) \phi(m)+(A(g)-m) \phi(M)\} /(M-m) \tag{3}
\end{equation*}
$$

Remark 1. The right-hand side of (3) is a nondecreasing function of M and nonincreasing function of m. This follows by writing this expression in either of the two forms

$$
\phi(m)+(A(g)-m) \frac{\phi(M)-\phi(m)}{M-m}=\phi(M)-(M-A(g)) \frac{\phi(M)-\phi(m)}{M-m},
$$

and noting that $m \leqq A(g) \leqq M$, while $(\phi(M)-\phi(m)) /(M-m)$ is a nondecreasing function of both M and m by the convexity of ϕ.

We now give our basic generalization of Knopp's inequality (1).
Theorem 1. Let J be an interval such that $J \supset \phi(I)$. If $F(u, v)$ is a real function defined on $J \times J$, non-decreasing in u, then
(4) $F[A(\phi(g)), \phi(A(g))] \leqq \max _{x \in|m, M|} F\left[\frac{M-x}{M-m} \phi(m)+\frac{x-m}{M-m} \phi(M), \phi(x)\right]$

$$
\left(=\max _{\theta \in[0.1]} F[\theta \phi(m)+(1-\theta) \phi(M), \phi(\theta m+(1-\theta) M)]\right)
$$

The right-hand side of (4) is a nondecreasing function of M and a nonincreasing function of m.

Proof. By (3) and the nondecreasing character of $F(., y)$ we have

$$
\begin{aligned}
F[A(\phi(g)), \phi(A(g))] & \leqq F\left[\frac{M-A(g)}{M-m} \phi(m)+\frac{A(g)-m}{M-m} \phi(M), \phi(A(g))\right] \\
& \leqq \max _{x \in|m, M|} d(x ; m, M, \phi)
\end{aligned}
$$

where

$$
d(x ; m, M, \phi)=F[\{(M-x) \phi(m)+(x-m) \phi(M)\} /(M-m), \phi(x)]
$$

proving the first part of (4). As in Remark 1 we have for $m \leqq x$, and $m<M^{\prime} \leqq M$,

$$
\begin{aligned}
\{(M-x) \phi(m) & +(x-m) \phi(M)\} /(M-m) \geqq\left\{\left(M^{\prime}-x\right) \phi(m)\right. \\
& \left.+(x-m) \phi\left(M^{\prime}\right)\right\} /\left(M^{\prime}-m\right) .
\end{aligned}
$$

Hence, by the nondecreasing character of $F(., y)$,

$$
\begin{equation*}
d(x ; m, M, \phi) \geqq d\left(x ; m, M^{\prime}, \phi\right), \quad m \leqq x, \quad m<M^{\prime} \leqq M \tag{5}
\end{equation*}
$$

By (5) and the inclusion $\left[m, M^{\prime}\right] \subset[m, M]$, it follows that

$$
\max _{x \in|m, M|} d(x ; m, M, \phi) \geqq \max _{x \in\lfloor m, M \mid} d\left(x ; m, M^{\prime}, \phi\right) \geqq \max _{x \in\left\lfloor m, M^{\prime}\right]} d\left(x ; m, M^{\prime}, \phi\right) .
$$

Similarly we can prove that

$$
\max _{x \in|m, M|} d(x ; m, M, \phi) \leqq \max _{x \in\left|m^{\prime}, M\right|} d\left(x ; m^{\prime}, M, \phi\right) \quad \text { if } \quad m^{\prime} \leqq m<M .
$$

Finally, the second form of the right side of (4) follows at once from the change of variable $\theta=(M-x) /(M-m)$, so $x=\theta m+(1-\theta) M$ with $0 \leqq \theta \leqq 1$.

In the same way (or more simply just by replacing F by $-F$ in the above theorem) we can prove

Theorem 1'. Under the same hypotheses as Theorem 1, except that F is nonincreasing in its first variable, we have

$$
\begin{align*}
F[A(\phi(g)), \phi(A(g))] \geqq \min _{x \in|m, M|} d & (x ; m, M, \phi)\left(=\min _{\theta \in|0,1|} F[\theta \phi(m)\right. \\
& +(1-\theta) \phi(M), \phi(\theta m+(1-\theta) M)]) .
\end{align*}
$$

The right-hand side of (4) is a nonincreasing function of M and a nondecreasing function of m.
3. Some applications. First, we shall show that Lemmas 2 and 3 from [3] are simple consequences of Theorems 1 and 1^{\prime}.

Corollary 1. Let $\phi(x)$ be convex on $I=[m, M](-\infty<m<M<\infty)$, such that $\phi^{\prime \prime}(x) \geqq 0$ with equality for at most isolated points of I (so that ϕ is strictly convex on I). Suppose that either (i) $\phi(x)>0$ for all $x \in I$, or (ii) $\phi(x)<0$ for all $x \in I$. If $g \in L, g(E) \subset I$ and $\phi(g) \in L$, then

$$
\begin{equation*}
A(\phi(g)) \leqq \lambda \phi(A(g)) \tag{6}
\end{equation*}
$$

holds for some $\lambda>1$ in case (i) or $\lambda \in(0,1)$ in case (ii).
Proof. For case (i) we apply Theorem 1 and for case (ii) we apply Theorem 1', both with $F(x, y)=x / y$, and $J=(0, \infty)$. We proceed only with case (i) since the proof in case (ii) is essentially the same. The inequality (4) becomes

$$
\begin{equation*}
A(\phi(g)) / \phi(A(g)) \leqq \max _{x \in\lfloor m, M\rceil} f(x ; m, M, \phi), \tag{7}
\end{equation*}
$$

where

$$
f(x) \equiv f(x ; m, M, \phi)=\{(M-x) \phi(m)+(x-m) \phi(M)\} /(M-m) \phi(x)
$$

Now, $f^{\prime}(x)=G(x) / \phi(x)^{2}$, where $G(x)=\mu \phi(x)-(\phi(m)+\mu(x-m)) \phi^{\prime}(x)$. The equation $G(x)=0$, i.e.

$$
\begin{equation*}
\mu \phi(x)-\phi^{\prime}(x)(\phi(m)+\mu(x-m))=0, \tag{8}
\end{equation*}
$$

has exactly one solution since-in case (i)-

$$
G^{\prime}(x)=-\{(M-x) \phi(m)+(x-m) \phi(M)\} \phi^{\prime \prime}(x) /(M-m)<0,
$$

so that G is a decreasing function. Furthermore,

$$
G(m) G(M)=\phi(m) \phi(M)\left(\mu-\phi^{\prime}(m)\right)\left(\mu-\phi^{\prime}(M)\right)<0,
$$

so $G(x)=0$ holds for a unique $x=\bar{x}(m, M)$. Since ϕ is convex and positive, it follows that $f(x) \geqq 1$, with equality for $x=m$ and M. Hence, the maximum value on the right-hand side of (7) is attained for $x=\bar{x}$.

Remark 2. More precisely, a value of λ (depending only on m, M, ϕ) for (6) may be determined as follows: set $\mu=(\phi(M)-\phi(m)) /(M-m)$. If $\mu=0$ let $x=\bar{x}$ be the unique solution of equation $\phi^{\prime}(x)=0(m<\bar{x}<M)$; then $\lambda=\phi(m) /(\bar{x})$ suffices for (6). If $\mu \neq 0$, let $x=\bar{x}$ be the unique solution in (m, M) of the equation (8), then $\lambda=\mu / \phi^{\prime}(\bar{x})$ suffices for (6).

Corollary 2. If ϕ is differentiable and ϕ^{\prime} is strictly increasing on I, then

$$
\begin{equation*}
A(\phi(g)) \leqq \lambda+\phi(A(g)) \tag{9}
\end{equation*}
$$

for some λ satisfying $0<\lambda<(M-m)\left(\mu-\phi^{\prime}(m)\right)$, where μ is defined as in Corollary 1 .

Proof. In Theorem 1, take $F(x, y)=x-y$. Then (4) becomes

$$
A(\phi(g))-\phi(A(g)) \leqq \max _{x \in|m, M|} Y(x ; m, M, \phi)
$$

where

$$
Y(x) \equiv Y(x ; m, M, \phi)=\{(M-x) \phi(m)+(x-m) \phi(M)\}(M-m)^{-1}-\phi(x) .
$$

We have $Y^{\prime}(x)=\mu-\phi^{\prime}(x)$ strictly decreasing on I with $Y^{\prime}(\bar{x})=0$ for a unique $\bar{x} \in$ (m, M). Hence $Y(x)$ has its maximum value for $x=\bar{x}$.

Remark 3. More precisely, λ may be determined for (9) as follows: let $x=\bar{x}$ be the unique solution of the equation $\phi^{\prime}(x)=\mu(m<\bar{x}<M)$; then

$$
\lambda=\phi(m)-\phi(\bar{x})+\mu(\bar{x}-m)
$$

suffices in (9).
Remark 4. Corollaries 1 and 2 (i.e. Lemmas 2 and 3 from [3]) are generalizations of results from [2] and [8]. In the case of Corollary 1 , the additional cases that either $\phi(m)=0$ or $\phi(M)=0$ were also dealt with in [3]. The result (1), (2) of Knopp is the special case $A(g)=\int_{0}^{1} g d t$ of Corollary 2 .

For our next result suppose that $\psi, \chi: I \rightarrow R$ are continuous and strictly monotonic and that $\psi(g), \chi(g) \in L$ for some $g \in L$. As in [3], we define the generalized mean with respect to the operator A and ψ, by

$$
M_{\psi}(g ; A)=\psi^{-1}(A(\psi(g))), \quad g \in L .
$$

Corollary 3. Under the above assumptions we have

$$
\begin{align*}
& F\left(M_{\psi}(g ; A), M_{\chi}(g ; A)\right) \tag{10}\\
& \quad \leqq \max _{\theta \in|0,1|} F\left[\psi^{-1}(\theta \psi(m)+(1-\theta) \psi(M)), \chi^{-1}(\theta \chi(m)+(1-\theta) \chi(M))\right]
\end{align*}
$$

provided ψ is increasing, $\psi \circ x^{-1}$ is convex, and $F(u, v)$ is a real function defined on $I \times I$, nondecreasing in u.

Proof. Suppose first that χ is increasing on I. Set $F_{1}(x, y)=F\left(\psi^{-1}(x), \psi^{-1}(y)\right)$, $\phi_{1}(x)=\psi\left(\chi^{-1}(x)\right), g_{1}=\chi \circ g, m_{1}=\chi(m), M_{1}=\chi(M)$. Then the conclusion follows from Theorem 1 applied to F_{1}, ϕ_{1}, g_{1}. If χ is decreasing on I, we need only define m_{1} $=\chi(M)$ and $M_{1}=\chi(m)$. Then (4) now implies

$$
\begin{aligned}
& F\left(M_{\psi}(g ; A), M_{\chi}(g ; A)\right) \\
& \quad \leqq \max _{\theta \in[0,1]} F\left(\psi^{-1}(\theta \psi(M)+(1-\theta) \psi(m)), \chi^{-1}(\theta x(M)+(1-\theta) x(m))\right]
\end{aligned}
$$

and this is equivalent to (10).
Remark 5. The special case $F(x, y)=x-y, \chi(x) \equiv x$, and $A(g)=\int_{0}^{1} g d t$ of (10) yields the inequality

$$
\begin{align*}
\psi^{-1}\left(\int_{0}^{1} \psi(g) d t\right) & -\int_{0}^{1} g d t \leqq \max _{\theta \in[0,1]}\left(\psi^{-1}(\theta \psi(m)+(1-\theta) \psi(M))\right. \tag{11}\\
& -(\theta m+(1-\theta) M))
\end{align*}
$$

This inequality is a companion inequality to (1) and was also proved by K. Knopp [5, Satz 2] under the assumptions $\psi^{\prime}>0, \psi^{\prime \prime}>0\left(\right.$ or $\left.\psi^{\prime}<0, \psi^{\prime \prime}<0\right)$ on $I=[m, M]$. In this case, the maximum value on the right hand side of (11) is attained for the value

$$
\theta=[\psi(M)-\psi(m)]^{-1}\left\{\psi(M)-\psi\left[\left(\psi^{\prime}\right)^{-1}\left(\frac{\psi(M)-\psi(m)}{M-m}\right)\right]\right\}
$$

as was shown in [5].
REmARK 6. Corollary 3 is a generalization of a result of E. Beck [1], who considered quasiarithmetic mean values $M_{\phi}(x ; a)=\phi^{-1}\left(\sum_{1}^{n} a_{i} \phi\left(x_{i}\right)\right)$. See also [6, pp. 135-136]. For $F(x, y)=x / y$ or $x-y$, Corollary 3 also gives generalizations of some results for means of Specht, Cargo and Shisha, and Mond and Shisha. See, for example Beck [1], [6, pp. 103-111], or [7, pp. 79-81]. Also, Corollary 3 is a generalization of inequalities of Schweitzer, Pólya and Szego, Kantorovič, and Greub and Rheinboldt. See [7, pp. 59-61].

References

[^0]7. D. S. Mitrinović, Analytic Inequalities, Berlin-Heidelberg-New York, 1970.
8. D. S. Mitrinović and P. M. Vasić, The centroid method in inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 498-541 (1975), pp. 3-16.
9. T. Popoviciu, Les Fonctions Convexes, Paris, 1944.

Faculty of Civil Engineering
University of Belgrade
Bulevar Revolucije 73
11000 Belgrade, Yugoslavia

Carleton University
Ottawa, Ont., Canada

[^0]: 1. E. Beck, Komplementare Ungleichungen bei vergleichbaren Mittelwerten, Montash. für Math. 73 (1969), pp. 289-308.
 2. P. R. Beesack, On inequalities complementary to Jensen's, Can. J. Math. 35 (1983), pp. 324-338.
 3. P. R. Beesack and J. E. Pečarić, On Jessen's inequality for convex functions, J. Math. Anal. Appl. 110 (1985), pp. 536-552.
 4. G. Grüss, Über das Maximum des absoluten Betrages von $(b-a)^{-1} \int_{a}^{b} f(x) g(x) d x-(b-a)^{-2} \int_{a}^{b} f(x) d x$ $\int_{a}^{b} g(x) d x$, Math. Zeit. 39 (1935), pp. 215-226.
 5. K. Knopp, Über die maximalen Abstïde und Verhältnisse verschiedener Mittelwerte, Math. Zeit. 39 (1935), pp. 768-776.
 6. D. S. Mitrinović, P. S. Bullen and P. M. Vasić, Sredine i sa njima povezane nejednakosti, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 600 (1977), pp. 1-232.
