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ON KNOPP'S INEQUALITY FOR CONVEX FUNCTIONS 

BY 

J. E. PECARIC AND P. R. BEESACK* 

ABSTRACT. Knopp's inequality for convex functions cj> on an interval 
/ = [m,M] states that 

4' 4>(g(t))dt - <M g(t)dt ^H(m,M;<\>) 

for an explicit functional H, and all integrable g: [0, 1] —> /. In this paper 
we give results of this kind in which the integral operator, / , is replaced by 
a general isotonic linear functional. 

1. Introduction. In 1935, K. Knopp [5, Satz 1] proved a result which can be stated 
in the following equivalent form (see also, for example, T. Popoviciu [9, p. 34]): 

Let $ be a convex function on I = [ra,M], ( —°° < m < M < m), and let g be a real 
function on [0, \]such that m ^ g(t) ^ M for all t E [0,1]. Then 

(1) l\(g(t))dt -4\lg(t)dt) 

{ A/ — x x — m 1 
4>(m) + <MM) - <|>0r) . 

~_, i M — m M — m j 

In case $ is strictly monotonie on /, the bound on the right hand side of ( 1) is attained 
for a single value of x, say x = x0, where 

,f , /6(M) - (b(m)\l 
(2) x0 = km + (1 - X)M, \ = (M - m)'1 M - ((J)')"1 \^—z ^ ^ . 

1 v M - m / j 

If 4> is concave, the direction of the inequality sign in (1) is reversed. In [5], only the 
strictly monotonie case of (1), (2) was stated explicitly. (In [7], (1) is (incorrectly) 
stated by requiring that g be nondecreasing.) The special case 4>(JC) — JC2 of (1) gives 
the well-known inequality of G. Gruss [4]. See also D. S. Mitrinovic [7, p. 70]. 

In this paper we shall give a generalization of this result in Section 2, and some 
applications or examples of the basic inequality in Section 3. 

2. Main result. In the sequel E will denote a nonempty set, L a class of real functions 
on E containing the chararacteristic function 1E and A a positive linear functional over 
L satisfying A(\E) = 1. The following result was given in [3, Lemma 1]. 
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LEMMA 1. Let 4>(0 be convex on I = [m,M] (-0° < m < M < ™. If g E L, 
g(E) C / and <$>(g) E L, then 

(3) A(<\>(g)) ^ {(M - A(g)Mm) + (A(g) - m)4>(Af)}/(Af - m). 

REMARK 1. The right-hand side of (3) is a nondecreasing function of M and non-
increasing function of m. This follows by writing this expression in either of the two 
forms 

4>(m) + (A(g) - m) = <()(M) - (M - A(g)) , 
M - m M — m 

and noting that m ^ A(g) ^ M, while (4>(M) - ()>(ra))/(M - m) is a nondecreasing 
function of both M and m by the convexity of <fy. 

We now give our basic generalization of Knopp's inequality (1). 

THEOREM 1. Let J be an interval such that J D cj>(7). If F(u,v) is a real function 
defined on J X J, non-decreasing in u, then 

(4) F[M4>(g)),4>(A(g))] ^ max F 
xE[m,M\ 

% -Hm) + Ï—^WM), 4>(x) 
M — m M — m 

(= max F[6c|)(m) + (1 - 8)<|>(Af ), ^(Om + (1 - 8)Af )]). 
6E10, 1] 

The right-hand side of (4) is a nondecreasing function of M and a nonincreasing 
function of m. 

PROOF. By (3) and the nondecreasing character of F(.,y) we have 

F[A(4>(g)), ¥Mg))] ^ F 
M - A(g) A(e) - m 

M — m M — m 

^ max d(x\ m,M,c))), 
. rG|m,M] 

where 

d{x\ m,M A) = F [{(M - x)<b(m) + (x - m)^(M)}/(M - m), C|>(JC)], 

proving the first part of (4). As in Remark 1 we have for m ^ x, and m < M' ^k M, 

{(M - x)<\>(m) + (x - m)<|)(M)}/(Af - m) ^ {(Mf - x)$(m) 

+ (x - m)$(M')}/{M' - m). 

Hence, by the nondecreasing character of F(.,y), 

(5) d(x;m,M,<b)^d(x',m,M',<b), m ^ x, m<M'^M. 

By (5) and the inclusion [m,Mf] C [m,M], it follows that 

max d{x\ m,M,§) ^ max d(x; ra,M\(j)) ^ max J(JC; ra,M\ ((>). 
j r E [ / « , M ] j r E [ m , A f ] j c e i / n , . M ' ] 
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Similarly we can prove that 

max d(x\ m,M,§) ^ max d(x\ m',M,§) if m'^m<M. 
.vG[w,M) xE\m',M] 

Finally, the second form of the right side of (4) follows at once from the change of 
variable 0 = (M - x)/(M - m), so x = dm + (1 - 9)M with 0 ^ 6 ^ 1. 

In the same way (or more simply just by replacing F by — F in the above theorem) 
we can prove 

THEOREM V. Under the same hypotheses as Theorem 1, except that F is non-
increasing in its first variable, we have 

(4') F[A($(g)),$(A(g))]^ min d(x\ m,M,<|>)(= min F[Q$(m) 
* E | / n , A f ) 8 £ | 0 , 1J 

+ (1 - 8)<|>(Af), <|>(e/n + (1 - 6)M)]). 

The right-hand side of (4) is a nonincreasing function of M and a nondecreasing 
function of m. 

3. Some applications. First, we shall show that Lemmas 2 and 3 from [3] are simple 
consequences of Theorems 1 and 1'. 

COROLLARY 1. Let <j>U) be convex on I = [m,M] (-00 < m < M < oo), such that 
fy'(x) ^ 0 with equality for at most isolated points of I (so that 4> is strictly convex 
on I). Suppose that either (i) C()(JC) > Ofor all x E /, or (ii) §(x) < Ofor all x E /. 
If g EL, g(E) C / and <|>(g) E L, then 

(6) A(4>(*)) ^ H(Mg)) 

holds for some k > 1 in case (i) or X E (0, 1) in case (ii). 

PROOF. For case (i) we apply Theorem 1 and for case (ii) we apply Theorem 1 ', both 
with F(x,y) = x/y, and J — (0, °o). We proceed only with case (i) since the proof in 
case (ii) is essentially the same. The inequality (4) becomes 

(7) A($(g))/HMg))^ max / U ; m , M , cf>), 
x£[m,M\ 

where 

f(x) =f{x\ m, M, <|>) = {(M - jc)<|>(m) + (x - m)$(M)}/(M - m)$(x). 

NOW,/'(JC) = G(x)/<\>(x)2, where G(x) = H>(;t) - (<\>(m) + JX(JC - /w))<|>'(jt). The 
equation G(JC) = 0, i.e. 

(8) H>U) ~ c|)'(jc)((()(m) + JX(JC - m)) = 0, 

has exactly one solution since—in case (i)— 

G'(x) = -{(M - x)$(m) + (x - m)$(M)W(x)/(M - m) < 0, 

so that G is a decreasing function. Furthermore, 

G(m)G(M) = 4>(m)4>(M)(\L - 4>'(/n))(p, - <|>'(Af)) < 0, 
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so G(x) = 0 holds for a unique x = x(m,M). Since <)> is convex and positive, it follows 
that/(JC) ^ 1, with equality for x = m and M. Hence, the maximum value on the 
right-hand side of (7) is attained for x = x. 

REMARK 2. More precisely, a value of X (depending only on m,M, (()) for (6) may 
be determined as follows: set |x = (<|>(M) ~ ty(m))/(M - m). If |JL = 0 let x = x be 
the unique solution of equation <$>'(x) = 0 (m < x < M); then X = §(m)/(x) suffices 
for (6). If (x # 0, let x — x be the unique solution in (m, M) of the equation (8), then 
X = |x/(J)'(.x) suffices for (6). 

COROLLARY 2. //<j) is differentiable and §' is strictly increasing on I, then 

(9) A(4>(£)) ^ X + cf>(A(g)) 

/or some X satisfying 0 < X < (Af — m)((JL — <j/(ra)), vv/î re |x /s defined as in 
Corollary 1. 

PROOF. In Theorem 1, take F(x,y) = x - y. Then (4) becomes 

A(<Kg)) " HMg)) =§ max K(JC; m,Af,<|>), 
j r 6 l m , A f ] 

where 

Y(x) = Y(x\ m,MA) = {(M - x)^(m) + (JC - m)cf)(M)}(M - m)_1 - <|>(JC). 

We have Y\x) = |Ji — C|>'(JC) strictly decreasing on / with Y\x) = 0 for a unique x E 
(m,M). Hence y(;c) has its maximum value for x = jc. 

REMARK 3. More precisely, X may be determined for (9) as follows: let x = jc be the 
unique solution of the equation c|>'(jt) = jx (m < x < M); then 

X = c()(m) — (t>(jc) + \x(x — m) 

suffices in (9). 

REMARK 4. Corollaries 1 and 2 (i.e. Lemmas 2 and 3 from [3]) are generalizations 
of results from [2] and [8]. In the case of Corollary 1, the additional cases that either 
$(m) = 0 or $(M) = 0 were also dealt with in [3]. The result (1), (2) of Knopp is the 
special case A(g) = f0

] gdt of Corollary 2. 
For our next result suppose that i|i, x'l ~* R are continuous and strictly monotonie 

and that ij/(g), X(g) ^ ^ f° r some g E L. As in [3], we define the generalized mean 
with respect to the operator A and i|/, by 

M^A) = v|/-,(A(i(i(g))), ^ £ L . 

COROLLARY 3. Under the above assumptions we have 

(10) F(M^g;A)Mx(g\A)) 

^ max F[v|i"1(ev|i(m) + (1 - 9)v|i(M)), x ^ x C ™ ) + 0 ~ O)x(M))] 
e e io, ii 
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provided \\f is increasing, \\fOx l is convex, and F(u, v) is a real function defined on 
I X /, nondecreasing in u. 

PROOF. Suppose first that x is increasing on / . Set Fx(x, y) = F(\\f~\x), i|/_1(y)), 
$i(x) = \\i(x~\x)), gj = x ° ^ , rnx = x(w),M, = x(M). Then the conclusion follows 
from Theorem 1 applied to F\, 4h, g,. If x is decreasing on / , we need only define m { 

= \(M) and M, = x(m)- Then (4) now implies 

F(M^(g',A),Mx(g;A)) 

^ max F(i\f-l(^(M) + (1 - 6)i|i(/w)), x~\®x(M) + (1 - 6)jc(m))] 
8 6(0,11 

and this is equivalent to (10). 

REMARK 5. The special case F(x,y) = x — y, xU) = x, and A(g) = fjgdt of (10) 
yields the inequality 

(11) W P i K * ) * ) " f 1 ^ ^ max (^'(eiKrn) + (1 - e)v|i(M)) 

- (6m + (1 - 8)Af)). 

This inequality is a companion inequality to (1) and was also proved by K. Knopp 
[5, Satz 2] under the assumptions i|/ > 0, i|i" > 0 (or i|i' < 0 , \\f" < 0) on / = [m,Af ]. 
In this case, the maximum value on the right hand side of (11) is attained for the value 

6 = [v|i(M) - v)i(m)]"1 U(M) - v|i 
M - m }• 

as was shown in [5]. 

REMARK 6. Corollary 3 is a generalization of a result of E. Beck [1], who considered 
quasiarithmetic mean valuesM$(x\a) = $~l(Z" a^C*,-)). See also [6, pp. 135-136]. 
For F(x9y) = x/y or x - y, Corollary 3 also gives generalizations of some results for 
means of Specht, Cargo and Shisha, and Mond and Shisha. See, for example Beck [1], 
[6, pp. 103-111], or [7, pp. 79-81]. Also, Corollary 3 is a generalization of in
equalities of Schweitzer, Pôlya and Szego, Kantorovic, and Greub and Rheinboldt. 
See [7, pp. 59-61]. 
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