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ON THE ZEROS OF POWER SERIES WITH 
EXPONENTIAL LOGARITHMIC COEFFICIENTS 

BY 

W. GAWRONSKI AND U. STADTMÛLLER 

0. In this paper we investigate the zeros of power series 

(1) f(z)^t1Mn)z" 
0 

for some functions of coefficients A. In particular, we derive upper and lower 
bounds for the number of zeros of / in its domain of analyticity. For various 
choices of A such as A(t) = (t+l)K, e^\ R(ta) (R being a rational and real 
function), (f+l)K logx(f+l) (K, AGIR, a > 0 ) detailed investigations of the be
haviour of the zeros are given in [2, 3, 4, 5, 6, 7, 9, 12]. The basic methods in 
obtaining upper and lower bounds for the number of zeros of / for an extended 
class of functions (1) are due to A. Peyerimhoff [9, 7, 3] and they have been 
extended by the authors [4, 5, 6, 12]. 

Throughout suppose that Qs is a real polynomial with (exact) degree s and 
distinct zeros au . . . , ap that is 

(2) Qs(z)=f[(z-av)
k-

1 

for some kveN, Y%K = S- Furthermore, we denote by Pk a polynomial of 
degree at most fc, when keN0 and Pk(z) = 0, when -keN. Pk may be different 
at each occurrence. 

We deal with power series (1) for the following choices of A where in some 
cases it is convenient to characterize A or a closely related function as a 
solution of some differential equation [cf. 7]. 

(i) 

(3) A ( x ) = I e ° ^ 1 ( x ) + A 0 ( x ) 
v = l 

where A G C S [0 , O°) is a real solution of the differential equation 

(4) Qs(£)A(x) = <p(x)9 x>0, 

<p being completely monotone for x > 0 . 

(ii) 

(5) A(x) = R{log(x + l)), 
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258 W. GAWRONSKI AND U. STADTMÙLLER [September 

where R denotes a real and rational function the poles of which are different 
from logn, neN. 

(iii) 

(6) A(log(x +1)) = £ (* + D M V ^ l o g U +1)) 
v = l 

where Ae Cs[0, °°) is a real solution of the differential equation 

(7) Qs(J^A(x) = 0, XGR. 

In the cases (ii) and (iii) the associated power series (1) admits unique analytic 
extension onto C* = {z e C | if Re z > 1, then Im z ^ 0}, whereas for (3) / can be 
extended onto 

(8) C* = C*-{e-*,...,e-°>} 

(see the proofs of Theorems 1, 2 and 3). 
(i) If A satisfies (4) with av < 0 , i> = 1 , . . . , p, and 

(9) A(0) = A'(0) = • • • = A(q)(0) = 0 

for some q e { 0 , . . . , s -1}, s > 1, then it was shown in [7, Theorem 4, p. 219] 
that 

(10) / (z) = Î A ( n + T)zB, r e [0,1) 
o 

has at most s zeros in C* (unless / = 0) and at least q + 1 different zeros which 
are <0 . We shall show that the upper estimate remains true, if the restriction 
on av is dropped completely and C* is replaced by C*. Furthermore, we shall 
prove that the lower estimate for the number of negative zeros remains true, 
provided I m a v # 7 r mod 27r, V = 1 , . . . , p (see Theorem 1). 

(ii) For (5) the representation of 

*(z) = <300' r - ° ' p- ( a^° 

will be written 

(11) R(z) = C,_s(z)+î t . ^ » C r _ s ( z ) = I c ( 2 ' . 
v = l ^ = l l Z ttvi j=0 

If a» e R -N0 and m : = min{fc e N0 \ k >max(0, al9..., ap)}, then it was shown 
in [3, theorem 3, p. 179] that the number of zeros of / (z) = £o R(n)zn in C* 
does not exceed m + r. Defining 

(12) / = min{fc G N 0 I k >max(0, e^-1,..., e"» -1)}, 
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we prove that 

(13) /(z) = £jR(log(n + l))zn 

o 
has at most l + r zeros in C*, thereby showing again that an upper bound 
depends on the degree of Pr and the location of the poles of R only (see 
Theorem 2). 

(iii) It is known [12] that 

(14) /K,m(z) = £ (n +1)" logm(n + l)z", KGU, meN0 
o 

has exactly m or fc + m zeros in C*, when K < 0 or fc<K<fc + l, keN 0 , 
respectively and these zeros are all < 0 and simple. 

If A satisfies (7) and (9) and if a1<- • -<ap, 

(15) fc=max(-l,[ap]), 

([x] denotes the largest integer not exceeding x as customary) 

(16) np is the number of av being i n i\J05 

jeN0 is determined by 

/ = 0, if a ! < 0 , 
(17) J 

/ < a i < / + l, if a i > 0 , 
then we prove that 

(18) /(z) = £A(log(n + l))zn 

o 

has at most k + s-Mp or k + s-l-iy zeros in C*, when a^O or a ! > 0 
respectively. A lower bound for the number of different zeros being <0 is 
given by j + q + 1 (see Theorems 3 and 4). 

The situation becomes completely different for (10) and (18), if we admit 
that Qs has non-real zeros, that is some av 's are "complex". For instance, if we 
consider 

(19) / ( z )=Xsin log(n + l )z n 

o 

as a special case of (18) (s = 2, Q2(z) = z 2 +1) , then we have (see(14)) 

/ ( 2 ) = ^ ( / i , o ( z ) - / - i , o ( z ) ) . 

Observing that 

/K.OOO" 
r(i-K)z(iog(-z)r' 

https://doi.org/10.4153/CMB-1981-042-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-042-1


260 W. GAWRONSKI AND U. STADTMÙLLER [September 

as z—»oo, z e C * , K£N [1, p. 226] we obtain for z = -x, x-^^ 

1 1 a 
f(-x) Im — — — -7 = - sin(log log x + 0 ) , 

x r(i-i)(iogx) x 
a, |8 E R , a ^ 0. Thus (19) has an infinite number of zeros on the negative real 
axis. Furthermore, it will be shown that (19) has infinitely many zeros on (0, 1) 
(see section 4). In general, when Qs has "complex" zeros, we point out how to 
treat (10) and (18) by asymptotic methods. To this end we give generalizations 
of Watson's lemmata for asymptotic representations of Laplace integrals and 
loop integrals (see section 1). 

1. In this section we collect some auxiliary results which will be used for 
obtaining upper bounds for the number of zeros and for deriving the asympto
tic distribution of the zeros of some power series. The first lemma essentially 
gives a basic technique for handling our power series. Its proof is given in [3, p. 
175] but since it is applied several times we restate it. 

LEMMA 1. Suppose that g e V[0, 1]. Then for z e C * 

f i n t\Cd^t) P < \+ nCflft t\dgit) 

n(1"zn i^rp-i(z)+z I M ^ Ï ^ Ï 
with some polynomial Pn_i. 

The following lemmata 2 and 3 are generalizations of Watson's lemmata for 
Laplace integrals and loop integrals [cf. 8, theorems 3.2, p. 113. and 5.1, p. 
120]. Since the proofs are direct analogues of those of the theorems cited 
above, we omit them. Throughout for complex valued functions a{i) and b(t) 
defined in some angular neighbourhood of t0, a(t)~b(t), t-*t0, means that 
\imt^toa(t)/b(t)=l. 

LEMMA 2. Suppose that q{i) is a complex valued function for t > 0 with a finite 
number of discontinuities. Further assume that 

'•-[ L(z):= | e~ztq{t)dt 

and that p, ÀeC, R e p > 0 . 
(i) If L has a finite abscissa of convergence and if 

q(r)- t p" 1 ( logy)X , t ->+() , 

then, as z -> oo? |arg z\ <(TT/2) - 6, -6 >0 

L ( z ) ~ ^ (log z ) \ 
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(ii) / / 
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q ( 0 ~ t p - 1 ( l o g O \ t-»>+°°, 

then, as z—>0, |argz|:£(7r/2)-0, 

(Throughout log z, its power, and the fractional powers of z are defined by their 
principal values.) 

LEMMA 3. For given e e (0,1) let 

Ce ={t = re~™ |oo> r>e}U{f = eei<p | -7r<<p<7r} 

U{t=re™ | e < r < o o } 

be HankeVs loop and q(t) a function being continuous on Ce and holomorphic, 
but not necessarily single valued, in the annulus {t\0<\t\<2e}. Further we 
suppose that 

I(z): = -^-:i eztq(t)dt 
ZTTI JCe 

has an abscissa of absolute convergence being different from +o°? and that 

q(t)~ r-^ioglj 

as f—>0, |argf|<ir, where p, AeC. 
Then, as z ^ o c , |argz |<(i7/2)-0, 0>O, 

Kz)-

1 0ogz)x 

r ( i - p ) z" 

AOogz)^ 1 

, if pm 

if peN,X^0, 

where 
1 

7P = dx r ( l — x)lx=p' 

Finally, we use lemmata 2 and 3 to derive the asymptotic behaviour of 

(14) /K,m(z) = f > + i r i o g m ( n + l)z ' \ KSC, m e N 0 
0 

for z—»o° and z —> 1, z e C * (cf. lemma 3 in [12] with a different proof for 
Z = - X , X—»o°). 
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LEMMA 4. (i) As z->°°, z e C * , we have 

f(-l)K+1 

[September 

(20) fK,m(z)~< 
( - l ) - + 1 ( loglog(-z)) m 

zr(i-K)(iog(-2)r 
( - i r + 1 m 7 K ( l og log ( - z ) ) " 

z(log(-z))K 

where yK is defined in Lemma 3. 
(ii) As z —> 1, z e C * , we have 

if m = 0, 

if m e N0, 

if m e N , 

Kef 

K ^ N 

«e r 

(21) /K,m(z)~S 

r(fc+i)( i r^ l o g l o g iy + H i ( 2 ) ; if _Km 

- , + H2(z), if -KSN 

z(log II z)K 

( - l ) m - K ( log log l /z ) m + 1 

t z ( m + 1 X - K - 1 ) ! (log l/z> 

where JH^(z) denote functions being holomorphic at z = 1. 

Proof, (i) By residue calculus (observe that m e N0, see also [4, 5]) we have 
for zeCo* = {zeC | i f R e z > 0 , then Imz^O} 

1 » _ 1 f 1/2+ 

Z x 2lZ Ji/2-i 

' r iogm t f log(-z) 

1/2-ioo sin 7rf 
dt 

where log(-z) = log |z| + i(arg z -7 r ) , 0 < a r g z < 2 7 r . Now we deform the con
tour of integration into (0 < e < 1) 

C; = {t = £ - ; e | - o o < £ < 0 } u { 

and obtain for zeC*, | z | > l 

t = eeu - | < < p < | | u { f = ê + i 8 | 0 > ^ > - o o } 

L,m(z) 
~1_ 

'liz H '-
iz Jc-. 

log- t , 
log(-z) 

sin Trt 
dt. 

Now an application of Lemma 3 (see also [9, p. 205] for z = - x , x —> o° and 
m = 0) leads to (20) provided m eN0 , K j£N or m eN, K G N , since a deformation 
of Ce into Ce in Lemma 3 does not affect the statement. If m = 0 and KGN, 
then see [10, Vol. I, p. 7, prob. 46]. 

(ii) In this case an application of Plana's sum formula [11, p. 440] gives 

L,m(z) = \tnK logm nzn = \ logm 1 + - ( fK logm t e~l log(1/z) dt 

••ra + iy)K logm(l + i y ) z i y - ( l - i y ) K l og m ( l - iy )z -
e 2 ' v - 1 

= - I r i og m t e - " o g ( 1 / z ) d t + H(z) 
Z Jj 

dy 
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where H is holomorphic at z = 1. If Re K > - l , then Lemma 2, (ii) implies (21) 
directly. If Re K < - 1 , then we put v: = [-Re K] and apply Lemma 2, (ii) to 

i~È Z ) ^ ( z ) = |(n + ir+V l0gm(n + 1)z" 
which gives (note that Re K + v > -1) 

id y îHK + V + I K - I T / n -

feZ) ^ ( Z ) ~ Z ( l o g l / z ) — l l 0 g l ° g z ) 

as z -» 1, z e C * . Now v times integration leads to (21). 

2. In this section we deal with the power series (10) thereby extending the 
results in [7]. 

THEOREM 1. Suppose that QseU[z], s > 0 , and that AGCS[0,OO) is a real 
solution of the differential equation 

(4) Q S (£ )A(X) = <P(X), X>0 

<p being completely monotone for x > 0. If {au ..., Op} is the set of different zeros 
of Qs, then 

(10) f(z) = fdMn + r)zn, T > 0 
0 

defines on C* (see (8)) uniquely a holomorphic function possessing at most s 
zeros unless / = 0. Moreover, if 

(22) I m a v # 7 r mod27r, i / = l , . . . , p , 

(9) A(0) = A'(0) = • • • = A(q)(0) = 0 

for some q e { 0 , . . . , s - 1 } , s > 1, and T € [0,1), then f has at least q +1 different 
zeros which are <0. The zeros of those being on the negative real axis have odd 
multiplicities unless / = 0. 

Proof. Actually the proof for the upper estimate is hidden in that of theorem 
3 in [7]. Therefore we only give a short outline for this part. The general 
solution of (4) is given by (3) with 

I f 1 f e(x~1)l 

(23) A0(x) = - M w dg( w) g dr, x > 0, 
2TH J+0 JCW Q,(0(*-logw) 

where (p(x) = J+0 w
xdg(w), x > 0 , for some monotonically increasing g and Cw 

is a positively oriented and simply closed curve in the half plane Re t < 
max1 S v S p Re av + 1 containing au . . . , Op, and log w in its interior. Since A0 
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satisfies (4), it follows from lemma 1 in [7, p. 212] that 

(24) P ^ ^ L _ < o o , , = 0 , . . . , , 
J+0 ( l + logl /w) s 

This ensures the existence of the w-integral in (23) after having evaluated the 
contour integral along Cw by calculus of residues. To establish the analytic 
extension of / we observe that for sufficiently small \z\ we have, by (23) and 
(24), 

°= 1 ~ f l f <n+T-l)l 
(25) X A0(n + T)z" = ^ I z " wdg(w) f -dt 

„=0 27710 J+0 JQ. Qs(t)(t-\Og W) 

= h £ W d 8 ( w ) L ( l - e ' z ) Q ( 0 0 - l o g w ) d f 

being holomorphic throughout C*. The part of / generated by the homogene
ous solution of (4) obviously has the form 

(26) P,-i(z)/f[ (\-e"~zf~ 

for some Ps_!€[R[z]. Now /(z) is the sum of (25) and (26). Multiplying f(z) by 
Ilï ( l - e ^ z ) ^ the use of the technique of Lemma 1 immediately leads to (note 
that log(l/z) is outside of Cw for all w < l if \z\ is sufficiently small) 

(27) ft(l-e^z)k-/(t>) 
v = l 

=p s _ l ( 2 ) +Z j+o wd g (w)-j^ n ( — ) (1-e.2)(f-logw) 

= P s_ l (z) + z f - ^ r t ( - ^ ^ ) ^ g ( w ) 
J+0 1 -zw ! \ l o g w - a v / 

giving the analytic extension of / onto C*. 
Since Q aeR[z] , it follows that Ps_1eR[z] and that 

x Vlogw-c^ / 

Now the upper bound follows from theorem 1 in [9, p. 196]. 
To prove the lower bound we put 

_ p l i n a j l _ (av - ma» sign(Im av), if av is even 

L 7T J v ' la v - 7ri(a,, + l)sign(Im av), if a,, is odd. 

Clearly av - ft, = 0 mod 2m and |lm|3v |<7r, by (22). 
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From (23) we have 

wdg(w) X r e s — — - + - £ - . 
+o lv=it=«vO s(0(f-logw) Qs(logw)J 

By the periodicity of the exponential we obtain that A0(n) and A(n) do not 
change, when the av 's in the exponents are replaced by the |8v's. Further, we 
may assume that Re j3v < 0, for otherwise we consider 

m) = f(ekz) = tMnHn 

0 

where £ : = ekz, A(x) = A{x)e~kx for some fc G M0. Since all these manipulations 
do not affect the assumptions of Theorem 1 we may suppose w.l.o.g. that 
|Im av\ <TT and Re av < 0 , v = 1 , . . . , p. 

Next, we put 0: = max1:Sv<p Im av. Hence it follows from (3) and (28) that for 
every positive s and 7 

(29) |A(7 + pe - ) |<e ( e + e ) p M ^ , 

when p is sufficiently large. By (24), (29) holds for 7 = 0 and (q < s) |A*(q)(x)| < 

e(e+e)ixi f o r sufficiently large |x|, where A *(*): = A(ix), xeU. Clearly (9) 
implies A*(0) = A*'(0) = • • • = A*(q)(0) = 0. Now the lower bound follows from 
the theorem in [6]. 

REMARKS, (i) Formula (27) shows that / has at most s - 1 zeros in C -
{e"°\ . . . , e~°4 if <p^0. 

(ii) The function ^ 

/ ( Z ) = 2 . M COS7TM Zn = , .3 
0 v-i + ^J-

shows that we cannot omit condition (22). 
Applying the lower estimate given in Theorem 1 to g(z) = f(-z) we obtain 

COROLLARY. If in Theorem 1 we assume in addition that <p=0 and 
Im a v # 0 mod 2rr, then f(z) - £o A(n)zn has at least q + \ different zeros which 
are >0. The zeros of those being on the positive real axis have odd multiplicities 
unless / = 0. 

As an application we consider /(z) = £o nk sin cmzn, keN0, 0<a<Tr 
(Qs(z) = (z2 + a 2 ) k + 1 , s = 2fc + 2, q = fc, ax = ia, a2 = -ia, <p = 0). It follows 
that / has exactly 2fc + l zeros in C-{eitx, e~ioc}, all zeros are simple, and, 
besides z = 0, there are fc positive and fc negative zeros. 

3. In this section we deal with the power series (13). The main result is given 
by 

THEOREM 2. Suppose that R(z) = Pr(z)IQs(z), PrelR[z]. Further assume that 
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r>0, Qs is given by (2), Pr(av) ^ 0, o ^ log n, n e N , i/ = 1 , . . . , p. 
Then 

(13) / ( z ) = £ j R 0 o g ( n + l))zn 

o 

defines on C* uniquely a holomorphic function. Further, if aveU, v=l,...,p, 
then the number of zeros off in C* does not exceed l + r (I is defined by (12)). 

Proof. Throughout the proof we denote the number of zeros of / in C* by 
N. Using representation (11) we have for | z | < l 

/ (z) = IC r _ s ( log(n + l ) ) z " + I I a ^ t 
v = l y. = \ n=o0og(n + l ) - a v ) 

From formula (1.7) and the remarks immediately following in [12] we get 
(m = l, ...,r-s) 

/o,m(z) = î l o g m ( n + l ) z " = - ^ f - ! : 
o 1 - z JQ log 

t Pm-i(log2 I/O 
dt, log lit l-zt 

where log2 lit = log log 1/t. Hence it follows that 

r—s oo 

I Ç - , ( l o g ( n + l ) ) z"= £ c, I log'(n + l)z" 
0 j = 0 n = 0 

_£çL_ + _ L _ f1 1 - t fi-.-^Ofe 1/t) ^ 
1 - z 1 - z Ji, log 1/t 1-zf 

Furthermore, we have for n> I , ( i > l , 

1 = f „-T(log(n + l ) - c v ) M--1 J T 

(logCn + D - c ^ r ( n - l ) ! J l 

1 r e"-T ,i_ 

"(/x-DiJL («+ ir T , i T 

1 f1 f°° e0,-TT |i~1 

and hence 

£ z r 

o (log(n + l ) - a J 

~i r i f i r°° CXVT M--1 

Now, using Lemma 1, we finally obtain for z e C * (observe that co = 0, when 
r < s ) 

(30) (l-z)f(z) = Pl(z) + zl+1 f' ( 1 " f ) / ' . V ( 0 , df, if r ^ s 
J0 log 1/r l - z t 

(31) f(z) = Pl_1(z) + zl\\ r I
1 / f 1

V ( ° d t , if r < s 
J0 log 1/f 1-zf 
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where 

v w-p~« K T ) - ! 7 " - " " ! 8 " - * ! , ^ 1 * " ' EL 
H T ) 

thereby giving an explicit representation of the analytic extension of /on to C*. 
Since Px and P ^ are real polynomials we may apply theorem 1 in [3], that is 
we need an upper estimate of the number of real zeros of 

H(f ) : = V(e~n = Pr.s.^) - | V * | ^ dr, 

where 

k 

£(r):=Ze^ I 
- i G * - l ) ! 

(i) Suppose that r = s. Then, since E has at most s -1 real zeros [10, vol. II, 
p. 48, prob. 75], H has at most s - 1 real zeros [10, vol. II, p. 50, prob. 80]. 
Thus, by theorem 1 in [3] and (30), N < l + l : + s - l = l + r. 

(ii) Suppose that r < s. Observing that E has at most r positive zeros in this 
case (cf. the proof of theorem 3 in [3]), by (31) as above, we obtain N<l + r. 

(iii) Finally we assume that r>s. By Rolle's theorem, the number of real 
zeros of H does not exceed that of 

Hfr-«)(f) = ( - i r - + 1 ^ c - ^ ^ J B ( T ) dr 

by more than r-s. Thus, as above we obtain N < J + 1 + s - 1 + r - s = / + r, by 
(30). This completes the proof. 

In case, when R has non-real poles, the asymptotic methods developed in [3, 
5, in particular theorem 1 in 5] show how to find sufficient conditions for / t o 
have an infinity of zeros on the negative real axis. Since the results and 
arguments are very similar to those in [3, 5] we omit them. We only show that 
z = oo is the only possible limit point of zeros. 

First we observe that representations (30) and (31) remains true possibly 
with some V>1, if JR has non-real poles. Since V is holomorphic on (0,1), 
z = 1, oo are the only limit points of zeros of /. Using Plana's sum formula [11, 
p. 440] we obtain 

/ ( z ^ P ^ W + è R O o g ^ 

M. vrgOogq+1'+*y))ziy-gQogd+v-jy))*~iy, +lz 1 *^\ dy 

where the latter integral is bounded for z—»1, z e C * . Further we get from 
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Lemma 2, (ii), that 

J"jR(k>g(t +1))*"'log(1/2) dt~ ̂ Y/z ( l 0 g l0g z l S 

as z —> 1, z eC*, for some real K ^ 0 and thus 

log 1/z 

This shows that z = 1 is never a limit point of zeros of /. 

4. In this section we investigate the zeros of the power series (18). The main 
results are concerned with the case of real av 's only. 

THEOREM 3. Suppose that QselR[z], s > l , is given by (2) with a1<- • *<ap . 
Further assume that A e C S [ 0 , <») is a real solution of the differential equation 

(7) Qs(J^A(x) = 0, xeM. 

Then (unless / = 0) 

(18) / (z) = f > ( l o g ( n + l))z" 
0 

defines (uniquely) on C* a holomorphic function possessing at most k + s-rip or 
k + s -1 - Mp zeros, i/ a^ < 0 or ax > 0 respectively (k and np are defined by (15) 
and (16) respectively). 

Proof. The general solution of (7) is given by 

(32) A(x)=te"JCPK-1{x). 
1 

From formulae (1.6), (1.7), (1.8), and the remarks immediately following (1.7) 
in [12] we get, KeU, meN 0 , z e C * 

.34. U,^(^)^f^^4 
if K > 0 , 

and in particular 

(35) f ( - ) - ! [ P ^ i - M f ' P m a o g z l / O ( 1 - 0 [ K ] + 1 ,.] 
(35) / „ „ ( * ) - ( 1 _ z ) W + 1 | I W * ) + z i l - z t ((log I / O - 1 d f J ' 

if K > 0 , 
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where Pm in (34) and (35) reduce to some polynomials Pm_i, if K eN0. Suppose 
that a ! > 0 . Then, by (32), / is a sum of terms of type (35). Put K = QLV, 
m = KV -1. Applying the technique of Lemma 1 to (35) we get 

(i-zr^(z)=pfc-1(z)+^(1^f^^-pîd( 
„(log2l/0 ( l - 0 k + 1 

and hence 

(36) (1 -z)k + 1 f(z) = Pk^(z) + zfc T V ( t ) {l~'f+1 dt, ai>0 
J0 1 — zt t log l/t 

where 

(37) V(t) = t Gog l / 0 - ^ i V i O o g 2 1/0 
v = l 

and P k _ ! becomes Pkv_2 if the corresponding av is a positive integer according 
the remark following (35). 

If «x^O, then some of the terms have forms (33) or (34). Similarly as above 
we obtain the slightly weaker result 

(38) (1 - z)k+1f(z) = Pk(z) + zk+l\1 ^{t\{] ~ y j 1 dt, a^O 
J0 1 — zt log l/t 

with the same V(t) as in (37). 
By the remarks following (35) and (37) V has at most s-l-iy zeros on 

(0,1) [10, vol. II, p. 48, prob. 75]. Now, using (36) and (38), theorem 1 in [3] 
completes the proof. 

Lower bounds for the number of negative zeros are given by 

THEOREM 4. Suppose that the assumptions of Theorem 3 are satisfied. 
Moreover, assume that 

(9) A(0) = A'(0) = • • • = A(q)(0) = 0 

for some q G { 0 , . . . , s — 1}. Then 

(18) / (z) = l A ( l o g ( n + l))z" 
0 

has at least j + q + 1 different zeros which are <0 (j is defined by (17)). 

Proof. If a1 < 1, that is j = 0, then the statement follows readily from [6]. If 
« ! > 1 , then we have, by (17), that 

(39) 0 < « 1 - / < 1 , J > 1 . 

Now we get from [6] again that 

Hz) := I (n + i r A ( l o g ( n + l))z" 
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has at least q +1 different zeros being <0 . Obviously we have 

Now (39) and (20) show that 

( z — J zft(z)-»0 as z->-<», v = 0,... , / - l . 

Hence, by a Rolle type argument [see e.g. 10, vol. II, p. 39, prob. 16] to the 
interval (-°°, e) we obtain inductively that / has at least j + q + 1 different zeros 
which are <0 . This completes the proof. 

As an application we consider the function (see (14) and [12]) 

(14) / (z) = / K , m ( z ) - £ ( n + i r i o g m ( n + l)z", iceR, meN0. 
o 

We have p = 1, s = m + 1 , ax = K, k= max( - l , [K]) ; 7 = 0, if K < 0, and / < K < 
7 + 1, if K > 0 ; q = m - l . Now it is easily verified, by Theorems 3 and 4 that 
m + / is the exact number of zeros of /K m in C*; all of them are < 0 and simple. 

If we drop the assumption on the reality of av, then it was pointed out by 
Example (19) that we encounter functions having infinitely many zeros in C*. 
In general, that is av may be non real, Lemma 4 yields asymptotic expansions 
for / being of the type 

/ ( z ) ~ - É ( log(-z))-^P r v( loglog(-z))+4 z ->°°> z eC*, 
Zv=l Z 

and 

f(z)~± l ( l o g ^ ) ^ ' ^ ( l o g l o g ^ + K z - ^ 1 , z e C * , 

( K G R ) . From these asymptotic expansions sufficient conditions (depending on 
the location of the av 's mainly) for the existence of an infinity of zeros 
accumulating at z = °° and z = 1 can be derived as in [3, 5]. Moreover, z = °° 
and z = 1 are the only possible limit points of zeros; for representations (36) 
and (38) remain true possibly with some k'>k and it follows again from the 
analyticity of V on (0,1) that the zeros cannot accumulate at some x0e (1, <»). 

For 
oo 

(19) / ( z ) = I s i n l o g ( n + l )z n 

0 

we get from Lemma 4 (21) that (s = 2, Qs(z) = z 2 + l , ax = U a2 = ~i) as 
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z = x—> 1 - 0 

f( ) l /rd+0 rg-î) \ = imr(i+o/(iogi/xy 
TW 2ix log l/x \(log l/x)1 (log 1/x)'1 ) x log 1/x 

= — — — - s in( loglog-+b) , a, beR, a^O. 
x log l/x \ x / 

This shows that / has infinitely many zeros on (0,1). 
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