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Cancellation of Cusp Forms Coefficients
over Beatty Sequences on GL(m)

Qingfeng Sun

Abstract. Let A(n1, n2, . . . , nm−1) be the normalized Fourier coefficients of a Maass cusp form on

GL(m). In this paper, we study the cancellation of A(n1, n2, . . . , nm−1) over Beatty sequences.

1 Introduction

The size and oscillations of the Fourier coefficients of cusp forms on GL(m) have

long been objects of special interest in the literature. In the case m = 2, these are

investigated intensively when a f (n) are the normalized Fourier coefficients of a holo-

morphic cusp form or Maass cusp form on the upper half-plane. The Ramanujan–

Petersson conjecture, proved by Deligne [4] for holomorphic cusp forms, states that

a f (n) ≪ nε, for any ε > 0. In the holomorphic cusp form case, Good [7] showed

that, for any ε > 0,
∑

n6X

a f (n) ≪ f ,ε X
1
3

+ε.

Recently, Blomer [3] and Lao [11] also studied the cancellation behavior of a f (n)

over special sequences. In the Maass cusp form case, Hafner [8] proved that

(1.1)
∑

n6X

a f (n)e(ϑn) ≪ f ,ε X
1
2

+ε, e(z) = e2πiz

for any ε > 0 and any ϑ ∈ R.

In contrast, much less is known about the Fourier coefficients for cusp forms of

higher rank. Let us recall some background on Maass cusp forms for GL(m), m > 2.

We will follow the notations in Goldfeld [6] (see also Bump [2]). Let f be a Maass

cusp form of type ν for SL(m,Z) with the Fourier–Whittaker expansion

f (z) =

∑

γ∈Um−1\SLm−1

∞
∑

n1=1

· · ·

∞
∑

nm−2=1

∑

nm−1 6=0

A(n1, . . . , nm−1)
∏m−1

k=1 |nk|
k(m−k)

2

W J

(

M

(

γ
1

)

z, ν, ψ1,...,1

)

,

where SLm−1 = SL(m − 1,Z), Um−1 = Um−1(Z) is the group of

(m − 1) × (m − 1)
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upper triangular matrices with integer entries and ones on the diagonal,

M = diag(n1 · · · nm−2|nm−1|, . . . , n1, 1)

and W J(z, v, ψ1,...,1) is the Jacquet–Whittaker function. It is well known that the

Fourier coefficients are bounded (see [6, Lemma 9.1.3]), i.e.,

A(n1, . . . , nm−1) = O
(m−1
∏

k=1

|nk|
k(m−k)

2

)

.

Thanks to the Rankin–Selberg theory, we know that the A(n1, . . . , nm−1) obey the

Rananujan–Petersson conjecture on average. More precisely, the Rankin–Selberg L-

function

L f× f (s) = ζ(ms)

∞
∑

n1=1

· · ·
∞
∑

nm−1=1

|A(n1, . . . , nm−1)|2

(nm−1
1 nm−2

2 · · · nm−1)s

initially convergent for Re s large, has a meromorphic continuation to the whole plane

with the only simple pole at s = 1. One can show that

∑

nm−1
1 nm−2

2 ···nm−16X

|A(n1, . . . , nm−1)|2 ≪ f X;

thus,

(1.2)
∑

nm−16X

|A(n1, . . . , nm−1)|2 ≪ f ,n1,...,nm−2
X.

In this paper, we are concerned with the cancellation of A(n1, . . . , nm−1) over

Beatty sequences, i.e.,

S(α, β,X) =
∑

n6X

A(n1, . . . , nm−2, [αn + β]),

where α, β ∈ R, [x] denotes the greatest integer not exceeding x, and the so-called

Beatty sequence is the sequence of integers defined by Bα,β = {[αn + β]}∞n=1. By the

methods in [1, 11] we are able to establish the following.

Theorem 1.1 Let α > 1 be of type 1. Assume that

(1.3)
∑

nm−16X

A(n1, . . . , nm−1)e(nm−1ϑ) ≪ f ,ε Xθ+ε, θ < 1,

for any ε > 0 and any ϑ ∈ R. Then we have

S(α, β,X) =
∑

n6X

A(n1, . . . , nm−2, [αn + β]) ≪ f ,α,ε,n1,...,nm−2
Xθ+ε

uniformly in β ∈ R.
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Theorem 1.1 tells us that the cancellation behavior of cusp form coefficients over

Beatty sequences is nearly the same as that in linear exponential sums. By Theo-

rem 1.1 and (1.1), we easily obtain the following corollary.

Corallary 1.2 Let α > 1 be of type 1. Let a f (n) be the Fourier coefficients of a Maass

cusp form f on GL(2). Then we have

∑

n6X

a f ([αn + β]) ≪ f ,α,ε X1/2+ε

uniformly in β ∈ R.

Recently, Miller [12] established the nontrivial bound

∑

n26X

A(n1, n2)e(n2ϑ) ≪ f ,ε,n1
X3/4+ε,

for any ε > 0 and any ϑ ∈ R. We then have the following corollary.

Corallary 1.3 Let α > 1 be of type 1. Let A(n1, n2) be the Fourier coefficients of a

Maass cusp form f on GL(3). Then we have

∑

n6X

A (n1, [αn + β]) ≪ f ,α,ε,n1
X3/4+ε

uniformly in β ∈ R.

Remark. By Theorem 1.1, we see that the upper bound of S(α, β,X) depends on the

type of α. Recall that ([9, p. 121] for more details) the irrational number α is said to

be of type η if η is the supremum of all ι for which lim infq→∞ qι‖qα‖ = 0, where q

runs through the positive integers. The celebrated theorems of Khintchine (see, for

example, [10, p. 23]) and Roth [13] tell us that almost all α ∈ R and all algebraic

irrational numbers are of type 1.

2 Preliminaries

In order to prove the theorem, we need the definition of the discrepancy. Suppose

that we are given a sequence un, n = 1, 2, . . . ,N of points of R/Z. Then the discrep-

ancy D(N) of the sequence is

(2.1) D(N) = sup
I∈[0,1)

∣

∣

∣

V(I,N)

N
− |I|

∣

∣

∣
,

where the supremum is taken over all subintervals I = (c, d) of the interval [0, 1),

V(I,N) is the number of positive integers n 6 N such that un ∈ I and |I| = d − c

is the length of the interval I .

Now let Dα,β(N) denote the discrepancy of the sequence {αn + β}, n = 1, . . . ,N,

where {x} = x − [x]. The following result is Theorem 3.2 in [9].
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Lemma 2.1 Let α be of type 1. Then for all β ∈ R, we have Dα,β ≪α N−1.

We also need the following elementary result (see [1, Lemma 3.4]).

Lemma 2.2 Let α > 1. An integer n ′ has the form n ′
= [αn + β] if and only if

0 < {α−1(n ′ − β + 1)} 6 α−1.

Let 0 < γ < 1 and

(2.2) ψ(x) =

{

1 if 0 < x 6 γ,

0 if γ < x 6 1.
.

Then we have (see [14, Chapter 2, Lemma 2]) the following lemma.

Lemma 2.3 For any △ ∈ R such that 0 < △ < 1
8

and △ 6
1
2

min{γ, 1 − γ}, there

exists a periodic function ψ△(x) of period 1 satisfying the following properties:

(i) 0 6 ψ△(x) 6 1 for all x ∈ R;

(ii) ψ△(x) = ψ(x) if △ 6 x 6 γ −△ or γ + △ 6 x 6 1 −△;

(iii) ψ△(x) can be represented as a Fourier series

ψ△(x) = γ +

∞
∑

j=1

(g je( jx) + h je(− jx)),

where the coefficients g j and h j satisfy the uniform bound

max{|g j |, |h j |} ≪ min{ j−1, j−2△−1}, ( j > 1).

3 Proof of Theorem 1.1

For brevity, we denote A(nm−1) := A(n1, . . . , nm−1). Let α > 1 be of type 1 and

γ = α−1. Put δ = α−1(1 − β), N0 = [α + β − 1] and N = [αX + β]. Then by

Lemma 2.2 and the definition of ψ(x) in (2.2) , we have

S(α, β,X) =
∑

n6X

A([αn + β]) =
∑

N06n6N
0<{γn+δ}6γ

A(n) =
∑

N06n6N

A(n)ψ(γn + δ).

Applying Lemma 2.3, we obtain

(3.1) S(α, β,X) =
∑

N06n6N

A(n)ψ△(γn + δ) + O
(

∑

N06n6N
{γn+δ}∈I

|A(n)|
)

,

where I = [0,△) ∪ (γ −△, γ + △) ∪ (1 −△, 1) with |I| ≪ △.
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Let V(I,N0,N) = ♯{N0 6 n 6 N | {γn + δ} ∈ I}. Then by (2.1) and Lemma

2.1, we have V(I,N0,N) ≪α 1 + |I|X ≪α 1 + △X. Thus, by Cauchy’s inequality

and (1.2), we see that the O-term in (3.1) is bounded by

≪
(

∑

N06n6N

|A(n)|2
) 1/2( ∑

N06n6N
{γn+δ}∈I

1
) 1/2

≪ f ,α,n1,...,nm−2
X1/2(1 + △X)1/2.

Therefore, by Lemma 2.3 (iii) and (1.3), we deduce that

S(α, β,X) =
∑

N06n6N

A(n)ψ△(γn + δ) + O f ,α,n1,...,nm−2
(X1/2(1 + △X)1/2)

= γ
∑

N06n6N

A(n) +

∞
∑

j=1

g je(δ j)
∑

N06n6N

A(n)e(γ jn)

+

∞
∑

j=1

h je(−δ j)
∑

N06n6N

A(n)e(−γ jn) + O f ,α,n1,...,nm−2
(X1/2(1 + △X)1/2)

≪ f ,α,ε,n1,...,nm−2
Xθ+ε + Xθ+ε

{

∑

j6△−1

j−1 +
∑

j>△−1

△−1 j−2
}

+ △1/2X

≪ f ,α,ε,n1,...,nm−2
Xθ+ε + Xθ+ε log△−1 + △1/2X.

On taking △ = X2(θ−1), we conclude that S(α, β,X) ≪ f ,α,ε,n1,...,nm−2
Xθ+ε. This

finishes the proof of Theorem 1.1.
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