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Maximal ideals of semigroups

of endomorphisms

F.A. Cezus, K.D. Magill, Jr, and S. Subbiah

The maximal left ideal, the maximal right ideal and the maximal

two-sided ideal are all characterized for quite general semigroups

of endomorphisms. These results are then applied to such semi-

groups as the semigroup of all continuous selfmaps of a

topological space, the semigroup of all closed selfmaps of a

topological space, and the semigroup of all linear endomorphisms

of a vector space.

1 . Introduction

The word ideal means two-sided ideal. In semigroups, unions of ideals

are ideals, so that any semigroup with identity has a unique maximal proper

ideal if it has proper ideals at all. It is simply the union of all of the

proper ideals of the semigroup. It therefore makes sense to refer to this

ideal as the maximal ideal of the semigroup and we will do this. In this

paper we characterize these ideals for quite general semigroups of

endomorphisms. We are then able to treat, as special cases, such

semigroups as the semigroup of all continuous selfmaps of a topological

space and the semigroup of all linear transformations of a vector space.

In order to give some idea of the nature of the results, we quote several.

For example, let S[l ) denote the semigroup, under composition, of all

continuous selfmaps of the W-dimensional euclidean cube i . Then the

maximal ideal of s[l ) consists of all those functions which are not
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injective on any subspace which is homeomorphic to i . It follows from

this that the maximal ideal of 5(1) (J is the closed unit interval)

certainly contains all those functions which are continuous but nowhere

differentiate on J . The case for S[tr) where E is the euclidean

#-space is quite different. The maximal ideal consists of those continuous

selfmaps which are not units of S[fr) ; that is, those continuous self-

maps which are not autohomeomorphi sms of K . Thus, S\K) is the union

of its maximal ideal and its group of units. The maximal ideal of L(V) ,

the semigroup of all linear transformations on a vector space V consists

of all those linear transformations whose ranks are less than the dimension

of V . It turns out that L{V) is the union of its maximal ideal and

group of units if and only if V is finite dimensional.

The previous remarks should be sufficient to give some indication of

the type of result we get. In addition to the semigroups we have

discussed, we also consider semigroups of closed functions and in every

instance we get results about the maximal one-sided ideals as well. Before

we conclude with the introduction, some other remarks are perhaps in order.

In any semigroup with identity, the maximal ideal consists of all elements

which are not J-equivalent to the identity where J is the relation of

Green in which two elements are equivalent if they generate the same ideal.

Consequently, the problem of determining the maximal ideal is equivalent to

the problem of determining the J-class which contains the identity. We

also discuss the analogous problem for Green's relations L, R , and V .

Of course, the H-class containing the identity in any semigroup is just

the group of units of that semigroup. It follows from one of our previous

remarks that the H, L, R, V , and J-classes of S[a) which contain the

identity all coincide and they also coincide for L{V) when V is finite

dimensional. They are all distinct, however, for the semigroups S{l ) .

2. A-structures

We recall some definitions and notation from [3]. The symbols dom(/)

and ran(/) will be used to denote respectively the domain and range of a

function / . Composition of functions will be denoted by juxtaposition

and f/A will denote the restriction of a function f to a subset A of
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i t s domain.

DEFINITION 2 . 1 . A A-s t ruc ture on a nonempty se t I i s a p a i r

(A, M) where A i s a family of subsets of / conta in ing X i t s e l f and

M = {homU, B) : (A, B) £ A x A}

where hom(i4, B) is a collection of functions with domains equal to A

and ranges contained in B , and the following conditions are satisfied:

(2.1.1) end/ = hom(/, X) is a semigroup under composition which

contains id , the identity map on X ;

(2.1.2) ran/ € A for each / in end/ ;

(2.1.3) if / € end/ and g € horn(ran(/), B] , then

gf € end/ ;

(2.1.1*) suppose f, g £ end/ ; A, B € A ; f{B) <r. A , and

g(A) e B . Suppose also that fg/A = id. and

gf/B = id . Then g/A (. horn (A, B) and

f/B € hom(B, 4) .

We will refer to end/ as the semigroup of the A-structure (A, M) .

DEFINITION 2.2. A function / in hom(A, B) is a A-isomorphism if

there exists a g in hom(B, A) such that fg = id and gf = id .

When hom{A, B) contains a A-isomorphism, we say that A and B are

A-isomorphic.

DEFINITION 2.3. A A-retract of / is any subset which is the range

of an idempotent map in end/ .

Now suppose we review the definitions of Green's relations. Two

elements a and b of a semigroup S are /.-related if they generate the

same principal left ideal, R-related if they generate the same principal

right ideal, and -J-related if they generate the same principal ideal. The

relation L n R is denoted by H and L o R is denoted by V . Since L

and R commute, V is also an equivalence relation. These five relations

are referred to as Green's relations and a fairly extensive discussion of

them can be found in [/].

In what follows, end/ will be the semigroup of some A-structure on
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a nonempty set X and its identity will "be denoted by i . How, in any

semigroup, the maximal subgroups are precisely the H-classes which contain

idempotents and if the semigroup has an identity, the H-class containing

the identity is just the group of units of the semigroup. Thus, the

H-class H. of endX is just the collection of all A-isomorphisms from

X onto X . In the next four results, we determine L., R., J. , and D. ,
Is Is Is Is

and the (.-class, R-class, J-class, and D-class respectively which

contain the identity i . As we mentioned previously, we are interested in

L., R. , and J. primarily because we want to characterize the maximal
"Is Is Is

left, right, and two-sided ideals of endj . For the sake of completeness,

we include the result on D. as well. As will be seen, the results on

L., R. , and D. follow immediately from results in [3] and the well known
Is Is Is

fact that if one element in a P-class is regular then all the elements in

that P-class are regular. The result on J. does not follow from results
Is

in [3] since theorems in that paper are about regular elements and J. in
Is

general contains many irregular elements.

THEOREM 2.4. A function f in en&X belongs to L. if and only if

rant/) is a ^-retract of X and f is a ^-isomorphism from X onto

rant/) .

THEOREM 2.5. A function f in endZ belongs to R. if and only if

there exists a set 4 f A such that f/A is a ^-isomorphism from A

onto X .

THEOREM 2.6. A function f in en&X belongs to D. if and only if

ran(/) is a ^-retract of X which is h-isomorphic to X and there

exists a h-retract A of X such that f/A is a ^-isomorphism from A

onto ran(/) .

Proofs. We recall once again that if one element in a 0-class is

regular, then all of the elements in that P-class are regular. Moreover,

both L. and R. are subsets of D. . Theorems 2.1* and 2.5 follow

readily from these facts and Theorems (2.k) and (2.5) of [3]. In a similar

manner, Theorem 2.6 follows from Theorems (2.U) and (2.6) of [3].
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Next we characterize the elements in J. .

THEOREM 2.7. A function f in endX belongs to J. if and only if

there exist two A-retracts A and B of X , both A-isomorphic to X

such that f/A is a A-isomorphism from A onto B .

Proof. Suppose f i rs t that f £ J. . Then there exist functions h

and g in endJ such that hfg = i . Take A = ran(g) and B = ranifg) .

For any y 6 A , we have y = g{x) for some x and hence

ghf(y) = ghfg(x) = gi{x) = g(x) = y .

For any y € B , we have y = fg(x) for some x and i t follows that

fgWy) = fghfg(x) = fgi(x) = fg(x) = y .

Thus ghf/A - id. and fgh/B = id , and i t follows that f/A is a
rL B

A-isomorphism from A onto B .

Next, we need that a is a A-isomorphism from X onto A which, as

we recal l , is Ran(<y) . We have already observed above that ghf/A = id

and since hfg = i , i t follows immediately that g is indeed a

A-isomorphism from X onto A . Furthermore, since f/A is a

A-isomorphism from A onto B , i t follows that fg is a A-isomorphism

from X onto B , that i s , B is A-isomorphic to X .

Now we want to show that both A and B are A-retracts of X .

Since hfg = i , hf must map X onto X . Thus,

ranighf) = ghf(X) = g(X) = ran(g) = A .

Since ghf is idempotent, A is a A-retract of X . In a similar

manner, since hfg = i , we may conclude that h maps X onto X and i t

follows that

ran(fgh) = fgh(X) = fg(X) = ran(fg) = B .

But fgh is also idempotent so that B is also a A-retract of X .

Conversely, suppose that A and B are A-retracts of X , both

A-isomorphic to X and that f/A is a A-isomorphism from A onto B .

Then there exist idempotents u and W of enAX such that ran(u) = A

and ran(w) = B and there exist functions h € hom(̂ f, A) , k € hom(A, X) ,
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t € hom(B, X) , r t \iom{X, B) , and p € hom(B, A) , such t ha t hk = id ,

kh = i , tr = i , rt = id , (f/A)p = id , and p(f/A) = id . Then,

by condition (2.1 .3) , the functions tw, kv , and pw a l l belong to

endJ . One can then verify that

(kv)(pw)r(tu)fh = i .

In fact, since V and w are idempotent, v/A = id and w/B = id .

These two facts, together with the previous statements result in the

following

{kv){pw)r{tw)fh = kprtfh = kp{idB)fli = kpfh = k{idA)h = i-h = i .

Thus f (. J. , and the theorem is proved.

We conclude th is section by essential ly restat ing Theorems 2.1+, 2.5,

and 2.7. If endJ has a proper left ideal , then i t has a unique maximal

(proper) left idea l . I t is simply the union of a l l proper left ideals of

endJ and i t consists precisely of those functions which are not /.-related

to i . We therefore get from Theorem 2.h the following

THEOREM 2.8. Suppose endX has a proper left ideal. Then a

function f belongs to the maximal left ideal of endJ if and only if

either rani/1) is not a h-retvaat of X or f is not a h-isomorphism

from X onto ran(f) .

The next two r e s u l t s follow immediately from Theorems 2.5 and 2.7

respec t i ve ly and are the analogous r e s u l t s for the maximal r i gh t idea l and

the maximal i d e a l of endX .

THEOREM 2.9. Suppose endX has a proper right ideal. Then a

function f belongs to the maximal right ideal if and only if its

restriction to no A € A is a /^-isomorphism onto X .

THEOREM 2.10. Suppose endX has a proper ideal. Then a function f

belongs to the maximal ideal of endJ if and only if for no pair of

h-retraats A and B of X 3 both k-isomorphic to X , is the

restriction of f to A a ^-isomorphism onto B .

It happens at times that a semigroup is the union of i ts maximal ideal

and its group of units. These two sets must, of course, be disjoint. We

give such semigroups a name.
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DEFINITION 2.11. A semigroup with proper ideals which is the union

of its maximal ideal and its group of units will be referred to as a

separated semigroup.

As we mentioned previously, H. = L . n R. is, in any semigroup with
If If If

identity i , just the group of units of that semigroup. Of course, both

L. and R. contain H. and both are contained in D. which, in turn, is

contained in J. . These classes are generally all distinct but, as the

following result snows, not always.

THEOREM 2.12. Suppose endX contains a proper ideal. Then the

following statements are equivalent:

(2.12.1) endX is a separated semigroup;

(2.12.2) there is a Rees-faator semigroup of endX which is a

group with zero;

(2.12.3) if t}ie product of two functions in endZ is a unit,

then each of the functions is a unit;

(2.12.10 the classes H., L., R., D. , and J. all coincide;
Is Is Is 1s 1s

(2.12.5) if A e A is a h-retract of X and is also

h-isomorphic to X , then A = X .

Proof. Suppose endX is separated and M is its maximal ideal.

Then (endJf)/M is a group with zero and we see that (2.12.1) implies

(2.12.2). Now assume (2.12.2) holds and suppose fg is a -unit of endX .

Then (endJO/W is a group with zero for some ideal N of endX . Since

fg is a unit fg \ N , that is fg is a nonzero element of {endX)/N .

It readily follows that both / and g are units of endX and hence that

(2.12.2) implies (2.12.3).

Now we show that (2.12.3) implies (2.12.U) and to do this, it is

sufficient to observe that J. c H. . Suppose f i. J. . Then i = hfg
% Is If

for appropriate h and g in endX . But (2.12.3) implies that h, g ,

and / must all be units. Thus J. cz H. .

Now assume (2.12.U) holds and let A € A be a A-retract of X which

is also A-isomorphic to X . Then there exist functions V and
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/ € hom(A', A) , and g € hom(/4, X) such t h a t fg = id , gh = i ,

V = V , and ran(w) = 4 . Thus both f and <yy belong to endX and

(gv)f = gf = i . Thus f £ J. and s ince J. = H. , we conclude t ha t /
X- Is %

is a unit in endX and hence that A and f̂ must coincide. Thus

(2.12.1*) implies (2.12-5).

Mow suppose (2.12.5) holds and let / be any element which is not in

the maximal ideal of endj . Then according to Theorem 2.10, there are two

A-retracts A and B of X both A-isomorphic to X such that the

restriction of / to A is a A-isomorphism onto B . But (2.12.5)

assures us that A = X = B . Thus, / is a unit of endl" . That is to

say, endZ is a separated semigroup. This verifies that (2.12.5) implies

(2.12.1) and completes the proof.

REMARK. Conditions (2.12.1), (2.12.2), (2.12.3), and (2.12.1*) are

equivalent in any semigroup with identity which contains a proper ideal.

Condition (2.12.5), of course, does not even nake sense for an arbitrary

semigroup.

COROLLARY 2.13. In a separated semigroup with a proper ideal, the

maximal left ideal, the maximal right ideal, and the maximal ideal all

coincide.

Proof. The maximal left ideal is the complement of L. , the maximal

right ideal is the complement of R. , and the maximal ideal is the
If

complement of J. . The conclusion now follows from the fact that in any

semigroup with identity and a proper ideal, conditions (2.12.1) and

(2.12.1*) are equivalent.

In the next several sections, we apply these results to particular

semigroups of endomorphisms.

3. Semigroups of continuous functions

Let X be a topological space and let S(X) denote the semigroup,

under composition, of all continuous functions mapping X into X . We

will assume throughout this section and the next that X has more than one

point so that the semigroups under discussion do have proper ideals. The

semigroup S(X) is really endX for a very natural A-structure on X .
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Simply take A to be the collection of a l l nonempty subspaces of X and

horn (A, B) (A, B d A) to be the collection of a l l continuous functions

from A into B . I t is immediate that this resul ts in a A-structure, so

that a l l the results of the previous section apply. In this case, a

A-retract is just a retract in the usual topological sense, that i s , the

range of an idempotent continuous selfmap,and a A-isomorphism is simply a

homeomorphism. The results of the previous section then translate

immediately into the following resu l t s .

THEOREM 3.1. A function f in S{x) belongs to L. if and only if

it is a homeomorphism from X into X and its range is a retract.

Consequently, the maximal left ideal consists of all functions in S(X)

with the property that either the range is not a retract or the function is

not a homeomorphism from X into X .

THEOREM 3.2. A function f in S(X) belongs to R^ if and only if

it maps some subspace of X homeomorphically onto X . Consequently, the

maximal right ideal of S{X) consists of all those functions which map no

subspace of X Jiomeomorphically onto X .

THEOREM 3.3. A function f in S(X) belongs to J. if and only if

there exist two retracts of X both homeomorphic to X such that f maps

one homeomorphically onto the other. Consequently, the maximal ideal of

Six) consists of all those functions in S(X) with the property that they

map no retract homeomorphically onto another when the retracts are both

homeomorphic to X .

THEOREM 3.4. A function f in S{X) belongs to D^ if and only if

its range is a retract which is homeomorphic to X and it maps some

retract of X homeomorphically onto its range.

n J!
How le t K denote the euclidean iV-space and le t i denote the

compact //-dimensional cube. We apply these l a t t e r resul ts to S[K) and

S[l ) . First of a l l , i t follows from a well known theorem of Brouwer [2,

p. 95] that no euclidean ZV-space is homeomorphic to a proper closed sub-

space and since any retract of a Hausdorff space is closed, condition

(2.12.5) is satisfied, so from Theorem 2.12 we immediately get
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THEOREM 3.5. The following statements about s[E?V) are valid for

each euolidean H-space K :

(3.5-1) S[K ) is a separated semigroup;

(3.5-2) there is a Bees-faator semigroup of S[K) which is a

group with zero;

(3.5.3) if the composition of two functions in S[Ef) is a

homeomorphism mapping if onto K , then each of the

functions is a homeomorphism mapping tf onto E ;

(3.5.M the classes H., L., R., D. , and J. all coincide in
Is is is is Is

This latter result together with Corollary 2.13 yields

COROLLARY 3.6. The maximal left ideal, the maximal right ideal, and

the maximal ideal all coincide in S{K ) .

The next result shows that the situation is far different for the

semigroups S[l ) .

THEOREM 3.7. The classes H., L., R., D. , and J. are all distinct
% % It Is 1/

in S{r) . Moreover, the maximal left ideal of S{r) consists of all

those functions in s[i ) which are not infective. The maximal right

ideal consists of all those functions which map no subspaae of 1

homeomorphically onto 1 and the maximal ideal consists of all those

functions which are not infective on any subspaae which is homeomorphic to

Proof. One appeals to Theorems 3.1, 3.2, 3.3, and 3.^ and easily

produces functions which show that the various classes are indeed distinct.

Mow suppose that / £ S[1 ) is not injective. Then in view of Theorem

3.1, f "belongs to the maximal left ideal of •S[-TJ . Suppose, on the

other hand, that / belongs to the maximal left ideal of S[l ) . Then /
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cannot possibly be injective for f injective implies that it is a

homeomorphi sm into 1' , which in turn implies that ran(/) is a retract

(in fact, an absolute retract for normal spaces) and all this contradicts

Theorem 3.1. Consequently, the maximal left ideal of S[i ) does consist

of all those functions in S[l J which are not injective. In a similar

manner, the assertions for the maximal right ideal and the maximal ideal

follow from Theorems 3.2 and 3.3 respectively.

REMARK. The maximal ideal of S(I) (I is the closed unit interval)

contains all continuous selfmaps of I which are nowhere differentiable.

To get nontrivial functions in S(j) (N > l) which belong to the maximal

ideal of s[l ) , map 1 onto I with any continuous function f and

map I into 1 with any nonconstant continuous function g . The

function / cannot possibly be injective on any subspace of l which is

homeomorphic to 1 . Consequently, gf cannot be either and it follows

from the previous corollary that gf belongs to the maximal ideal of

4. Semigroups of closed functions

By a closed function from a topological space X into a topological

space Y , we mean any function / such that f{A) is closed in Y for

each closed subset A of X . We emphasize that continuity is not

required. It will be assumed that all topological spaces discussed in this

section are T and we will also assume that X has more than one point.

The symbol T(X) will denote the semigroup, under composition, of all

closed functions which map the topological space X into itself. Then

T(X) is the semigroup of a very natural A-structure on the space X .

Simply take A to be the collection of all nonempty closed subsets and for

A, B i A , take hom[A, B) to be the collection of all closed functions

from A into B . This results in a A-structure where the

A-isomorphisms are simply homeomorphisms. The A-retracts of X in this

case are precisely the nonempty closed subsets of X . Certainly, every

A-retract is closed. To see that the converse is true, let A be any

nonempty closed subset of X and choose a (. A . Define a function V
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from X i n to X by

v{x) = x for x ? A ,

v(x) = a for x € X - A .

Then V is idempotent since it is the identity on i ts range. Moreover,

for any closed subset B of X we have

v(B) = v{BnA) u v(Bn(X-A)) = {BcA) <) v[Bn{X-A)) .

Now v.[Bn(X-A)} is either empty or consists of the single point a . In

either event, v(B) is closed since B n A is closed and X is T .

Among other things, this means that ran(/") is a A-retract for each f

in T(X) . With all this in mind, one sees that various results of Section

2 translate into the following results.

THEOREM 4.1. A function f in T(x) belongs to L. if and only if

it is a homeomorphism from X into X . Consequently, the maximal left

ideal of T(x) consists of all functions in T(X) which do not map X

homeomorphically into X .

THEOREM 4.2. A function f in T(X) belongs to R^ if and only if

it maps some closed subset of X homeomorphically onto X . Consequently,

the maximal right ideal of T{x) consists of all those functions in V(X)

which, map no closed subset of X homeomorphically onto X .

THEOREM 4.3. A function f in V(X) belongs to J. if and only if

it maps some closed subspace which is a homeomorphic copy of X

homeomorphically onto some closed subspace which is also a homeomorphic

copy of X . Consequently, the maximal ideal of T(X) consists of all

tliose functions in T(X) which do not map homeomorphic copies of X

homeomorphically onto homeomorphic copies of X .

THEOREM 4.4. A function f in Y{X) belongs to D. if and only if
Is

its range is homeomorphic to X and it maps some closed subset of X

homeomovphiaally onto its range.

Again we appeal to Theorem 2.12 and Brouwer's Theorem [Z, p. 95] which

tells us that no euclidean /V-space E is homeomorphic to a proper closed

subspace and we get the following analogue of Theorem 3.5-
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THEOREM 4.5. The following statements about Y (E?1) are valid for

each euolidean N-spaae K :

(It.5.1) T[K) is a separated semigroup;

(It.5.2) there is a Rees-faotor semigroup of r(V) which is a

group with zero;

C*.5.3) if the composition of two functions in V[K ) is a

homeomovphism mapping K onto K , then each of

the functions is a homeomorphism mapping E? onto K ;

(It.5.It) the classes #., L., B., D. , and J. all coincide in
Is is % Is Is

We will omit the statements of the analogues for r(l) of Theorems

3.6 and 3.7.

5. Semigroups of linear transformations

One can take any algebraic system such as a group, ring, module, and

so on, and then define an appropriate A-structure so that the semigroup of

all endomorphisms of the system is the semigroup of the A-structure and

then, of course, the results of Section 2 apply. We illustrate this with a

vector space V over a division ring. We denote "by L{V) the semigroup,

under composition, of all linear transformations mapping V into V . We

now define a A-structure whose semigroup will be L{V) . Take A to be

the collection of all nonempty subspaces of V and for A, B € A , take

hom(A, B) to be the collection of all linear transformations from A into

B . The A—isomorphisms are, in this case, the usual linear isomorphisms

and every A 6 A is a A-retract. To see this, let 8 be any basis for

A and extend it to a basis C for V . Take any function mapping C

into 8 which is the identity on 8 and extend it linearly to an element

/ in L{V) . Then ran(/) = A and V is the identity on A and hence

is idempotent. Thus A is a A-retract of V . The results of Section 2

now combine with well known results about vector spaces to produce the

following three theorems.
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THEOREM 5.1 . A linear' transformation on V belongs to L. if and
Is

only if it is an isomorphism from V into V . Consequently, the maximal

left ideal of L(V) consists of all linear transformations on V which

are not infective.

THEOREM 5.2. A linear transformation on V belongs to P.. if and

only if its range is all of V . Consequently, the maximal right ideal of

L(V) consists of all those linear transformations whose ranges are proper

subspaces of V .

THEOREM 5.3. A linear transformation on V belongs to J. if and

only if its rank (dimension of its range) is equal to the dimension of V .

Consequently, the maximal ideal of L(V) consists of all those linear

transformations whose ranks are less than the dimension of V .

THEOREM 5.4. A linear transformation on V belongs to D. if and

only if its rank is equal to the dimension of V .

It follows from the latter two theorems that D. = J. in any L{V)

whatsoever. This also follows from Theorem (5.3) of [3] which states,

among other things, that V and J coincide for L{V) .

Mow, a vector space V is isomorphic to a proper subspace if and only

if it is infinite dimensional, so that condition (2.12.5) is satisfied if

and only if V is finite dimensional, and we have

THEOREM 5.5. The following statements about L(V) are equivalent:

(5.5.1) L(V) is a separated semigroup;

(5.5.2) if the composition of two linear transformations on V

is a linear isomorphism from V onto V , then both

transformations are also linear isomorphisms from V

onto V ;

(5.5.3) the classes H., L., R., D. , and J. all coincide in

L(V) ;

(5.5.U) V is finite dimensional.

We conclude with the analogue of Corollary 3.6. Its proof is an

immediate consequence of Corollary 2.13 and the latter theorem.
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COROLLARY 5.6. Let V be finite dimensional. Then its maximal left

ideal, its maximal right ideal, and its maximal ideal all coincide in

L(V) .
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