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A TAUBERIAN THEOREM CONCERNING 
BOREL-TYPE AND RIESZ SUMMABILITY METHODS 

DAVID BORWEIN 

ABSTRACT. It is proved that the summability of a series by the Borel-type summa-
bility method (B,a,/3) together with a certain Tauberian condition implies its summa
bility by the Riesz method f R, \og(n + l),p J. 

1. Introduction. Suppose throughout that a > 0, aN + (3 > 0 with N a non-
negative integer,/? > 0, and sn := ao + a\ + - • - + an. The Borel-type summability method 
(B,a,f3) and the Riesz method (R, log(n + l),p) are defined as follows: 

oo xan+f3 — 1 

sn-+s(B,a,l3) if ote~x ]T sn—- — —>sasx—>oo; 
~N T(an + I3) 

$n —> s{R, log{n + l),p) it 2-J 1 an —* s as w —> oo. 
log(n+l)<w V W J 

Both methods are regular, and (B, 1,1) is the standard Borel exponential method B. 
Let 

n i 
L" := £ 777' 

i n ç 

'-:= «i" := ^ - E 
and, for k — 2,3, 

^n r=0 r + 1 

1 n *(*-l) 

t(k) :== J_ y- lr 

The &-times iterated weighted mean method (M, 1/ (n+ l),k) is defined by: 

sn —* s{M, 1/ (n + 1), fc) if fj*} —+ s as n —* oo. 

The object of this paper is to prove the following Tauberian theorem. 

THEOREM. Suppose that sn —» s{B, a , (3) and 

(1) sn = 0((nl!2\ognf), 
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A TAUBERIAN THEOREM 15 

where p is a positive integer. Then sn —> s(R, \og(n + 1),/?). 

The case a — (5 — 1 of the theorem was recently established by Kwee [8]. Our proof 
owes much to his. The present theorem is more general than Kwee's result since it is 
known ([1, Result (I)] and [2, Lemma 4]) that 

ifsn —• s(B, oc,f3) and a > 7 > 0, then sn —+ s(B, 1,8) provided 

L sn\ 
„t# T(1n + 8) 

is an entire function of z for N sufficiently large. 

The proviso is certainly satisfied when (1) holds. 

2. Preliminary results. 

LEMMA 1 [ 1, RESULT (II)]. Ifsn —* s(B, a, f3) and8 > f3, then sn —+ s(B, a,8). 

LEMMA 2 [4, THEOREM 1]. //s„ —• s(B,a,fl) and sn — sn-\ = 0{n~Xl'2), then 

Sn — • S. 

This is a special case of a general Tauberian theorem [5, Theorem 1]. 

LEMMA 3. For k a positive integer, sn —> s(M, 1/ (n + l),k) if and only if sn —> 

s(R,\og(n + l),k). 

This is due to Kwee [8, Lemma 4] who deduced the equivalence from Kuttner's result 
[7] that the methods (M, 1/ (n + 1), &) and (R, Ln, k) are equivalent. 

LEMMA 4 [3, LEMMA 2]. Let 

an+(3 — \ 

cn(x) := ae 
T(an + py 

and lethn\— n — ^, | < £ < | , andO < rj < 2£ — 1. Then, asx —• oo, 
OO 

(i) £c„(.x)-»l; 
n=N 

(ii) £ cn(x)=0(e-x"); 
\hn\>X* 

(Hi) cn(x) = -?L= exp ( - — M { 1 + 0(x3^-2)} when \hn\ < x^. 
V 27rx \ 2x ) 

LEMMA 5. Suppose that k is a positive integer, and that sn —• s(B, a, (5). Then tn® —• 
s(B,a,f3). 

PROOF. Since { 1/ Ln} is totally monotone there is a non-decreasing function x on 
[0,1] [6, Theorem 207] such that 

(2) z r / o V < ^ 
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16 DAVID BORWEIN 

moreover, since 1/ Ln —* 0, we must have x(l) = x(l~)-
Suppose as we may without loss of generality that s = 0 and, in view of Lemma 1, 

that (3 > max(l, a). Let x > 0 and 

OO y*l 

~0 T(an + f3) 

Then 

(3) V(*a) = o(xl-Pe*) as JC —• oo. 

We first prove that 

(4) £(*) := e"* £ *«™ 7^7 -^ 0 as x - . oo. 

We have 
oo v xan+/3 — 1 r J C a rJC 

*M := £ \ r{ x f l , = ^"a _ 1 £ V>(0 * = a ^ - " - ' jf 1>{f)f-1 dt. £r0n+\r(an + (3) Jo Jo 

Hence, by (3), 

(j>{x) = 0{j£-a-l) + 0(x?-a-x) I*'2 f-eeUt + x3-"-' F o{f^é)dt 
J1 Jxj 2 

(5) = 0(x^-a-l)^0(^-a-lex'2) + o(x^-a--l(x/2)a^ex) 

= o I — J as x —• oo. 

Next, by (2), 

oo ran+(3-l i n ç 

n = 0 r ( a n + /3) ./o ^ w - r + 1 
~i oo oo (rt\an c 

~i oo oo / v *\an+ar+ /3- l _ 

Jo XK 'to tonan + ar+(3)n+V 

the inversions in the order of operations, here and subsequently, being justified by abso
lute convergence. Since 

— ST = ? Tr 7T f\xt-uf^xum*-xdu 
an + ar+3) Y(ar)T{an + 0) Jo 

rxt 

T(an + ar + f3) ~ r(ar)T(an +(3) 

when r > 0, it follows that 

r\ I rxt oo (Yf _ ,.\ar—\ 

B{x)=^~{e-X dxlfXxt)1-* U(*)+ f Hu)duj:(Xt U) 

Jo y Jo ~x T(ar) 

= x?~le~x Jo d\(ta)(xt)1 -V U(xt) + f* E(xt ~u)(j)(u)du), 
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where 
oo yar~x e* 

(6) E(x) : = J2 ™ — : as x —> oo, 

by Lemma 4(i). Hence 

B(x) = x?~xe~x J dx(ta)(xt)x-P U(xt) + xf E(xt -xu)<l>(xu)du\ 

(7) =x?-le-xJo\xt)l-^(xt)dX(n 

+ x3e~x J (xt)x-P<j>{xt)dt J (u/t)l~(3E(xu-xt)dX(ua). 

Now let 
oo 2 xan+f3-\ 

F W : = 5 r c + i r ( a « + /3)' 

so that F(x) is value of <j> (x) when sn = 1. Then 

1 °° an+ 6 xan+$ e* 
F(x) = - > _, — — 77 ~ — as X —+ OO, 

X~Q n + \ T(an + (3 + 1) x 

by the regularity of (#, a , /? + 1 ) . Hence, by (5), 

</> (x) = o(F(xf) as x —-» oo 

and so, given e > 0, there is an x0 > 0 such that 
|(/>(JC)| < 6 F ( j c ) f o r j c > x 0 . 

Further, replacing <f>(xt) by F(jtf) in (7) yields a Z?(x) which tends to 1 / a as x —• oo 
and, since /? > 1, to 0 as x —> 0+, and hence this B(x) is dominated by a constant M 
for all x > 0. Thus the contribution to (7) of the parts of the integrals over the range 
xo/x < t < 1 is in modulus less than eM for all x > 0. Since e can be taken arbitrarily 
small, in order to establish (4) it suffices to show that the contribution to (7) of the parts 
of the integrals over the range 0 < t < xo/ x tends to 0 as x —• oo. 

Since vl~P <f> (v) is bounded for 0 < v < XQ, it follows that 

*?-le-xf*,\xt)l-P<l>(xt)dxVa) = O ^ - ' e - j [ ' dX(f)} = o{\) as x —y oo. 

Further, by (6) and because /? > 1, 
rx0/x „ r\ 

xPe~x J* \xt)x-P(j>(xt)dt j (u/t)l-^E(xu-xt)dX(ua) 

= ^e~xO (j*IXdtj*'XéM-*dx{ua) + [Q'Xdtfx ^u/ty-P^-^dxiu")] 

= jPe~xO (e*> fX0/XdX(ua) [Udt+ [l ux-^udx(ua) HhV"1*"*' dt) 
y Jo Jo JXQ/X JO J 

= 0{^-xe~x) + O (e~x /"' w ' - V " dX(ua) T fi^e'1 dt] 
V Jxo/x J0 J 

= o(l) + O { /" ' f « ' " " e " - ' dX(ua) + / ' M ' - V " - ^ x ( « a ) l 
V/W^ Jl/2 J 

= o(l) + 0(jfi~le~x/2) + o ( l ) = o ( l ) as JC - + oo, 

https://doi.org/10.4153/CMB-1992-002-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1992-002-4


18 DAVID BORWEIN 

the final integral tending to 0 by the Lebesgue-Stieltjes theorem on dominated conver
gence since, for 1/2 < u < 1, ul~P > ux~$e?u~x —-> 0 as x —* oo, and x(u(X) —* XO) 
as u —• 1—. 

This establishes the case k — 1 of the lemma. Applying this case k — 1 times, we 
obtain the required result. n 

LEMMA 6. Suppose that sn —• s(B, a, /3 ) and that (1) holds with p a positive integer. 

Then 

#> = o((nl'2logrif-k)fork= 1,2,. . . , p . 

PROOF. Assume again that 5 = 0. Let x > 0, £ < £ < f, 0 < r/ < 2£ - 1 

u x 

a 
x i 
a 

, and#n := ]£ 
0 r + l ' 

Then 

(8) L„ - logrcand£ n = 0 ( (n 1 / 2 l ogny 7 l ogn ) 

and, by Lemma 5, 

(9) T(x) := e"* £ ^ F 7 — ^ = o ( 1> a s * "* °°-

Write 

an+/3 — 1 oo -an+f3 — 1 

r w = «-'• E(«» - B«.)-r-^ ST + e""fîm E 
„=o L„r(an + ̂ ) „= 0L„r(an + /3) 

(10) =: r i ( jc ) + r2(jc), 

(11) r , (*) = *"* I E + E + E | =:Si(x)+S2(x) + S3(x). 
\hn<-xi |A„|<*« h„>xi/ 

By (8) and Lemma 4(ii), as x —> oo, 

(12) Sl(x) = o(nf/2(logmrle-x E ^ \ \ = °^*>» 
\ /,„<-*« r ( « « + / ? ) / 

and 

(13) 
h„>xi r(an + p)J 

/,„>*« H a n + / ? - / > ) / 
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By (8) and Lemma 4(iii), as x —-> oo, 

/ or«+/3 —1 

S2(x) = 0\e-x E (I *«l + D^~2)/2(log^-— 
\ \hA<xi LnT(an + \hn\<xt L,nLKKxn-rj3) ^ 

= O ie-^-V/^logxy-1 E (|An| + 1); 
\hn\<* 

x<xn+(3-\ ' 

'f(ân + p) 

(14> =o(x^l\\ogxf^ E (\hn\ + l)-L= e x p f - ^ ) 

= 0 ( ^ - ^ ( l o g x r - 1 j T ( | r | + l)exp [-°~-] dt\ 

= 0{x{p-l)l\\ogxf-x) + 0{x{p-1)l2(\ogxf'x) 

= o((xl/2\ogxrl). 

It follows from (10), (11), (12), (13) and (14) that 

(15) Ti(x) = 0((x1/2 logjc/7"1) as JC -^ oo. 

Next, 

(16) T2(x) = e-xBm\ E + E + E \=:Vi(x) + V2(x) + V3(x). 
\hn<-xt \hn\<xt hn>xt/ 

By (8) and Lemma 4(ii), as x —• oo, 

Vi(x) + V3(x) = e-*tm0[ £ ~n ~ + £ g 

(17) \hn<-xi r ( a « + /3) ,,„>*< r («"+ /3 ) 

Finally, as JC —• oo, 

~arn+/3 —1 T 

h^xiT(an + l5)In 

ocn+p-\ j ( i \ 

(18) v2(*) = *«*-* E ™ 3T-r = '* - + * 1 ) • 

since Lm/ Ln in the above sum lies between Lmj L[x/ a+x^ and Lmj L[x/ a-xi}
 e a c n of which 

tends to 1 as x —• oo and, by Lemma 4(i) and (ii), 

xan+j3 — 1 oo yCtn+p — 1 i 

lim £-* E = 1™ e% E — —• 
*~*°° hn>* n « « + i 3 ) *-°° rt=or(««+/?) « 

It follows from (16), (17) and (18) that 

?2W = tm — + o(l) as x —• oo, 
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and hence from (9) and (15) that 

tm = 0{ixxl2\ogxf-x) a s x ^ o o . 

Taking x= an,we get 
tn = i» = 0((n]/2\ognY~[). 

When p > 2 we can replace tn by ^2) in (9) and argue as above to obtain 

e = 0 ( ( n ' / 2 l o g « r 2 ) . 

The proof can now be completed by induction in the obvious way. • 

3. Proof of the theorem. By Lemma 6, 

t(p) _ tip) = 5 i V - = 0(rT1'2) 
n'x {n+\)Ln-X (n + \)LnLn^tvr+\ 

Hence, by Lemma 5 and Lemma 2, 

t^ —> s as n —^ oo, 

and so, by Lemma 3, 

5„—• 5(/?,log(n+ l),p). • 
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