A TAUBERIAN THEOREM CONCERNING BOREL-TYPE AND RIESZ SUMMABILITY METHODS

DAVID BORWEIN

Abstract

It is proved that the summability of a series by the Borel-type summability method (B, α, β) together with a certain Tauberian condition implies its summability by the Riesz method $(R, \log (n+1), p)$.

1. Introduction. Suppose throughout that $\alpha>0, \alpha N+\beta>0$ with N a nonnegative integer, $p \geq 0$, and $s_{n}:=a_{0}+a_{1}+\cdots+a_{n}$. The Borel-type summability method (B, α, β) and the Riesz method $(R, \log (n+1), p)$ are defined as follows:

$$
\begin{gathered}
s_{n} \rightarrow s(B, \alpha, \beta) \text { if } \alpha e^{-x} \sum_{n=N}^{\infty} s_{n} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \rightarrow s \text { as } x \rightarrow \infty ; \\
s_{n} \rightarrow s(R, \log (n+1), p) \text { if } \sum_{\log (n+1)<w}\left(1-\frac{\log (n+1)}{w}\right)^{p} a_{n} \rightarrow s \text { as } w \rightarrow \infty .
\end{gathered}
$$

Both methods are regular, and $(B, 1,1)$ is the standard Borel exponential method B.
Let

$$
\begin{aligned}
L_{n} & :=\sum_{r=0}^{n} \frac{1}{r+1}, \\
t_{n} & :=t_{n}^{(1)}:=\frac{1}{L_{n}} \sum_{r=0}^{n} \frac{s_{r}}{r+1},
\end{aligned}
$$

and, for $k=2,3, \ldots$,

$$
t_{n}^{(k)}:=\frac{1}{L_{n}} \sum_{r=0}^{n} \frac{t_{r}^{(k-1)}}{r+1} .
$$

The k-times iterated weighted mean method $(M, 1 /(n+1), k)$ is defined by:

$$
s_{n} \rightarrow s(M, 1 /(n+1), k) \text { if } t_{n}^{(k)} \rightarrow s \text { as } n \rightarrow \infty .
$$

The object of this paper is to prove the following Tauberian theorem.
Theorem. Suppose that $s_{n} \rightarrow s(B, \alpha, \beta)$ and

$$
\begin{equation*}
s_{n}=O\left(\left(n^{1 / 2} \log n\right)^{p}\right) \tag{1}
\end{equation*}
$$

This research was supported in part by the Natural Sciences and Engineering Research Council of Canada. Received by the editors April 2, 1990; revised: July 13, 1990 .
AMS subject classification: 40E05.
Key words and phrases: Tauberian, summability, Borel-type, Riesz.
(c) Canadian Mathematical Society 1992.
where p is a positive integer. Then $s_{n} \rightarrow s(R, \log (n+1), p)$.
The case $\alpha=\beta=1$ of the theorem was recently established by Kwee [8]. Our proof owes much to his. The present theorem is more general than Kwee's result since it is known ([1, Result (I)] and [2, Lemma 4]) that
if $s_{n} \rightarrow s(B, \alpha, \beta)$ and $\alpha>\gamma>0$, then $s_{n} \rightarrow s(B, \gamma, \delta)$ provided

$$
\sum_{n=N}^{\infty} s_{n} \frac{z^{n}}{\Gamma(\gamma n+\delta)}
$$

is an entire function of z for N sufficiently large.
The proviso is certainly satisfied when (1) holds.

2. Preliminary results.

Lemma 1 [1, Result (II)]. If $s_{n} \rightarrow s(B, \alpha, \beta)$ and $\delta>\beta$, then $s_{n} \rightarrow s(B, \alpha, \delta)$.
Lemma 2 [4, Theorem 1]. If $s_{n} \rightarrow s(B, \alpha, \beta)$ and $s_{n}-s_{n-1}=O\left(n^{-1 / 2}\right)$, then $s_{n} \rightarrow s$.

This is a special case of a general Tauberian theorem [5, Theorem 1].
LEMMA 3. For k a positive integer, $s_{n} \rightarrow s(M, 1 /(n+1), k)$ if and only if $s_{n} \rightarrow$ $s(R, \log (n+1), k)$.
This is due to Kwee [8, Lemma 4] who deduced the equivalence from Kuttner's result [7] that the methods $(M, 1 /(n+1), k)$ and $\left(R, L_{n}, k\right)$ are equivalent.

Lemma 4 [3, Lemma 2]. Let

$$
c_{n}(x):=\alpha e^{-x} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)},
$$

and let $h_{n}:=n-\frac{x}{\alpha}, \frac{1}{2}<\xi<\frac{2}{3}$, and $0<\eta<2 \xi-1$. Then, as $x \rightarrow \infty$,
(i) $\sum_{n=N}^{\infty} c_{n}(x) \rightarrow 1$;
(ii) $\sum_{\left|h_{n}\right|>x \xi} c_{n}(x)=O\left(e^{-x^{\eta}}\right)$;
(iii) $c_{n}(x)=\frac{\alpha}{\sqrt{2 \pi x}} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\left\{1+O\left(x^{3 \xi-2}\right)\right\}$ when $\left|h_{n}\right| \leq x^{\xi}$.

LEmma 5. Suppose that k is a positive integer, and that $s_{n} \rightarrow s(B, \alpha, \beta)$. Then $t_{n}^{(k)} \rightarrow$ $s(B, \alpha, \beta)$.

Proof. Since $\left\{1 / L_{n}\right\}$ is totally monotone there is a non-decreasing function χ on $[0,1][6$, Theorem 207] such that

$$
\begin{equation*}
\frac{1}{L_{n}}=\int_{0}^{1} t^{n} d \chi(t) \tag{2}
\end{equation*}
$$

moreover, since $1 / L_{n} \rightarrow 0$, we must have $\chi(1)=\chi(1-)$.
Suppose as we may without loss of generality that $s=0$ and, in view of Lemma 1, that $\beta \geq \max (1, \alpha)$. Let $x>0$ and

$$
\psi(x):=\sum_{n=0}^{\infty} s_{n} \frac{x^{n}}{\Gamma(\alpha n+\beta)} .
$$

Then

$$
\begin{equation*}
\psi\left(x^{\alpha}\right)=o\left(x^{1-\beta} e^{x}\right) \text { as } x \rightarrow \infty . \tag{3}
\end{equation*}
$$

We first prove that

$$
\begin{equation*}
B(x):=e^{-x} \sum_{n=0}^{\infty} t_{n} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \rightarrow 0 \text { as } x \rightarrow \infty . \tag{4}
\end{equation*}
$$

We have

$$
\phi(x):=\sum_{n=0}^{\infty} \frac{s_{n}}{n+1} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}=x^{\beta-\alpha-1} \int_{0}^{x^{\alpha}} \psi(t) d t=\alpha x^{\beta-\alpha-1} \int_{0}^{x} \psi\left(t^{\alpha}\right) t^{\alpha-1} d t .
$$

Hence, by (3),

$$
\begin{align*}
\phi(x) & =O\left(x^{\beta-\alpha-1}\right)+O\left(x^{\beta-\alpha-1}\right) \int_{1}^{x / 2} t^{\alpha-\dot{\beta}} e^{t} d t+x^{\beta-\alpha-1} \int_{x / 2}^{x} o\left(t^{\alpha-\beta} e^{t}\right) d t \\
& =O\left(x^{\beta-\alpha-1}\right)+O\left(x^{\beta-\alpha-1} e^{x / 2}\right)+o\left(x^{\beta-\alpha-1}(x / 2)^{\alpha-\beta} e^{x}\right) \tag{5}\\
& =o\left(\frac{e^{x}}{x}\right) \text { as } x \rightarrow \infty .
\end{align*}
$$

Next, by (2),

$$
\begin{aligned}
B(x) & =e^{-x} \sum_{n=0}^{\infty} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \int_{0}^{1} t^{\alpha n} d \chi\left(t^{\alpha n}\right) \sum_{r=0}^{n} \frac{s_{n-r}}{n-r+1} \\
& =x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right) \sum_{r=0}^{\infty} \sum_{n=r}^{\infty} \frac{(x t)^{\alpha n}}{\Gamma(\alpha n+\beta)} \frac{s_{n-r}}{n-r+1} \\
& =x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right) \sum_{r=0}^{\infty}(x t)^{1-\beta} \sum_{n=0}^{\infty} \frac{(x t)^{\alpha n+\alpha r+\beta-1}}{\Gamma(\alpha n+\alpha r+\beta)} \frac{s_{n}}{n+1},
\end{aligned}
$$

the inversions in the order of operations, here and subsequently, being justified by absolute convergence. Since

$$
\frac{(x t)^{\alpha n+\alpha r+\beta-1}}{\Gamma(\alpha n+\alpha r+\beta)}=\frac{1}{\Gamma(\alpha r) \Gamma(\alpha n+\beta)} \int_{0}^{x t}(x t-u)^{\alpha r-1} u^{\alpha n+\beta-1} d u
$$

when $r>0$, it follows that

$$
\begin{aligned}
B(x) & =x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right)(x t)^{1-\beta}\left(\phi(x t)+\int_{0}^{x t} \phi(u) d u \sum_{r=1}^{\infty} \frac{(x t-u)^{\alpha r-1}}{\Gamma(\alpha r)}\right) \\
& =x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right)(x t)^{1-\beta}\left(\phi(x t)+\int_{0}^{x t} E(x t-u) \phi(u) d u\right),
\end{aligned}
$$

where

$$
\begin{equation*}
E(x):=\sum_{r=1}^{\infty} \frac{x^{\alpha r-1}}{\Gamma(\alpha r)} \sim \frac{e^{x}}{\alpha} \text { as } x \rightarrow \infty, \tag{6}
\end{equation*}
$$

by Lemma 4(i). Hence

$$
\begin{align*}
B(x)= & x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right)(x t)^{1-\beta}\left(\phi(x t)+x \int_{0}^{t} E(x t-x u) \phi(x u) d u\right) \\
= & x^{\beta-1} e^{-x} \int_{0}^{1}(x t)^{1-\beta} \phi(x t) d \chi\left(t^{\alpha}\right) \tag{7}\\
& +x^{\beta} e^{-x} \int_{0}^{1}(x t)^{1-\beta} \phi(x t) d t \int_{t}^{1}(u / t)^{1-\beta} E(x u-x t) d \chi\left(u^{\alpha}\right) .
\end{align*}
$$

Now let

$$
F(x):=\sum_{n=0}^{\infty} \frac{1}{n+1} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)},
$$

so that $F(x)$ is value of $\phi(x)$ when $s_{n} \equiv 1$. Then

$$
F(x)=\frac{1}{x} \sum_{n=0}^{\infty} \frac{\alpha n+\beta}{n+1} \frac{x^{\alpha n+\beta}}{\Gamma(\alpha n+\beta+1)} \sim \frac{e^{x}}{x} \text { as } x \rightarrow \infty,
$$

by the regularity of ($B, \alpha, \beta+1$). Hence, by (5),

$$
\phi(x)=o(F(x)) \text { as } x \rightarrow \infty
$$

and so, given $\epsilon>0$, there is an $x_{0}>0$ such that

$$
|\phi(x)| \leq \epsilon F(x) \text { for } x \geq x_{0} .
$$

Further, replacing $\phi(x t)$ by $F(x t)$ in (7) yields a $B(x)$ which tends to $1 / \alpha$ as $x \rightarrow \infty$ and, since $\beta \geq 1$, to 0 as $x \rightarrow 0+$, and hence this $B(x)$ is dominated by a constant M for all $x>0$. Thus the contribution to (7) of the parts of the integrals over the range $x_{0} / x \leq t \leq 1$ is in modulus less than ϵM for all $x>0$. Since ϵ can be taken arbitrarily small, in order to establish (4) it suffices to show that the contribution to (7) of the parts of the integrals over the range $0<t<x_{0} / x$ tends to 0 as $x \rightarrow \infty$.

Since $v^{1-\beta} \phi(v)$ is bounded for $0<v \leq x_{0}$, it follows that

$$
x^{\beta-1} e^{-x} \int_{0}^{x_{0} / x}(x t)^{1-\beta} \phi(x t) d \chi\left(t^{\alpha}\right)=O\left(x^{\beta-1} e^{-x} \int_{0}^{1} d \chi\left(t^{\alpha}\right)\right)=o(1) \text { as } x \rightarrow \infty .
$$

Further, by (6) and because $\beta \geq 1$,

$$
\begin{aligned}
x^{\beta} & e^{-x} \int_{0}^{x_{0} / x}(x t)^{1-\beta} \phi(x t) d t \int_{t}^{1}(u / t)^{1-\beta} E(x u-x t) d \chi\left(u^{\alpha}\right) \\
& =x^{\beta} e^{-x} O\left(\int_{0}^{x_{0} / x} d t \int_{t}^{x_{0} / x} e^{x u-x t} d \chi\left(u^{\alpha}\right)+\int_{0}^{x_{0} / x} d t \int_{x_{0} / x}^{1}(u / t)^{1-\beta} e^{x u-x t} d \chi\left(u^{\alpha}\right)\right) \\
& =x^{\beta} e^{-x} O\left(e^{x_{0}} \int_{0}^{x_{0} / x} d \chi\left(u^{\alpha}\right) \int_{0}^{u} d t+\int_{x_{0} / x}^{1} u^{1-\beta} e^{x u} d \chi\left(u^{\alpha}\right) \int_{0}^{x_{0} / x} t^{\beta-1} e^{-x t} d t\right) \\
& =O\left(x^{\beta-1} e^{-x}\right)+O\left(e^{-x} \int_{x_{0} / x}^{1} u^{1-\beta} e^{x u} d \chi\left(u^{\alpha}\right) \int_{0}^{x_{0}} t^{\beta-1} e^{-t} d t\right) \\
& =o(1)+O\left(\int_{x_{0} / x}^{1 / 2} u^{1-\beta} e^{x u-x} d \chi\left(u^{\alpha}\right)+\int_{1 / 2}^{1} u^{1-\beta} e^{x u-x} d \chi\left(u^{\alpha}\right)\right) \\
& =o(1)+O\left(x^{\beta-1} e^{-x / 2}\right)+o(1)=o(1) \text { as } x \rightarrow \infty,
\end{aligned}
$$

the final integral tending to 0 by the Lebesgue-Stieltjes theorem on dominated convergence since, for $1 / 2 \leq u<1, u^{1-\beta}>u^{1-\beta} e^{x u-x} \rightarrow 0$ as $x \rightarrow \infty$, and $\chi\left(u^{\alpha}\right) \rightarrow \chi(1)$ as $u \rightarrow 1-$.

This establishes the case $k=1$ of the lemma. Applying this case $k-1$ times, we obtain the required result.

Lemma 6. Suppose that $s_{n} \rightarrow s(B, \alpha, \beta)$ and that (1) holds with p a positive integer. Then

$$
t_{n}^{(k)}=O\left(\left(n^{1 / 2} \log n\right)^{p-k}\right) \text { for } k=1,2, \ldots, p
$$

Proof. Assume again that $s=0$. Let $x>0, \frac{1}{2}<\xi<\frac{2}{3}, 0<\eta<2 \xi-1$,

$$
h_{n}=: n-\frac{x}{\alpha}, \quad m:=\left[\frac{x}{\alpha}\right], \text { and } B_{n}:=\sum_{r=0}^{n} \frac{s_{r}}{r+1} .
$$

Then

$$
\begin{equation*}
L_{n} \sim \log n \text { and } B_{n}=O\left(\left(n^{1 / 2} \log n\right)^{p} \log n\right) \tag{8}
\end{equation*}
$$

and, by Lemma 5 ,

$$
\begin{equation*}
T(x):=e^{-x} \sum_{n=0}^{\infty} t_{n} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}=o(1) \text { as } x \rightarrow \infty . \tag{9}
\end{equation*}
$$

Write

$$
\begin{align*}
T(x) & =e^{-x} \sum_{n=0}^{\infty}\left(B_{n}-B_{m}\right) \frac{x^{\alpha n+\beta-1}}{L_{n} \Gamma(\alpha n+\beta)}+e^{-x} B_{m} \sum_{n=0}^{\infty} \frac{x^{\alpha n+\beta-1}}{L_{n} \Gamma(\alpha n+\beta)} \\
& =: T_{1}(x)+T_{2}(x), \tag{10}\\
T_{1}(x) & =e^{-x}\left(\sum_{h_{n}<-x^{\xi}}+\sum_{\left|h_{n}\right| \leq x^{\xi}}+\sum_{h_{n}>x^{\xi}}\right)=: S_{1}(x)+S_{2}(x)+S_{3}(x) . \tag{11}
\end{align*}
$$

By (8) and Lemma 4(ii), as $x \rightarrow \infty$,

$$
\begin{equation*}
S_{1}(x)=O\left(m^{p / 2}(\log m)^{p+1} e^{-x} \sum_{h_{n}<-x^{\xi}} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}\right)=O\left(e^{-x^{\eta}}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
S_{3}(x) & =O\left(e^{-x} \sum_{h_{n}>x^{\xi}}\left(n^{1 / 2} \log n\right)^{p} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}\right) \tag{13}\\
& =O\left(e^{-x} \sum_{h_{n}>x^{\xi}} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta-p)}\right)=O\left(e^{-x^{n}}\right)
\end{align*}
$$

By (8) and Lemma 4(iii), as $x \rightarrow \infty$,

$$
\begin{aligned}
S_{2}(x) & =O\left(e^{-x} \sum_{\left|h_{n}\right| \leq x^{\xi}}\left(\left|h_{n}\right|+1\right) x^{(p-2) / 2}(\log x)^{p} \frac{x^{\alpha n+\beta-1}}{L_{n} \Gamma(\alpha n+\beta)}\right) \\
& =O\left(e^{-x} x^{(p-2) / 2}(\log x)^{p-1} \sum_{\left|h_{n}\right| \leq x^{\xi}}\left(\left|h_{n}\right|+1\right) \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}\right) \\
& =O\left(x^{(p-2) / 2}(\log x)^{p-1} \sum_{\left|h_{n}\right| \leq x \xi}\left(\left|h_{n}\right|+1\right) \frac{1}{\sqrt{2 \pi x}} \exp \left(-\frac{\alpha^{2} h_{n}^{2}}{2 x}\right)\right) \\
& =O\left(x^{(p-3) / 2}(\log x)^{p-1} \int_{-\infty}^{\infty}(|t|+1) \exp \left(-\frac{\alpha^{2} t^{2}}{2 x}\right) d t\right) \\
& =O\left(x^{(p-1) / 2}(\log x)^{p-1}\right)+O\left(x^{(p-2) / 2}(\log x)^{p-1}\right) \\
& =O\left(\left(x^{1 / 2} \log x\right)^{p-1}\right) .
\end{aligned}
$$

It follows from (10), (11), (12), (13) and (14) that

$$
\begin{equation*}
T_{1}(x)=O\left(\left(x^{1 / 2} \log x\right)^{p-1}\right) \text { as } x \rightarrow \infty \tag{15}
\end{equation*}
$$

Next,

$$
\begin{equation*}
T_{2}(x)=e^{-x} B_{m}\left(\sum_{h_{n}<-x^{\xi}}+\sum_{\left|h_{n}\right| \leq x^{\xi}}+\sum_{h_{n}>x^{\xi}}\right)=: V_{1}(x)+V_{2}(x)+V_{3}(x) \tag{16}
\end{equation*}
$$

By (8) and Lemma 4(ii), as $x \rightarrow \infty$,

$$
\begin{align*}
V_{1}(x)+V_{3}(x) & =e^{-x} t_{m} O\left(\sum_{h_{n}<-x^{\xi}} \frac{x^{\alpha n+\beta-1} \log x}{\Gamma(\alpha n+\beta)}+\sum_{h_{n}>x^{\xi}} \frac{x^{\alpha n+\beta-1} \log x}{\Gamma(\alpha n+\beta)}\right) \tag{17}\\
& =O\left(t_{m} e^{-x^{\eta}}\right)
\end{align*}
$$

Finally, as $x \rightarrow \infty$,

$$
\begin{equation*}
V_{2}(x)=t_{m} e^{-x} \sum_{h_{n}>x^{\xi}} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \frac{L_{m}}{L_{n}}=t_{m}\left(\frac{1}{\alpha}+o(1)\right) \tag{18}
\end{equation*}
$$

since L_{m} / L_{n} in the above sum lies between $L_{m} / L_{\left[x / \alpha+x^{\xi}\right]}$ and $L_{m} / L_{\left[x / \alpha-x^{\xi}\right]}$ each of which tends to 1 as $x \rightarrow \infty$ and, by Lemma 4(i) and (ii),

$$
\lim _{x \rightarrow \infty} e^{-x} \sum_{h_{n}>x^{\xi}} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}=\lim _{x \rightarrow \infty} e^{-x} \sum_{n=0}^{\infty} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}=\frac{1}{\alpha}
$$

It follows from (16), (17) and (18) that

$$
T_{2}(x)=t_{m}\left(\frac{1}{\alpha}+o(1)\right) \text { as } x \rightarrow \infty
$$

and hence from (9) and (15) that

$$
t_{m}=O\left(\left(x^{1 / 2} \log x\right)^{p-1}\right) \text { as } x \rightarrow \infty
$$

Taking $x=\alpha n$, we get

$$
t_{n}=t_{n}^{(1)}=O\left(\left(n^{1 / 2} \log n\right)^{p-1}\right)
$$

When $p \geq 2$ we can replace t_{n} by $t_{n}^{(2)}$ in (9) and argue as above to obtain

$$
t_{n}^{(2)}=O\left(\left(n^{1 / 2} \log n\right)^{p-2}\right)
$$

The proof can now be completed by induction in the obvious way.
3. Proof of the theorem. By Lemma 6 ,

$$
t_{n}^{(p)}-t_{n-1}^{(p)}=\frac{t_{n}^{p-1}}{(n+1) L_{n-1}}-\frac{1}{(n+1) L_{n} L_{n-1}} \sum_{r=0}^{n} \frac{t_{r}^{(p-1)}}{r+1}=O\left(n^{-1 / 2}\right)
$$

Hence, by Lemma 5 and Lemma 2,

$$
t_{n}^{(p)} \longrightarrow s \text { as } n \longrightarrow \infty
$$

and so, by Lemma 3,

$$
s_{n} \rightarrow s(R, \log (n+1), p) .
$$

References

1. D. Borwein, On methods of summability based on integral functions II, Proc. Cambridge Phil. Soc. 56 (1960), 125-131.
2. Relations between Borel-type methods of summability, J. London Math. Soc. 35(1960), 65-70.
3. _ A Tauberian theorem for Borel-type methods of summability, Canadian J. Math. 21(1969), 740747.
4. D. Borwein and I. J. W. Robinson, A Tauberian theorem for Borel-type methods of summability, J. Reine Angew. Math. 273(1975), 153-164.
5. D. Borwein and T. Markovich, A Tauberian theorem concerning Borel-type and Cesàro methods of summability, Canadian J. Math. 40(1988), 228-247.
6. G. H. Hardy, Divergent series. Oxford University Press, 1949.
7. B. Kuttner, On iterated Riesz transforms of order 1, Proc. London Math. Soc. (3)29(1974), 272-288.
8. B. Kwee, On relations between Borel and Riesz methods of summation, Bull. London Math. Soc. 21(1989), 387-393.

Department of Mathematics

University of Western Ontario
London, Ontario N6A 5B7

