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A TAUBERIAN THEOREM CONCERNING
BOREL-TYPE AND RIESZ SUMMABILITY METHODS

DAVID BORWEIN

ABSTRACT.  Itis proved that the summability of a series by the Borel-type summa-
bility method (B, «r, §) together with a certain Tauberian condition implies its summa-

bility by the Riesz method (R, log(n + 1),p).

1. Introduction. Suppose throughout that « > 0, N + 3 > 0 with N a non-
negative integer, p > 0, and s, := ag+a, +- - - +a,. The Borel-type summability method
(B, a, 3) and the Riesz method (R, log(n + 1),p) are defined as follows:

00 xan+ﬁ—l
sn—s(B,a,B)ifae™ ) sp————— — 525 x — 00;
! o V.‘:N "T(an+p3)

log(n+1)<w

p
s,,——»s(R,log(n+l),p) if > (]_!%W'FQ) a, — § as w — 00.

Both methods are regular, and (B, 1, 1) is the standard Borel exponential method B.
Let

,:Or+l
1 X s
— A . r
ty =t = — ,
re L,,,Z__%,r+l
and, fork = 2,3,...,
® 1 it(k—l)
1= — .
" L,,,=0r+l

The k-times iterated weighted mean method (M, 1/(n+1), k) is defined by:

sn— (M, 1/ (n+1),k) if £ — s as n — o0.

The object of this paper is to prove the following Tauberian theorem.

THEOREM. Suppose that s, — s(B, o, 3) and

e Sp = 0((n'/210gn)”),
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where p is a positive integer. Then s, — s(R, log(n + 1), p).

The case @ = 3 = 1 of the theorem was recently established by Kwee [8]. Our proof
owes much to his. The present theorem is more general than Kwee’s result since it is
known ([1, Result (I)] and [2, Lemma 4]) that

if sn = s(B,a,B)and o« > 7Y > 0, then s, — s(B,7,0) provided

&, "
s
,g, "T(Yn+6)
is an entire function of z for N sufficiently large.

The proviso is certainly satisfied when (1) holds.

2. Preliminary results.

LeMMA 1 [1, RESULT (ID)]. Ifs, — s(B,a,B)andd > (3, then s, — s(B, a,8).

LEMMA 2 [4, THEOREM 1]. Ifs, — s(B,«,(3) and s, — $,—1 = O(n’l/z), then
Sp — 5.
This is a special case of a general Tauberian theorem [5, Theorem 1].

LEMMA 3. For k a positive integer, s, — S(M, 1/(n+1), k) if and only if s, —
s(R,log(n + 1), k).

This is due to Kwee [8, Lemma 4] who deduced the equivalence from Kuttner’s result
[7] that the methods (M, 1/ (n+ 1), k) and (R, Ly, k) are equivalent.

LEMMA 4 [3, LEMMA 2]. Let

xan+ﬂ -1

o —X
cn(x) i = ae —————I‘(an+[3)’
andlet hy :=n— 2, % <EL % and 0 < 1 < 2€ — 1. Then, as x — 00,
[o.¢]
(i) 3 cnx) —1;
n=N

(ii) Y calx) = 0™,

|| > ¢

212
(iii) ca(x) = @ exp (-a h") {1+06%7)} when |h,| < xf.

V2mx 2x
LEMMAS. Suppose that k is a positive integer, and that s, — s(B, a, 3). Then t*) —
s(B,a,3).

PROOF. Since {1/L,} is totally monotone there is a non-decreasing function x on
[0, 1] [6, Theorem 207] such that

1 1
@) o=
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moreover, since 1/ L, — 0, we must have x (1) = x(1-).
Suppose as we may without loss of generality that s = 0 and, in view of Lemma 1,
that 3 > max(1, ). Let x > 0 and

B = 3 s
Then
3) Y (x*) = o(x! P ) as x — oo.
We first prove that
) Bx) = e f} xmﬁ M 0asx— oo,
- +;8)
We have
P (x) = ,,Zg,nill % = xf—o-l /Oxa V() dt = ax? ! /Oxx/)(t"‘)t“*‘ dr.

Hence, by (3),
$(x) = O(xﬁ‘““)+0(xﬂ*a*l)/]"/ = gy 4 B I/x/ ot B ey dr
(5) = 0" )+ 0P ) 4 0o(F N (x/ 2)* P )

(%)
= 0| — ) asx—0Q.
X

Next, by (2),

00 xan+ﬁ -1

Bx)=e*3 / 17 dy (1°") Z e

n= Or(a +ﬁ)
& (xt)"‘" Sn—r

_Xﬂl—x/d(t)zz

oy T(an+B)n—r+1

00 an+or+3—1
= e [Ny o' 5 0 o

tTan+ar+B)n+1’

the inversions in the order of operations, here and subsequently, being justified by abso-
lute convergence. Since

(xt)an+ar+ﬁ—l 1
F(an+ar+ﬁ) INanT(an+3) Jo
when r > 0, it follows that

Xt
/ (.xt _ u)ar—luan+ﬂfl du

B = e [ dx()an)' (¢(xt)+ [ owany;

r=1

(xt — u)*r!
Iar)

— Pl /O dx (%) (xt)' P (¢(xt)+ / Gt — o (u) du),
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where
00 xar—l
E(x) := ~ =
6) (x) ; ran ™ a as x — 00,

by Lemma 4(i). Hence
1 t
B(x) = xB*le_x/(; dx (t¥)(xt)' 8 (qS (xt) + x/o E(xt — xu)¢ (xu) du)
%) =7 [N P (e dx (1)
+xle /Ol(xt)‘—%(xz) dt/tl(u/ 0B EGuu — xt) dx (u®).

Now let oo
S T
F(x) := —_—
) ,;)n+ll"(an+6)
so that F(x) is value of ¢ (x) when s, = 1. Then
12 xxn+h ¢
F(x)=—2an+ﬂ ~ — asx — 00,

x,=o n+l Tlan+B+1) x
by the regularity of (B, r, 5 + 1). Hence, by (5),
o (x) = o(F(x)) as x — 00
and so, given € > 0, there is an xop > 0 such that
| ¢ (x)| < eF(x) forx > xo.

Further, replacing ¢ (xt) by F(xt) in (7) yields a B(x) which tends to 1/ a as x — 00
and, since 8 > 1, to 0 as x — 0+, and hence this B(x) is dominated by a constant M
for all x > 0. Thus the contribution to (7) of the parts of the integrals over the range
xo/x <t < 1is in modulus less than eM for all x > 0. Since € can be taken arbitrarily
small, in order to establish (4) it suffices to show that the contribution to (7) of the parts
of the integrals over the range 0 < 1 < xo/x tends to 0 as x — oo.

Since v! 8 ¢ (v) is bounded for 0 < v < xy, it follows that

X0/ x 1 1
xﬂ—le—"fo NP ¢ (xt) dx (%) = o(xﬂ le /0 dx(t"‘)) = o(1) as x — 00.
Further, by (6) and because § > 1,
X0/ x _ 1 _ o
xﬂe_"/o (xr)! ﬁq&(xt)dt/t () '8 EGeu — xt) dx (u®)
x x0/ x X0/x a o/ * 1 —B xu—xt a
=xPe O(/O dt/t e dy (u )+/0 dt/xo/x(u/t)l B = dx (u ))
-~ X0/ x oy fH 1 8 xu « X0/ X o x
=xPe "O(e""/o dx(u )/odHA/xul B dy(u )/0 P le ’dt)
=0 e +0 e_x/I u' P d)((u"’)‘/)cO P e dr
Xo/)( 0
1/2 - U—x a 1 - U—x (o4
_—:o(l)+0(/xo/x u' B e dy(u )+/1/2u' B & dy (u ))

=o(1)+ 0GP e+ o(1) = o(1) as x — 00,
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the final integral tending to O by the Lebesgue-Stieltjes theorem on dominated conver-
gence since, for 1/2 <u < 1, u'? > u' e — 0 as x — oo, and x(u*) — x(1)
asu— 1—.

This establishes the case k = 1 of the lemma. Applying this case k — 1 times, we
obtain the required result. o

LEMMA 6. Suppose that s, — s(B, a, 3) and that (1) holds with p a positive integer.
Then

® = 0((n'/210g n)”"")fork =1,2,...,p.

PROOF. Assume again thats = 0. Let x > O,% <é< % 0<n<2€ — 1,

X X sy
h,=:1n— o m= [E} and B, := ;)er
Then
8) L, ~lognand B, = O((n‘/zlog ny log n)
and, by Lemma 5,
00 yan+-l
9) T(x) :=e* ;} Fantd) = o(1) as x — 00.
Write
%0 yan+B -1 0o gan+f-l
100 = B = B e+ 5y TP B LT an )

(10 =: T(x) + T2(x),

ha<—x¢  |ha|<x§  hy>x¢

(11) Ti(x) = e"x( o+ + Y ) =: 81(x) + SH(x) + S3(x).

By (8) and Lemma 4(ii), as x — 00,

an+f3—1
(12 S x) =0 m”/z logm )+|e—.\' _.,i =0 ,—x" ,
) 1 ( (logmy ;.";xs Nan+B) (e™")

and

on+3—1
Six) =0 (e V2 logny ——
=0 T gy

xrm+ﬂ -1 y
=0(e” | = 0(e™).
( h,,>Exs lan+p3 _P))

(13)
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By (8) and Lemma 4¢(iii), as x — 00,

an+f3—1
S =0|e* | +1 @-2/2] s
2 ¢ |;,,,gzgxc(| |+ D ( ng)anr(an +ﬂ))

xom+,3—1
=0 e xP D 2(logxp™" 3 (o] + 1) e

I, <xé [an+p)
1 a’h?
(14) = 0 [ x?D/2(logxy! hl +1 exp [ — ")
Qogr! 3 (il +1 i exp (<51

o 22
=0 (J\:("’_3)/2(log)c)P_l /_Oo(lt| +1)exp (— %—i—) dt)
= O(x(’"”/ 2(logx)"’_l) + O(x(”_z)/ 2(logx)“"‘)
= 0((x1/210gx)”_').
It follows from (10), (11), (12), (13) and (14) that
(15) Ti(x) = O((x'/* logxy"™") as x — oo.

Next,

(16) Ty(x) = ¢ "By ( o+ >+ Y ) =: Vi(x) + Vo(x) + V3(x).

ha<—x¢  |hg|<xé hy>xé

By (8) and Lemma 4(ii), as x — 00,

ant+fi—1 | antf—1|
%m+%m=f%0<z x20 7 logx L__£E>
am net Tan+B) T T(an+p)
= O(tme™).
Finally, as x — oo,
x(xn+ﬂ—l L 1

(18) Vo(x) = te™ e = (—+0(1)),

’ hgs [(an+3) L, a

since L,/ L, in the above sum lies between Ly, / Liy/ q4x¢) a0d Lyn/ Liy/ o —y¢) €ach of which
tends to 1 as x — oo and, by Lemma 4(i) and (ii),
xom+[3 -1 00 xan+ﬂ -1 1

lim e —— =lime ") —— = —.
x—o0 e Tlan+ ) oo R I(an+ ) «

It follows from (16), (17) and (18) that

Th(x) =ty (l +0(1)) as x — 00,
a
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and hence from (9) and (15) that
by = 0((}(1/2 logx)”_l) as x — 00.

Taking x = an, we get
tp =1t = 0((n'/2logn)”*’).

When p > 2 we can replace t, by #2) in (9) and argue as above to obtain
tf,z) = 0((n'/210gn)”*2).
The proof can now be completed by induction in the obvious way. [

3. Proof of the theorem. By Lemma 6,

b 1 n )
P _ P n _ r _ O(n—l/z)'
mom e DL,y 4+ DLL, o S+
Hence, by Lemma 5 and Lemma 2,
P — s as n — oo,
and so, by Lemma 3,
Sp — s(R, log(n + 1),p). u
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