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THE SPECTRA FOR THE CONJUGATE INVARIANT 
SUBGROUPS OF n2 X 4 ORTHOGONAL 

ARRAYS 

C. C. LINDNER, R. C. MULLIN AND D. G. HOFFMAN 

1. I n t r o d u c t i o n . An n2 X k orthogonal array is a pair ( P , B) where 
P = {1, 2, . . . , n) and B is a collection of ^-tuples of elements from P 
(called rows) such tha t if i < j G {1, 2, . . . , k} and x and y are any 
two elements of P (not necessarily dist inct) there is exactly one row in B 
whose i th coordinate is x and whose jth coordinate is y. We will refer to 
the ith coordinate of a row r as the ith column of r. The number n is 
called the order (or size) of the array and k is called the strength. 

Let (P , B) be an n2 X k orthogonal a r ray and let a be any permuta t ion 
in Sjc (the symmetr ic group on {1, 2, . . . , & } ) . If we denote by Ba the 
set of ^-tuples obtained from B by permut ing the columns in each row 
of B according to a, it is immediate tha t (P , Ba) is again an n2 X k 
orthogonal array. If Ba = B, then B is said to be invariant under con­
jugation by a and the set C = {a (z Sk\ Ba = B\ is, of course, a subgroup 
of Sk called the conjugate invariant subgroup of (P , B) [8]. So t h a t there 
will be no confusion in wThat follows: T h e subgroup C of Sk is the con­
jugate invariate subgroup of the n2 X k orthogonal ar ray (P , B) if and 
only if C is the set of all permuta t ions a such t ha t Ba = B. (Tha t is to 
say, C is not the conjugate invar iant subgroup of (P , B) if (P , B) is 
invariant under a group of permuta t ions which contains C properly.) 
A very interesting problem is the determinat ion for each k and each 
subgroup C of Sk the set of all n such t ha t there is an n2 X k orthogonal 
array having C as its conjugate invariant subgroup. T h e set of all such 
n is called the spectrum of C. 

This problem has been solved for n2 X 3 orthogonal ar rays and par­
tially solved for w 2 X 4 orthogonal arrays . In [7] C. C. Lindner and 
D. Steedley have shown tha t if C is any subgroup of S%, then for each 
n ^ 4 there is an n2 X 3 orthogonal ar ray having C as its conjugate 
invariant subgroup. A bit of reflection reveals t ha t if n ^ 2 the only 
possible conjugate invariant subgroups of 54 are (1) the trivial subgroup, 
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Ci = ((ij)(st)) any cyclic subgroup generated by the product of two 
disjoint transpositions, C3 = ((ijk)) any cyclic subgroup generated by a 
cycle of length 3, C4 = ({ijst)) any cyclic subgroup generated by a cycle 
of length 4, K4 the Klein 4-group, and Ai the al ternat ing group of degree 
4. In [8] C. C. Lindner and E. Mendelsohn have shown tha t the spectrum 
for A A is precisely the set of all n = 1 or 4 (mod 12) and in [9] C. C. 
Lindner, N. S. Mendelsohn, and S. R. Sun have shown tha t the spectrum 
for Ki is the set of all n = 0 or 1 (mod 4) except 5 and possibly 12 and 21. 
The purpose of this paper is to determine the spectrum for (1), C2 = 
((ij)(st)), C3 = ((ijk)), and C4 = ((ijst)), except for a small handful of 
cases. From now on, "orthogonal a r r ay" means an orthogonal ar ray of 
strength 4. 

2. T e r m i n o l o g y . Before proceeding to the computat ion of the spectrum 
for (1), C2, C3, and C4 we need to agree on a bit of terminology. To 
begin with, let (P, B) be an orthogonal array and a any one to one 
mapping from {1, 2, 3} into {1, 2, 3, 4}. Denote by B* the set of all 
ordered triples (x, y, z) such tha t x, y, and z are in the same row of B 
with x in column la , y in column 2a, and z in column 3a. Then, of course, 
(P , B*) is an orthogonal array of strength 3 and if we define a binary 
operation ® on P by x ® y = z if and only if (x, y, z) Ç 5 * , then 
(P, (g>) is a quasigroup. We will refer to (P , B*) and (P, ® ) as the 
( la , 2a, 3a) orthogonal array and quasigroup of (P, B) respectively. 
I t is well-known tha t if a is any permutat ion on {1, 2, 3, 4} then the 
( la , 2a, 3a) and ( la , 2a, 4a) quasigroups are orthogonal. Conversely, 
given any pair of orthogonal quasigroups (P, ®) and (P, o) denote by 
r(a, b) the rowT with a in column la , b in column 2a, a ® b in column 3a, 
and a o b in column 4a. Then (P , B) is an orthogonal array, where 
JB = {r(a, b)\ all (a, b) 6 P X P j . Although the above remarks con­
cerning the relationship between orthogonal arrays and quasigroups are 
well known, it certainly does not hur t to get the terminology straight 
before beginning; wThich we now do. 

3. T h e s p e c t r u m for (1). The spectrum for (1) is precisely all posi­
tive integers except 1, 2, and 6. I t suffices to construct an orthogonal 
ar ray which is not invariant under any of (12) (34), (13) (24), (14) (23), 
nor any cycles (ijk). This is easy to do. Let (P , Oi) and (P, o2) be any 
pair of orthogonal quasigroups ( |P | ^ 1 ) . (Such pairs exist, of course, 
for all \P\ 7e 2 or 6 [2].) Since orthogonality is preserved under permuta­
tions we can assume the upper left hand corners of (P , Oi) and (P , o2) 
look like: 
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Oi 1 2 3 

1 

o2 

1 2 

1 2 3 . . n 

1 3 2 

2 

3 

n 
( P , oi) (P, o2) 

T a k e B = {(x,y,xoly,xo2y)\a\\x,y (E P). Since ( 1 , 1 , 1,3) and ( 1 , 2 , 2 , 2) 
belong to B, it is a trivial ma t te r to see t ha t (P , B) is not invar iant under 
any of (12) (34), (13) (24), (14) (23), nor any cycle (ijk). 

T H E O R E M 3.1. The spectrum for (1) is precisely the set of all positive 

integers except 1, 2, and 6. 

4. T h e s p e c t r u m 
precisely all positive 
C2 = ((12) (34)), the 
s t ruct an orthogonal 
(13) (24) nor (1324). 
which contains C2 = 
or (1324). 

T o begin with let 
the quasigroup (P , C 

for {(ij)(st)). The spectrum for C2 = ((ij)(st)) is 
integers except 1, 2, 3 and 6. W e give a proof for 
other cases being translat ions. I t suffices to con-
array which is invar iant under (12) (34) bu t not 
This is because each admissible subgroup of SA 

((12) (34)) properly also contains one of (13) (24) 

(P , B) be the orthogonal a r ray associated with 
§) given by the accompanying table by taking 

2 1 3 4 

4 3 1 2 

1 2 4 3 

3 4 2 1 

B = 

3 

4 

( P , 0 ) 

(x j , x ® y j 0 x ) | all x, ^ G P } - Since (P, ®) is self orthogonal 
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(P , B) is invariant under (12) (34). A quick check shows however tha t 
(P, B) is not invariant under (13) (24) or (1324). 

Now let (P, ® ) be an idempotent self orthogonal quasigroup of order 
\P\ = 5. (Such quasigroups exist for all | P | ^ 1, 2, 3, or 6 [3].) We can 
assume the upper left hand corner looks like: 

1 

1 3 

4 2 

3 

n 

(P, ®) 

If we define B as above, then in order for (P , B) to be invar iant under 
conjugation by one of (13) (24) or (1324) it is necessary tha t {3 ® 4, 
4 ® 3} = {1, 2}. Hence if {3 ® 4, 4 ® 3} 5*{1, 2} we are done. If 
{3 ® 4, 4 ® 3} = {1, 2}, apply the permutat ion (15) to the latin square 
associated with (P , ® ). If we denote the resulting quasigroup by (P , o) 
and define B as above, since (P, o) is still self orthogonal, (P , B) is 
invariant under conjugation by (12) (34). However, since (1, 2, 3, 4) £ B 
and {3 o 4, 4 o 3} ^ {1, 2} it follows tha t (P, B) is not invariant under 
(13) (24) or (1324). 

T H E O R E M 4.1. The spectrum for C2 

positive integers except 1, 2, 3, or 6. 
((ij)(st)) is precisely the set of all 

5. T h e s p e c t r u m for ((ijk)). The spectrum for C3 = ((ijk)) is 
precisely all positive integers v = 0 or 1 (mod 3) except, of course, v = 6. 
We give a proof for C3 = ((123)). 

We begin by showing tha t v = 0 or 1 (mod 3) is necessary. Let (P , B) 
be any orthogonal ar ray invariant under conjugation by C3 and let 
(P , ® ) be the (1, 2, 3) quasigroup associated with (P , B). Then (P , ® ) 
is semisymmetric, i.e., satisfies x(yx) = y. (P , ® ) is also idempotent . 
For if, say 1 0 1 = 2, then (1, 1, 2, x) in B would also place (1, 2, 1, x) 
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in B which cannot be. Hence (P, ®) must satisfy x2 = x and x(yx) = y 
which says that \P\ = 0 or 1 (mod 3) [10]. 

Now let (P, ®) be any idempotent semisymmetric quasigroup. A 
cycle of (P, ® ) is a triple 

[x, y, z] = {(x, y, z), (y, z, x), (z, x, y)} 

such that 

x ® ; y = z, 3>®z = x and s (8) x = y. 

Evidently [x, y, z] = [y} z, x] = [z, x, y]. If \P\ = 0 (mod 3) a parallel 
class of (P, ® ) is a collection of cycles [xi, yu Zi], [x2,3>2, 22], • • • , [xt> yu%t\ 
such that the sets {xi, yu Zi}, {x2, y2, s2}, {x2, y2l z2}, . . . , {x„ yu zt\ 
partition P . If \P\ = 1 (mod 3) a parallel class of (P, ®) is a collection 
of cycles [xi,yi, Zi], [x2, ŷ2, z2], . . . , [xu yt,Zt] such that the sets {xi, yu Z\\, 
• • • > {x«, yf, zf} partition P\{w} for some m G P. In this case w is called 
the deficiency of the parallel class. An idempotent semisymmetric quasi­
group (P, (g>) is resolvable if (i) |P | = 0 (mod 3) and the cycles of (P, ® ) 
can be partitioned into parallel classes, or (ii) \P\ = 1 (mod 3) and the 
cycles of (P, ®) can be partitioned into parallel classes such that no 
two parallel classes have the same deficiency. The combined work of 
[1] and [11] has shown the existence of a resolvable idempotent semi-
symmetric quasigroup of every order v = 0 or 1 (mod 3), except v = 6, 
for which no such quasigroup exists. 

Now let (P, ® ) be a resolvable idempotent semisymmetric quasigroup 
(P = {1, 2, . . . , n\). If |P | = n = 0 (mod 3) denote the parallel classes 
by III, n2, . . . , nw_i and define 

B = l(x,y,z,m)\[x,y,z] G nro} U {(i, i, i, n) | a l i i G P} . 

If |P | = w = 1 (mod 3) denote the parallel classes by III, n2, . . . , II„ 
where m is the deficiency of the parallel class IIW. Let a be any permuta­
tion on P such that la = n. Define B by 

B — {(x, y, z, ma)\[x, y, z] G IIm} VJ {(m, m} m, ma)\ all m G P\. 

In either case (P, J5) is an orthogonal array which is invariant under 
conjugation by (123). To see that Cz = ((123)) is in fact the conjugate 
invariant subgroup of (P, B) it is necessary only to show that (P, B) 
is not invariant under (12) (34), (since the only admissable subgroup of 
Si which contains C3 properly is A 4). But this is immediate since by 
construction (1, 1, 1, n) Ç B so that if B were invariant under (12) (34) 
we would also have (1, 1, », 1) Ç £ which, of course, cannot be. 

THEOREM 5.1. The spectrum for C3 = ((ijk)) is precisely the set of all 
positive integers v = 0 or 1 (mod 3), except v = 6. 
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6. T h e s p e c t r u m for ((ijst)). The spectrum for C4 = ((ijst)) is 
precisely all positive integers v = 0 or 1 (mod 4) except possibly 12 and 
48. We give a proof for C4 = ((1234)) , the other cases being translat ions. 

First we show tha t v == 0 or 1 (mod 4) is necessary. So, let (P, B) be 
any orthogonal array invariant under conjugation by C4. From now on 
such an ar ray will be referred to as a cyclic orthogonal array (COA). A 
bit of reflection reveals tha t the only types of rows (P, B) can have are 
of the form (a, a, a, a), (a, b, a, b), (a, a, b, c), and (a, b, c, d). Hence the 
orbits of C4 acting as a permutat ion group on B look like: 

K: {(a, a, a, a)}, 

X: {(a, b, a, b), (b, a, b, a)}, 

Y: {(a, a, c, d), (a, c, d, a), (c, d, a, a), (d, a, a, c)}, or 

Z : {(a, b, c} d), (b, c, d, a), (c, d, a, b)} (d} a, b, c)}. 

If there are k orbits of type K, x of type X, y of type Y, and z of type Z, 
then 

n2 = k + 2x + 4;y + 4z. 

Since there are exactly n rows with the same 1st and 2nd columns and 
exactly n rows with the same 1st and 3rd columns we also must have 

n = k + y, and 

n = k + 2x. 

Subst i tut ing 2x = n — k and y = n — k into n2 = k + 2x + 4y + 4s 
gives 

2 = w (w — 5)/4 + & 

which implies tha t n = 0 or 1 (mod 4) . Hence a necessary condition for 
the existence of an n2 X 4 orthogonal array which is invariant under C4 

is tha t n = 0 or 1 (mod 4) . We now show that , except possibly for 3 
cases, this is sufficient. 

We begin by noting tha t as soon as an orthogonal ar ray is invariant 
under conjugation by C4 we are finished; i.e., C4 is the conjugate in­
var iant subgroup. The following construction is the main tool used in 
sweeping out the spectrum. Let (V, t) be a COA. A parallel class of t is a 
collection of orbits [(xu yu zu wi)], [(x2, y2, z2, w2)], . . . , l(xm, ym, zm, 
wm)] such tha t the sets {xu yu zu «M, {x2, y2, z2, w2\, . . . , {xm, ym, zmj 

wm] part i t ion F and each contains four distinct elements. Now let ( F , /) 
be a COA having no idempotents (no rows of the form (i, i, i, i)) and 
let II be a parallel class of /. Fur ther , distinguish exactly one row in each 
orbit of t. Additionally, let (Q, q) be a (not necessarily cyclic) orthogonal 
a r ray containing the COA (P, p)\ i.e., P C Q and p C q. Finally, let 
(Q — Q\Pi s) D e a n orthogonal array which is invariant under con-
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jugat ion by (13) (24) (equivalent to a self orthogonal quasigroup) . Now 
set 5 = P U (Q X V) and define a collection of rows R of 5 as follows: 

(2) if (x, y, z, w) (z q\p and one of x, y, z, w (z P (at most one can 
belong), say x, choose the distinguished row (a, b, c, d) from each orbit of 
II and place the following four rows in R: 

(x, (y, b), (z, c), (w, d)); ((y, 6), (z, c), (w, d), x) ; 

((z, c), (w, d) , x, (y, b))\ and ((u>, d) , x, (y, 6), (2, c ) ) ; 

(3) if (x, j , 3, w) Ç g\£> and none of x, ^, s, w Ç P , choose the dis­
tinguished row (a, b, c, d) from each orbit of the parallel class II and 
place the following four rows in R: 

((x, a), (y, b), (z, c), (w, d ) ) ; ((y, 6), (z, c), (w, d) , (x, a ) ) ; 

((z, c), (w, d) , (x, a), (y, b))\ and ((w, d), (x, a ) , (3;, 6), (z, c ) ) ; 

(4) if (x, y, z, w) 6 5 choose the distinguished row from each orbit of 
/ \ I I . If an orbit has size two and (a, b, a, b) is the distinguished row, place 
the two rows 

((x, a ) , (y, &), (z, a ) , (w, 6)) and ((y, b), (z, a ) , (w, 6), (x, a ) ) 

in R. If an orbit has size four choose the distinguished row and place 
four rows in R as in (3). 

T H E O R E M 6.1. (S, R) is a COA. 

Proof. Clearly R is invar iant under C4 and it remains only to show that 
(S, R) is an orthogonal array. A simple counting a rgument shows tha t 
\R\ ^ |-S|2 and so it suffices to prove t ha t if i < j £ {1, 2, 3, 4} and u 
and v are any two elements of S there is a t least one row in R whose ith 
column is u and whose j t h column is v. We do this for i = 1 and j = 3, 
the other cases being similar. 

(i) Uj v £ P. Since (P , p) is an orthogonal ar ray, there is exactly one 
row v = (u, , v, ) (z p Q R. 

(ii) w £ P, v = (y, c). There is exactly one orbit in the parallel class II 
containing c. Let r be the distinguished row in this orbit. Then r looks 
like (c, , , ) , ( , c , , ), ( , , c, ) , o r ( , , , c). Suppose 
r = ( , c, , ), the other cases being similar. There is exactly one 
row r* = ( , y, , u) £ q. Since not both w and y are in P , r* G ç\/>, 
and so ( , (y, c), , u) £ R (by 2) and therefore (w, , (3/, c), ) t P . 

(iii) w = (x, a ) , z; = (3;, c). There is exactly one row r = (a, 
c, ) £ £. If r belongs to an orbit in the parallel class II, let r* be the 
distinguished row in this orbit. Then r* looks like (a, , c, ), ( , c, 

, a ) , (c, , a, ), or ( , a, , c). Suppose r* = ( , c, , a ) , the 
other cases being identical. Then there is exactly one row ( , y, , x) f 
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q\p and so ( , (y, c), , (x, a)) and therefore ((x, a), , (y, c), ) (z R 
(by 3). If r = (a, , c, ) does not belong to an orbit of the parallel 
class II, there are two cases to consider. The first is where a = c. In 
this case r looks like r = (a, b, a, b). Then 

[(a, b, a, b)] = {(a, 6, a, b), (b, a, b, a)}. 

Since there are rows of the form (x, , y, ) and ( , x, , y) in s, 
regardless of whether (a, /;, a, 6) or (b, a, b, a) is the distinguished row in 
[(a, b, a, &)], ((x, a ) , , (y, a ) , ) G ^ (by 4) . If a ^ c, let r* be the 
distinguished rowT in the orbit of r. Then r* looks like (a, , c, ), 
( , c, , a), (c, , a, ), or ( , a, , c). Suppose r* = (c, , a, ) , 
the other cases being similar. Then there is exactly one rowr (y, , 
x, ) £ s and so ((c, y) , , (a, x) , ) and therefore ((a, x ) , , (c, 
y) , ) Ç i? (by 4) . Combining cases (i), (ii), and (iii) shows tha t (S, R) 
is a COA, completing the proof. 

Remark. I t is worth noting a t this point tha t the condition tha t 
(Q, s) be invariant under conjugation by (13) (24) is necessary. This 
is because if [(a, b, a, b)] is an orbit in t\U and (Q, s) is not invariant 
under conjugation by (13) (24) there is a t least one pair of rows (x, y, 
z, w) and (z, w, xf, y') with either x ^ x' or y F^ y'. Hence if (a, b, a, b) 
is the distinguished row in [(a, b, a, b)] then 

((x, a), (y, b), (z, a), (w, b)); ((y, b), (z, a), (w, b), (x, a ) ) ; 

((s, a), (w, b), (x', a), (yf, b)); and 

((w,b), (x',a), ( / , & ) , (z,a)) e R 

and so although (S, R) is an orthogonal ar ray it is not cyclic. In [$], 
Bray ton, Coppersmith and Hoffman have shown the existence of a self 
orthogonal quasigroup of every order m 9e 2, 3, or 6. As previously 
noted, a self orthogonal quasigroup is equivalent to an orthogonal array 
which is invariant under (13) (24). 

COROLLARY 6.2. If there exists a COA of order v having at least one 
parallel class and no idempotents, an orthogonal array of order q containing 
a sub-COA of order k, and q — k =é 1, 2, 3, or 6; then there exists a COA 
of order v(q — k) + k. 

The construction used in Theorem 6.1 can be modified as follows: 
Let (V, t) be an idempotent COA; (Q, q) a COA containing the COA 
(P, p), and (Q, s) an orthogonal array. Define a collection of rows R on 
S = P W (Q X V) as in Theorem 6.1 with the rows II* = {(i, i,i, i)\i £ 
V\ subst i tuted for the parallel class of orbits II. This necessitates (Q, q) 
being a COA. Since / has orbits of size 1 and 4 only, it is not necessary 
for (Ç, s) to be invariant under conjugation by (13) (24). The proof is 
straightforward and is left to the reader. 

https://doi.org/10.4153/CJM-1980-086-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-086-9


1134 C. C. LINDNER, R. C. MULLIN AND D. G. HOFFMAN 

LEMMA 6.3. If there exists an idempotent COA of order v, a COA of 
order q containing a sub-COA of order k, and q — k 9e- 1, 2, or 6; then there 
exists a COA of order v(q — k) + k. 

Remark. T h e construction given in Lemma 6.3 is jus t the singular 
direct product ; e.g., see [6]. If we drop the COA requirements the result 
remains, of course, an orthogonal array. This ar ray will always contain 
a subarray of order q and a subarray of order v if the orthogonal ar ray 
of size q — p contains a t least one idempotent . This is always possible 
and so we will assume this to be the case in everything t ha t follows. 

The following three constructions are wrell-known. T h e first two are 
stated without proof. 

LEMMA 6.4. If there are CO As of orders m and n, then there is a COA of 
order mn (direct product). 

LEMMA 6.5. If there exists a pairwise balanced design of order v with 
a clear set of blocks II such that each block in II belongs to the spectrum for 
COA5 and each of the remaining blocks belongs to the spectrum for idem-
potent COAs, then there is a COA of order v. 

LEMMA 6.6. There is an idempotent COA of order n for every n = 
pa = 1 (mod 4) , where p is a prime. 

Proof. Let X £ GF(pa) be any element of order 4. If GF(Pa) is based 
on P , define 

B = {(x, y, -Xx + (1 + \)y, - (1 - \)x + \y)\ all x, y G P}. 

Then (P , B) is a COA. 
Now let k Ç {0, 1, 4, 5} and denote by Mk the set of all positive integers 

n such t ha t there is an orthogonal ar ray of order n containing a sub-
orthogonal ar ray order k and n — k 9^ 0, 1, 2, 3 or 6. 

LEMMA 6.7. Mo = \n\n j* 1, 2, 3, or 6J, Mx = \n\n = 5 or n ^ 8 | , 

MA 2 A = {13, 15, 17, 20, 22, 25, 27, 28, 32, 33, 35, 37, 40, 43, 45, 
47, 48} VJ {all n ^ 51 except possibly 66}, M 5 2 £ = {16, 19, 21, 29, 
31, 33, 36, 39, 41 , 43, 44, 48, 49} U {all n ^ 51}. 

Proof. There is nothing to prove to verify M() = [n\n 9^ 1,2, 3, and 6} ; 
and M\ = \n\n = 5 or n ^ 8} follows from the fact tha t if (1, 1, z, w) 
belongs to the orthogonal ar ray (P , B) and a and ft are permuta t ions on P 
such t ha t za = wfi = 1, then 

(1, 1, 1, 1) e B* = {(x,y,za}w(3)\(x,y}z}w) G B) 

and, of course, (P , P*) is an orthogonal array. M 4 and If5 are handled as 
follows: I t is known tha t there are a t least 3 mutual ly orthogonal quasi-
groups of order u for every u 7e- 2, 3, 6, 10, or 14 [13]. Hence there is a 
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pairwise balanced design (PBD) of order 4u + v, 0 ^ v ^ u, having 
block sizes 4, 5, u and v. Fur thermore the blocks of sizes u and v form 
a clear set. Hence if we put idempotent orthogonal arrays on the blocks 
of size 4, 5, and u; and an orthogonal array on the block containing v 
points with the property tha t this array contains a t least one idempotent , 
we obtain an orthogonal array which contains a sub-orthogonal ar ray 
of order 4 if v < u, a sub-orthogonal array of order 5 if 0 < v, and sub-
orthogonal arrays of both orders 4 and 5 if 0 < v < u. Since any number 
n ^ 51 can be writ ten as Au + v, where it ^ 11 and 7 g v ^ 10, there is 
an orthogonal ar ray of order 51 ^ n containing both a sub-orthogonal 
array of order 4 and a sub-orthogonal array order 5, except possibly 
when n = 63, 64, 65, or 66. However 63 = 4.15 + 3, 64 = 4.15 + 4, 
and 65 = 4.15 + 5 and so these numbers can be added to the list also. 
Since 66 = 5(14 — 1) + 1, 66 £ 2? by Lemma 6.3. The remaining num­
bers in A and B are handled as follows: 13 = 4(4 — 1) + 1, 17 = 
4(5 - 1) + 1, and 22 = 7(4 - 1) + 1 belong to A by Lemma 6.3; 
15 £ A by taking the affine plane of order 4, removing one point, and de­
fining orthogonal arrays on four of the blocks of size 3 in the clear set so 
tha t each has an idempotent and such tha t a block of size 4 intersects 
these blocks in these idempotents ; 25 6 A since 25 = 1 or 4 (mod 12) 
and Hanani has shown tha t the spectrum for block designs with block 
size 4 consists of all v = 1 or 4 (mod 12) [4]; 27 (E A by taking a block 
design of order 28 with block size 4 and removing one point and then 
proceeding as in the case for 15; the remaining numbers in A can be 
expressed as Au + v, where u ^ 2, 3, 6, 10 or 14 and v < u, v ^ 2 or 6. 
Since 16 = 5(4 — 1) + 1, 16 Ç B by Lemma 6.3; and the remaining 
numbers in B can all be writ ten in the form Au + v, where u 9^ 2, 3, 6, 
10, or 14 and 0 < u ^ v, u 9e 2 or 6. This completes the proof. 

The following COA of order 8 is necessary for what follows. 

V = {1, 2, 3, 4, 5, 6, 7, 8}, and 

/ = {[(1, 2, 3, 4)] , [5, 6, 7, 8], [(1, 8, 1, 8)] , [(2, 7, 2, 7)] , 

[(3, 6, 3, 6)], [(4, 5, 4, 5)], [(1, 1, 4, 6)], [(2, 2, 1, 5)], 

[(3, 3, 2, 8)] , [(4, 4, 3, 7)] , [(2, 4, 8, 8)] , [(3, 1, 7, 7)] , 

[(4, 2, 6, 6)], [(1, 3, 5, 5)], [(1, 6, 8, 7)] , [(2, 5, 7, 6)] , 

[ ( 3 , 8 , 6 , 5 ) ] , [ ( 4 , 7 , 5 , 8 ) ] } . 

Clearly (V, t) has no idempotents and II = {[(1, 2, 3, 4)] , [(5, 6, 7, 8)]{ 
is a parallel class. 

LEMMA 6.8. There is a COA of order n for all n = 0 or 1 (mod 4) except 
possibly 9, 12, 13, 16, 17, 28, 29, 36, 37, 48, 49, 52, 53, 68, 69, 77, 109, 
116, 149, 156, 157, 173, 189, 212, 237, 267, 276, 308, 333, 372. 
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Proof. To begin with there is an idempotent COA of order 5 by Lemma 
6.6 and the following is a COA of order 4: P = {1, 2, 3, 4} ; B = {[1, 1, 
1, 1)], [(2, 2, 2, 2)], [(2, 2, 1, 2)], [(4, 4, 2, 1)], [(1, 3, 2, 4)], [(3, 4, 3, 4)] | . 
Denote by 8M* = {8(n - k) + k\n 6 M*}. If (P, 5 ) is an orthogonal 
array such that |P | = n £ Affc and we replace a sub-orthogonal array 
of order k by a COA of order & the result is an orthogonal array of order n 
containing a sub-COA of order k and so by Corollary 6.2 there is a COA 
of order 8(n — k) + k. It follows that there is a COA of order n for 
every n G 8M0 U 8Mi U 8 i U 85. Now in [5], Hanani has shown that 
the spectrum for block designs with block size 5 is precisely the set of all 
n = 1 or 5 (mod 20). Hence if (P, B) is any such block design we obtain 
a COA of order \P\ by placing an idempotent COA on each block of B. 
If we delete exactly one point from P, the resulting PBD design has a 
clear set of blocks of size 4 and the remaining blocks have size 5. Placing 
a COA on each of the blocks of the clear set and an idempotent COA 
on the remaining blocks gives a COA of order \P\ — 1. Hence there is a 
COA of every order n = 0, 1, 4, or 5 (mod 20). If we set 

/ = [n\n = 0 or 1 (mod 4)} and 
F = [n\n = 0, 1, 4, or 5 (mod 20)} 

it is a routine matter to see that I\(SM0 U 8Mi U SA U SB VJ F) is the 
set of numbers in the statement of the lemma. This completes the proof. 

LEMMA 6.9. There is a COA of order n for all n = 0 or 1 (mod 4) except 
possibly 12, 48, 77, 237, and 308. 

Proof. The following table is self-explanatory. 

n Lemma n Lemma 

9 6.6 77 
12 109 6.6 
13 6.6 116 = 4.29 6.4 
16 = 4.4 6.4 149 6.6 
17 6.6 156 - 5(32 - 1) + 1 6.3 
28 = 9(4 - 1) + 1 6.3 157 6.6 
29 6.6 173 6.6 
36 = 4.9 6.4 1 189 = 9.21 6.4 
37 6.6 212 - 4.53 6.4 
48 237 
49 6.6 269 6.6 
52 - 4.13 6.4 276 - 4.69 6.4 
53 6.6 308 
68 = 4.17 6.4 333 = 9.37 6.4 
69 = 5(17 - 4) + 4 6.3 372 = 4.93 6.4 

THEOREM 6.10. The spectrum for C4 = {(ijst)) is precisely the set of all-
positive integers n = 0 or 1 (mod 4) except possibly 12 and 48. 
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Proof. The proof consists of removing 77, 237, and 308 from the state­
ment of Lemma 6.9. This is accomplished as follows: 

n = 77. In [15] R. M. Wilson has shown the existence of a PBD of 
order 77 with blocks of sizes 5, 13, and 17. Placing an idempotent COA 
on each block gives a COA of order 77. 

n = 237. To begin, if we remove one point from the projective plane 
of order 4 we obtain a group divisible design (GDD) with 5 groups of 
size 4 and blocks of size 5; and, if we remove one point from the affine 
plane of order 5 we obtain a GDD with 6 groups of size 4 and blocks of 
size 5. Since there are (at least) 4 mutually orthogonal quasigroups of 
order 11 there is a GDD of order 59 = 5.11 + 4 with five groups of 
size 11, one group of size 4, and blocks of sizes 5 and 6. Now replace each 
point with 4 points and each block with the blocks of the appropriate 
GDD with either 5 or 6 groups. This gives a GDD with five groups of 
size 44 and one of size 16 and all blocks of size 5. (See [14], for example.) 
Adding a new point oo to each group gives a PBD of order 237 with blocks 
of size 5, 17, and 45. Placing an idempotent COA on each block gives a 
COA of order 237. 

n = 308. Since there are (at least) 4 mutually orthogonal quasigroups 
of order 15 [12] there is a GDD of order 77 = 5.15 + 2 with five groups 
of size 15, one group of size 2, and blocks of sizes 5 and 6. Proceeding as 
in the case n = 237 but without adding a newr point co gives a COA of 
order 308. 

7. S u m m a r y . The following table is a summary of all results to date 
on the spectra for the conjugate invariant subgroups of n2 X 4 orthogonal 
arrays and, except for four unsettled cases, solves the problem. 

Conjugate invariant 
subgroups of S4 Spectrum 

<D all n except 1, 2, and 6 

c* = ((vKst)) all n except 1, 2, 3, and 6 

Cz = iiijk)) all n = 0 or 1 (mod 3) except 6 

C4 = ({ijst)) all n = 0 or 1 (mod 4) except 
possibly 12 and 48 

Ki (the Klein 4 -group) all n = 0 or 1 (mod 4) except 5 
and possibly 12 and 21 [9] 

Ai (the alternating group) all n = 1 or 4 (mod 12) [8] 

8. Applications to quasigroups. Knowing the spectrum for certain 
conjugate invariate subgroups of 54, apart from being of interest in itself, 
is often useful in determining the spectrum for quasigroups satisfying a 
given identity (or set of identities). We illustrate this connection with the 
following two well-known identities: (xy)(y(xy)) = x (the 4-cyclic 
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identity) and (xy)(yx) = y (Stein's 3rd law). Let (P, B) be a COA and 
define quasigroups (P, ®) and (P, o) as follows: 

x ® y = z \{ and only if (x, y, z, w) G 22; and 

x o ;y = s if and only if (x, s, y, w) 6 i$. 

It is a routine matter to see that (P, ®) satisfies (xy)(y(xy)) = x and 
(P, o) satisfies (xy)(yx) = y. On the other hand: if (P, ®) satisfies 
(x;y) (y(xy)) = x and we define 

B\ = {(x, yy x ® y, y ® (x ® y))\ all x, y Ç P} 

then (P, i$i) is a COA; and if (P, o) satisfies (xy)(yx) = y and we de­
fine 

B2 = {(x, x o y, y, y o x)| all x, y Ç P} 

then (P, i?2) is a COA. It follows that a quasigroup satisfying 
(xy)(y(xy)) = x or (x;y)(;yx) = 3; is equivalent to a COA and so the 
spectrum for either one of these quasigroup identities is precisely the 
set of all n = 0 or 1 (mod 4), except possibly 12 and 48. 
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