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Abstract
Motivated by Ahmadi-Javid (Journal of Optimization Theory Applications, 155(3), 2012, 1105–1123) and Ahmadi-
Javid and Pichler (Mathematics and Financial Economics, 11, 2017, 527–550), the concept of Tsallis Value-at-Risk
(TsVaR) based on Tsallis entropy is introduced in this paper. TsVaR corresponds to the tightest possible upper
bound obtained from the Chernoff inequality for the Value-at-Risk. The main properties and analogous dual
representation of TsVaR are investigated. These results partially generalize the Entropic Value-at-Risk by involving
Tsallis entropies. Three spaces, called the primal, dual, and bidual Tsallis spaces, corresponding to TsVaR are fully
studied. It is shown that these spaces equipped with the norm induced by TsVaR are Banach spaces. The Tsallis
spaces are related to the 𝐿𝑝 spaces, as well as specific Orlicz hearts and Orlicz spaces. Finally, we derive explicit
formula for the dual TsVaR norm.

1. Introduction

One of the important issues in insurance is insurance pricing. Over the past two decades, researchers
have made great efforts to implement appropriate insurance pricing methods. One of the most popular
methods is an axiomatic approach to characterize insurance prices, see Wang et al. [26]. The insurance
pricing can be described as a functional from the set of nonnegative insurance risks to the extended
nonnegative real numbers. How to measure the uncertainty is a key problem. “Entropy,” date back to
1865, is one of the best ways to measure uncertainty in probability theory. Shannon [22] introduced the
information entropy of a discrete random variable 𝑍 with probability mass function {𝑝𝑘 } by

𝐻 (𝑍) :=
∑
𝑘

𝑝𝑘 log 𝑝𝑘 ,

which is extended to the case of 𝑍 being a continuous random variable. Closely related to Shannon
entropy is the quantity

𝐻 (Q | P) := EP
[
dQ
dP

ln
(
dQ
dP

)]
, (1.1)

which is called relative entropy (also called Kullback–Leibler divergence), where Q � P, and Q and P
are two probability measures. Relative entropy has been proved to have close connections with insurance,
mathematical finance, risk measures, and others. For example, based on the variational representation
of the relative entropy, Föllmer and Schied [11] defined entropic risk measure and studied its properties
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systemically, Delbaen et al. [8] solved the problem of hedging a contingent claim by maximizing the
expected exponential utility of terminal net wealth, and Ahmadi-Javid [1,2] defined a new coherent risk
measure called the Entropic Value-at-risk (EVaR). There are many generalizations of relative entropy
in the literature, such as Rényi divergence [19,20] and generalized relative entropy (also called Tsallis
relative entropy [24,25]).

Recently, Ma and Tian [16] established a variational representation for the generalized relative
entropy, and Tian [23] provided new ideas and insights for pricing the non-attainable contingent
claim in incomplete market under the generalized relative entropy. Inspired by these two papers,
we propose Tsallis Value-at-Risk (TsVaR) based on Tsallis entropy by following the framework of
Ahmadi-Javid [2] and Ahmadi-Javid and Pichler [4]. As shown by Tsallis [25], generalized relative
entropy is defined by the generalized 𝑞-logarithm and generalized 𝑞-exponential functions. In order
to introduce TsVaR (see Definition 3.1), we restrict ourself to consider nonnegative random variables
and 𝑞 ∈ (0, 1]. Under these restrictions, TsVaR corresponds to the tightest possible upper bound
obtained from the Chernoff inequality for the Value-at-Risk (VaR). We show that TsVaR is not a
coherent premium principle, even not a convex premium principle (see Definition 2.1 for formal def-
initions). This is caused by a lack of cash invariance in general. We also show that in the class of
TsVaR with 𝑞 ∈ (0, 1], only EVaR is a coherent premium principle. Although TsVaR fails to be a
convex premium principle, TsVaR’s dual representation is an analogy with the generalized relative
entropy.

The motivation of this paper is as follows. The first one is to generalize the concept of EVaR,
defined by Ahmadi-Javid [2], to TsVaR, using the generalized 𝑞-logarithm and generalized 𝑞-exponential
functions. The second one is to deepen our understanding of the application of entropy in risk measure
and premium principle, and to investigate its theoretical properties.

As shown by Pichler [17,18], there is an intimate link between norms and coherent risk measures
defined on the same model space. Specifically, a coherent risk measure 𝜌 can be used to define
an order-preserving semi-norm on the model space X by ‖ · ‖𝜌 := 𝜌(| · |), whenever 𝜌 is finite
over X. Under suitable assumptions on norms, coherent risk measures can be recovered from norms
(see [18] Theorem 3.1). These considerations are also extended to vector-valued random variables
(see [15]).

Fortunately, when consider the confidence level 𝛼 ∈ (0, 1), the norm induced by TsVaR, called the
TsVaR norm, is indeed a norm. TsVaR norms are proven to be equivalent to each other for different
confidence levels, but they do not generate the 𝐿 𝑝 norms ‖ · ‖ 𝑝 . For every 1 < 𝑝 < (2 − 𝑞)/(1 − 𝑞),
the 𝐿 𝑝 norms are bounded by the TsVaR norm, while the converse does not hold true. Thus, the largest
model space contained in the domain of TsVaR is strictly larger than 𝐿∞ but smaller than every 𝐿 𝑝

space. We also relate the TsVaR norm to the Orlicz (or Luxemburg) norm on the associated Orlicz
space. Orlicz space has been used intensively to study risk measures (see [5,6]). Finally, we also present
closed-form expression for the dual TsVaR norm.

The remainder of the paper is organized as follows. Section 2 introduces Tsallis relative entropy and
premium principle. Section 3 defines the main object TsVaR and Tsallis spaces, and provides some basic
properties about TsVaR. In Section 4, we first compare Tsallis spaces with other spaces, particularly
with the 𝐿 𝑝 and Orlicz spaces, and then elaborate duality relations. In this section, we also present the
closed formula of the dual TsVaR norm. Section 5 concludes the paper. Proofs of all lemmas and some
propositions are postponed to Appendix A.

2. Preliminaries

2.1. Premium principles

Throughout, we consider an atomless probability space (Ω,ℱ, P). Let X be a model space, which is
used to represent a set of nonnegative random losses. For 𝑋 ∈ X, a positive value of 𝑋 represents the
insurable loss of the insured. Let 𝐿0

+ be the set of all nonnegative random variables, and 𝐿𝑘
+ be the set
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of all random variables in 𝐿0
+ with finite 𝑘th moment, where 𝑘 > 0. For 𝑋,𝑌 ∈ X, we write 𝑋

d
= 𝑌

whenever 𝑋 and 𝑌 have the same distribution.
In this paper, we consider premium principles defined on the model space X, which are understood

as prices of the insurable loss of the insured. A premium principle 𝜌 is a functional 𝜌 : X → R+∪{+∞},
where R+ = [0,∞).

Definition 2.1. A mapping 𝜌 : X → R+ ∪ {+∞} is called a convex premium principle if it satisfies the
following three properties: for all 𝑋,𝑌 ∈ X,

(A1) Cash invariance: 𝜌(𝑋 + 𝑚) = 𝜌(𝑋) + 𝑚 for all 𝑚 ∈ R+;
(A2) Monotonicity: 𝑋 ≤ 𝑌 =⇒ 𝜌(𝑋) ≤ 𝜌(𝑌 );
(A3) Convexity: 𝜌(𝛼𝑋 + (1 − 𝛼)𝑌 ) ≤ 𝛼𝜌(𝑋) + (1 − 𝛼)𝜌(𝑌 ) for all 𝛼 ∈ [0, 1].

A convex premium principle 𝜌 is called a coherent premium principle if it satisfies

(A4) Positive homogeneity: 𝜌(𝜆𝑋) = 𝜆𝜌(𝑋) for all 𝑋 ∈ X and 𝜆 ∈ R+.

In addition, 𝜌 is said to satisfy law invariance if 𝜌(𝑋) = 𝜌(𝑌 ) whenever 𝑋
d
= 𝑌 . In practice, it is

often desirable that we are able to estimate or identify the values of risk premiums statistically, in which
case law invariance is a natural requirement. The concepts of convex premium principle and coherent
premium principle are analogies with convex risk measure and coherent risk measure [12]. In view of
the simplicity and ease of calculation, Value-at-Risk (VaR) is one popular choice of premium principles,
defined as

VaR𝛼 (𝑋) := inf
𝑡 ∈R+

{𝑡 : P(𝑋 ≤ 𝑡) ≥ 𝛼} for 𝑋 ∈ 𝐿0
+, 𝛼 ∈ (0, 1] .

2.2. Tsallis relative entropy

We recall from Tsallis [24] the 𝑞-generalization of the relative entropy, which is also called Tsallis
relative entropy. For any two probability measures Q and P on (Ω,ℱ), the 𝑞-generalization of the
relative entropy is defined by

𝐻𝑞 (Q|P) :=
⎧⎪⎪⎨⎪⎪⎩

∫ (
dQ
dP

)𝑞
ln𝑞

(
dQ
dP

)
dP, if Q � P,

+∞, otherwise,

where 𝑞 > 0, and ln𝑞 (𝑥) is the generalized 𝑞-logarithm function defined on (0,∞), given by

ln𝑞 (𝑥) :=
⎧⎪⎪⎨⎪⎪⎩
𝑥1−𝑞 − 1

1 − 𝑞
, for 𝑞 ≠ 1,

ln 𝑥, for 𝑞 = 1.

The inverse of ln𝑞 (𝑥) is called the generalized 𝑞-exponential function, given by

exp𝑞 (𝑥) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[1 + (1 − 𝑞)𝑥]1/(1−𝑞) , for 𝑥 > −

1
1 − 𝑞

and 0 < 𝑞 < 1,

[1 + (1 − 𝑞)𝑥]1/(1−𝑞) , for 𝑥 <
1

𝑞 − 1
and 𝑞 > 1,

exp(𝑥), for 𝑥 ∈ R and 𝑞 = 1.

Note that ln𝑞 (·) and exp𝑞 (·) are well defined when 𝑞 > 0. Clearly, ln1(𝑥) = ln(𝑥), exp1(𝑥) = exp(𝑥),
and 𝐻1(Q | P) = 𝐻 (Q | P), where 𝐻 (Q | P) is defined by (1.1).

In view of (3.1) and the domains of the function exp𝑞 (𝑥) for different 𝑞, throughout the paper, we
always consider the case of 0 < 𝑞 ≤ 1 unless stated otherwise. In order to accommodate to the domain
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of TsVaR (see Definition 3.1), we consider the model space X = 𝐿0
+, the space of nonnegative random

variables. For recent discussion on risk measures and pricing principles based on Tsallis entropy, we
refer to Ma and Tian [16] and Tian [23].

The next proposition gives some properties of the generalized 𝑞-logarithm and 𝑞-exponential
functions, which will be helpful for our discussion. For more details, we refer to Tsallis [25].

Proposition 2.1. The generalized 𝑞-logarithm and 𝑞-exponential functions have the following
properties:

(1) ln𝑞 (·) is strictly increasing and concave, and exp𝑞 (·) is strictly increasing and convex.
(2) ln𝑞 (𝑥𝑦) = 𝑥1−𝑞 ln𝑞 (𝑦) + ln𝑞 (𝑥) for all 𝑥, 𝑦 > 0.
(3) ln𝑞 (1/𝑥) = −𝑥𝑞−1 ln𝑞 (𝑥) for all 𝑥 > 0.
(4) 𝑓 (𝒙) := ln𝑞 (

∑𝑛
𝑖=1 exp𝑞 (𝑥𝑖)) is convex in 𝒙 = (𝑥1, . . . , 𝑥𝑛).

3. Tsallis value-at-risk

In this section, we propose a new premium principle that corresponds to the tightest possible upper
bound obtained from the Chernoff inequality for VaR. The basic idea follows from Chernoff inequality
in Chernoff [7]: for any constant 𝑡 ∈ R+ and 𝑋 ∈ 𝐿0

+,

P(𝑋 ≥ 𝑡) ≤
E[exp𝑞 (𝜆𝑋)]

exp𝑞 (𝜆𝑡)
, ∀𝜆 > 0.

By solving the equation
E[exp𝑞 (𝜆𝑋)]

exp𝑞 (𝜆𝑡)
= 𝛼

with respect to 𝑡 for 𝛼 ∈ (0, 1] and 𝜆 > 0, we obtain

𝑡𝑋 (𝛼, 𝜆) :=
1
𝜆

ln𝑞
(

1
𝛼
E[exp𝑞 (𝜆𝑋)]

)
,

which satisfies that P(𝑋 ≥ 𝑡𝑋 (𝛼, 𝜆)) ≤ 𝛼. In fact, for each 𝜆 > 0, 𝑡𝑋 (𝛼, 𝜆) is an upper bound for
VaR1−𝛼 (𝑋). We now consider the best upper bound of this type as a new premium principle that bounds
VaR1−𝛼 (·) by using the generalized 𝑞-exponential moments. Recall that we always assume 0 < 𝑞 ≤ 1
and all random variables in 𝐿0

+.

Definition 3.1. Let 𝑋 ∈ 𝐿0
+ satisfying that E[exp𝑞 (𝜆0𝑋)] < ∞ for some 𝜆0 > 0. Then Tsallis Value-at-

Risk (TsVaR) of 𝑋 with confidence level 1 − 𝛼 for 𝛼 ∈ (0, 1] is defined by

TsVaR1−𝛼 (𝑋) := inf
𝜆>0

𝑡𝑋 (𝛼, 𝜆) = inf
𝜆>0

{
1
𝜆

ln𝑞
(

1
𝛼
E[exp𝑞 (𝜆𝑋)]

)}
. (3.1)

Furthermore, define three spaces of random variables

𝐸 := {𝑋 ∈ 𝐿0
+ : E[exp𝑞 (𝜆𝑋)] < ∞ for all 𝜆 > 0},

𝐸 ′ :=
{
𝑋 ∈ 𝐿0

+ :
𝑞

1 − 𝑞
E[𝑋1/𝑞 − 𝑋] < ∞

}
,

𝐸 ′′ := {𝑋 ∈ 𝐿0
+ : E[exp𝑞 (𝜆𝑋)] < ∞ for some 𝜆 > 0},
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which are called the primal, dual, and bidual Tsallis spaces, respectively. For 𝑞 = 1, 𝐸 ′ is understood
as a limiting case, that is, 𝐸 ′ = {𝑋 ∈ 𝐿0

+ : E[𝑋 ln 𝑋] < ∞}, and 𝐸, 𝐸 ′, 𝐸 ′′ are called the primal, dual,
and bidual entropic space, respectively. For 𝑞 ∈ (0, 1), 𝐸 = 𝐸 ′′ = 𝐿1/(1−𝑞)

+ .

Remark 3.1 (Lower and upper bounds). For 𝛼 ∈ (0, 1], we have the following bounds for TsVaR:

𝛼𝑞−1E(𝑋) ≤ TsVaR1−𝛼 (𝑋) ≤ 𝛼𝑞−1 ess-sup(𝑋), 𝑋 ∈ 𝐸 ′′. (3.2)

To see it, note that exp𝑞 (·) is a convex function by Proposition 2.1(1). Applying Jensen’s inequality, the
above lower bound follows since

1
𝜆

ln𝑞
(

1
𝛼
E[exp𝑞 (𝜆𝑋)]

)
=
𝛼𝑞−1

𝜆
ln𝑞 (E[exp𝑞 (𝜆𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)
≥

𝛼𝑞−1

𝜆
ln𝑞 ([exp𝑞 (𝜆E𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)
≥ 𝛼𝑞−1E𝑋.

The upper bound follows from

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{
𝛼𝑞−1

𝜆
ln𝑞 (E[exp𝑞 (𝜆𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)}
≤ inf

𝜆>0

{
𝛼𝑞−1

𝜆
ln𝑞 (E[exp𝑞 (𝜆 ess-sup(𝑋))]) +

1
𝜆

ln𝑞
(

1
𝛼

)}
= inf

𝜆>0

{
𝛼𝑞−1 ess-sup(𝑋) +

1
𝜆

ln𝑞
(

1
𝛼

)}
= 𝛼𝑞−1 ess-sup(𝑋).

From (3.2), it is known that TsVaR𝛽 (𝑋) → +∞ as 𝛽 ↗ 1 when E[𝑋] > 0 and 0 < 𝑞 < 1. So,
in Definition 3.1, we can not assume TsVaR1(𝑋) = ess-sup(𝑋) for 𝑋 ∈ 𝐸 ′′ except EVaR1(𝑋) =
ess-sup(𝑋).

Below, we will see that TsVaR can not be a coherent premium principle, even for convex premium
principle unless 𝑞 = 1, since TsVaR is not cash invariance in general. To prove the convexity of
TsVaR1−𝛼 (·), we need the following two lemmas.

Lemma 3.2. For 0 < 𝑞 ≤ 1 and 𝛼 ∈ (0, 1], the function 𝑔𝛼 (𝑋, 𝜆) := 𝑡𝑋 (𝛼, 1/𝜆) is convex in (𝑋, 𝜆),
where 𝜆 > 0 and 𝑋 ∈ 𝐸 ′′.

Lemma 3.3. For 0 < 𝑞 ≤ 1 and 𝛼 ∈ (0, 1], the function inf𝜆>0
{
𝑔𝛼 (𝑋, 𝜆)} is convex in 𝑋 ∈ 𝐸 ′′.

Proposition 3.4. TsVaR1−𝛼 (·) defined on 𝐸 ′′ is a law invariant, monotonicity, positive homogeneity,
and convex functional for every 𝛼 ∈ (0, 1].

Proof. Note that TsVaR1−𝛼 (𝑋) = inf𝜆>0{𝑔𝛼 (𝑋, 𝜆)}. The convexity of TsVaR1−𝛼 (·) follows from
Lemma 3.3. The law invariant, monotonicity, and positive homogeneity are obvious. �

TsVaR1−𝛼 (·) is also subadditive on 𝐸 ′′, that is,

TsVaR1−𝛼 (𝑋 + 𝑌 ) ≤ TsVaR1−𝛼 (𝑋) + TsVaR1−𝛼 (𝑌 ), 𝑋,𝑌 ∈ 𝐸 ′′,

because TsVaR1−𝛼 (0) = 0, and convexity is equivalent to subadditivity under positive homogeneity.
However, in general, TsVaR1−𝛼 (·) may fail to satisfy cash invariance. In Proposition 3.9, we will show
that TsVaR1−𝛼 (·) possesses some certain cash-subadditivity.

https://doi.org/10.1017/S0269964822000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000444
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In the following theorem, we show that TsVaR1−𝛼 (·) is a coherent premium principle if and only if
𝑞 = 1. In other words, with the exception of EVaR, TsVaR is not a coherent premium principle. EVaR
is defined by (see [2])

EVaR1−𝛼 (𝑋) = inf
𝜆>0

{
1
𝜆

ln
(

1
𝛼
E[exp(𝜆𝑋)]

)}
. (3.3)

Theorem 3.5. For 𝑞 ∈ (0, 1], TsVaR1−𝛼 (·) is a coherent premium principle for each 𝛼 ∈ (0, 1] if and
only if 𝑞 = 1.

Proof. Sufficiency. When 𝑞 = 1, TsVaR reduces to EVaR, which has been proven to be coherent by
Ahmadi-Javid [2].

Necessary. Assume that TsVaR1−𝛼 (·) is coherent for each 𝛼 ∈ (0, 1]. Then, for any 𝑚 ∈ R+ and
𝛼 ∈ (0, 1], we have TsVaR1−𝛼 (𝑋 +𝑚) = TsVaR1−𝛼 (𝑋) +𝑚. Choose 𝑋 ≡ 𝑐 ∈ R+. From (3.1), it follows
that

TsVaR1−𝛼 (𝑐 + 𝑚) = inf
𝜆>0

{
1
𝜆

ln𝑞
(

1
𝛼

exp𝑞 (𝜆(𝑐 + 𝑚))

)}
= inf

𝜆>0

{
𝛼𝑞−1(𝑐 + 𝑚) +

1
𝜆

ln𝑞
(

1
𝛼

)}
= 𝛼𝑞−1(𝑐 + 𝑚),

and

TsVaR1−𝛼 (𝑐) + 𝑚 = inf
𝜆>0

{
1
𝜆

ln𝑞

(
1
𝛼

exp𝑞 (𝜆𝑐)

)}
+ 𝑚

= inf
𝜆>0

{
𝛼𝑞−1𝑐 +

1
𝜆

ln𝑞
(

1
𝛼

)}
+ 𝑚 = 𝛼𝑞−1𝑐 + 𝑚,

Thus, 𝛼𝑞−1(𝑐 + 𝑚) = 𝛼𝑞−1𝑐 + 𝑚 for any 𝑚 ∈ R+ and 𝛼 ∈ (0, 1). This implies 𝑞 = 1. �

Although TsVaR is not a coherent premium principle in general, we establish its dual representation,
which reveals its relationship with the generalized relative entropy. To state and prove this result, we
need two lemmas. The first one is the variational representation for the generalized relative entropy, and
the second one is a special case of Lemma 1.3 in Ahmadi-Javid [1].

Lemma 3.6 [16] Theorem 4.1. For 𝜆 > 0, 𝑞 > 0, and 𝑞 ≠ 1, we have

ln𝑞 E[exp𝑞 (𝜆𝑋)] = sup
Q�P

{
𝜆E

[(
dQ
dP

)𝑞
𝑋

]
− 𝐻𝑞 (Q|P)

}
, 𝑋 ∈ 𝐸 ′′. (3.4)

Lemma 3.7. For 0 < 𝑞 ≤ 1 and 𝛼 ∈ (0, 1],

inf
𝜆>0

{
sup
Q�P

{
E

[(
dQ
dP

)𝑞
𝑋

]
+ 𝜆

(
𝛼1−𝑞 ln𝑞

(
1
𝛼

)
− 𝐻𝑞 (Q|P)

)}}

= sup
Q�P,𝐻𝑞 (Q |P) ≤− ln𝑞 (𝛼)

E

[(
dQ
dP

)𝑞
𝑋

]
, 𝑋 ∈ 𝐸 ′′. (3.5)

Theorem 3.8. For 0 < 𝑞 ≤ 1, the dual representation of TsVaR1−𝛼 has the form

TsVaR1−𝛼 (𝑋) = sup
Q∈Q

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]}
, 𝑋 ∈ 𝐸 ′′,

where Q = {Q � P : 𝐻𝑞 (Q|P) ≤ − ln𝑞 (𝛼)}.
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Proof. For 𝑞 = 1, TsVaR is EVaR, and the corresponding proof can be found in Ahmadi-Javid [2]. For
𝑞 ∈ (0, 1) and 𝑋 ∈ 𝐸 ′′, by Proposition 2.1(2) and Lemmas 3.6 and 3.7, we have

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{
1
𝜆

ln𝑞

(
1
𝛼
E[exp𝑞 (𝜆𝑋)]

)}
= inf

𝜆>0

{
1
𝜆

(
𝛼𝑞−1 ln𝑞 E[exp𝑞 (𝜆𝑋)] + ln𝑞

1
𝛼

)}
= inf

𝜆>0

{
1
𝜆

(
𝛼𝑞−1 sup

Q�P

{
𝜆 E

[(
dQ
dP

)𝑞
𝑋

]
− 𝐻𝑞 (Q|P)

}
+ ln𝑞

(
1
𝛼

))}

= inf
𝜆>0

{
sup
Q�P

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]
−

1
𝜆

[
𝛼𝑞−1𝐻𝑞 (Q|P) − ln𝑞

(
1
𝛼

)]}}

= sup
Q�P,𝐻𝑞 (Q |P) ≤− ln𝑞 (𝛼)

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]}
.

The desired result now follows. �

By Theorem 3.8, we will show in the next proposition that TsVaR1−𝛼 (·) satisfies some restricted
cash-subadditivity. For more discussion on cash-subadditivity, we refer to El Karoui and Ravanelli [10]
and Han et al. [13].

Proposition 3.9. For 0 < 𝑞 ≤ 1 and 𝛼 ∈ (0, 1], we have

TsVaR1−𝛼 (𝑋 + 𝑚) ≤ TsVaR1−𝛼 (𝑋) + 𝛼𝑞−1𝑚, 𝑋 ∈ 𝐸 ′′, 𝑚 ∈ R+.

Proof. By Theorem 3.8, we have

TsVaR1−𝛼 (𝑋) = sup
Q∈Q

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]}
.

where Q = {Q � P : 𝐻𝑞 (Q|P) ≤ − ln𝑞 (𝛼)}. Then,

TsVaR1−𝛼 (𝑋 + 𝑚) = sup
Q∈Q

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
(𝑋 + 𝑚)

]}
= sup
Q∈Q

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]
+ 𝑚𝛼𝑞−1E

[(
dQ
dP

)𝑞]}
≤ sup
Q∈Q

{
𝛼𝑞−1E

[(
dQ
dP

)𝑞
𝑋

]
+ 𝑚𝛼𝑞−1

[
E

(
dQ
dP

)]𝑞}
= TsVaR1−𝛼 (𝑋) + 𝛼𝑞−1𝑚,

where the inequality follows from Jensen’s inequality. �

From Definition 3.1, it follows that

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{
1
𝜆

ln𝑞
(

1
𝛼
E[exp𝑞 (𝜆𝑋)]

)}
= inf

𝜆>0

{
1
𝜆
𝛼𝑞−1 ln𝑞 (E[exp𝑞 (𝜆𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)}
= inf

𝜆>0

{
1
𝜆
𝛼𝑞−1 ln𝑞 (E[exp𝑞 (𝜆𝑋)]) −

1
𝜆
𝛼𝑞−1 ln𝑞 (𝛼)

}
,
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which shows that TsVaR1−𝛼 (𝑋) only depends on {ln𝑞 E[exp𝑞 (𝜆𝑋)], 𝜆 > 0}. The next proposition
demonstrates how these functions can be represented by means of TsVaR.

Proposition 3.10. For 𝑋 ∈ 𝐸 and 𝜆 > 0,

ln𝑞 E[exp𝑞 (𝜆𝑋)] = sup
0<𝛼≤1

{𝜆𝛼1−𝑞TsVaR1−𝛼 (𝑋) + ln𝑞 (𝛼)}, (3.6)

E[exp𝑞 (𝜆𝑋)] = sup
0<𝛼≤1

exp𝑞 (𝜆𝛼
1−𝑞TsVaR1−𝛼 (𝑋) + ln𝑞 (𝛼)),

𝑡𝑋 (1, 𝜆) = sup
0<𝛼≤1

{𝛼1−𝑞TsVaR1−𝛼 (𝑋) + 𝜆−1 ln𝑞 (𝛼)}.

Proof. We only prove (3.6). By Proposition 2.1(2), we have

−TsVaR1−𝛼 (𝑋) = sup
𝑥>0

{
−𝑥 ln𝑞

(
1
𝛼
E

[
exp𝑞

(
𝑋

𝑥

)])}
= sup

𝑥>0

{
−𝑥 ln𝑞

(
1
𝛼

)
− 𝑥𝛼𝑞−1 ln𝑞 E

[
exp𝑞

(
𝑋

𝑥

)]}
.

Thus,

−𝛼1−𝑞TsVaR1−𝛼 (𝑋) = sup
𝑥>0

{
−𝑥𝛼1−𝑞 ln𝑞

(
1
𝛼

)
− 𝑥 ln𝑞 E

[
exp𝑞

(
𝑋

𝑥

)]}
= sup

𝑥>0

{
𝑥 ln𝑞 (𝛼) − 𝑥 ln𝑞 E

[
exp𝑞

(
𝑋

𝑥

)]}
= sup

𝑥≥0
{𝑥 ln𝑞 (𝛼) − 𝑔(𝑥)},

where

𝑔(𝑥) =

{
𝑥 ln𝑞 (E[exp𝑞 (𝑋/𝑥)]), if 𝑥 > 0,
ess-sup(𝑋), if 𝑥 = 0.

One can observe that the function −[exp𝑞 (𝑦)]
1−𝑞TsVaR1−exp𝑞 (𝑦) (𝑋) with domain (−1/(1 − 𝑞), 0] for

0 < 𝑞 < 1 and (−∞, 0] for 𝑞 = 1 is the conjugate of function 𝑔(𝑥) with domain [0, +∞). Since 𝑔(𝑥)
is convex and closed by Lemma 3.2, 𝑔(𝑥) is the conjugate of its own conjugate. This completes the
proof. �

The next proposition compares the values of TsVaR for different confidence levels 𝛼.

Proposition 3.11. For 0 < 𝛼1 ≤ 𝛼2 < 1, 𝑞 ∈ (0, 1], we have(
𝛼2

𝛼1

)1−𝑞

TsVaR1−𝛼2 (𝑋) ≤ TsVaR1−𝛼1 (𝑋), 𝑋 ∈ 𝐸 ′′, (3.7)

and

TsVaR1−𝛼1 (𝑋) ≤
ln𝑞 (𝛼2

1) − ln𝑞 (𝛼1)

ln𝑞 (𝛼2
2) − ln𝑞 (𝛼2)

· TsVaR1−𝛼2 (𝑋), 𝑋 ∈ 𝐸 ′′. (3.8)
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Proof. The proof of the case 𝑞 = 1 can be found in Proposition 2.12 of Ahmadi-Javid and Pichler [4].
Next, we assume 𝑞 ∈ (0, 1). Note that

1
𝜆

ln𝑞
[

1
𝛼1
E[exp𝑞 (𝜆𝑋)]

]
=

1
𝜆

ln𝑞
(
𝛼2

𝛼1

1
𝛼2
E[exp𝑞 (𝜆𝑋)]

)
=

1
𝜆

(
𝛼2

𝛼1

)1−𝑞

ln𝑞
(

1
𝛼2
E[exp𝑞 (𝜆𝑋)]

)
+

1
𝜆

ln𝑞
(
𝛼2

𝛼1

)
≥

1
𝜆

(
𝛼2

𝛼1

)1−𝑞

ln𝑞
(

1
𝛼2
E[exp𝑞 (𝜆𝑋)]

)
.

Then, taking the infimum over 𝜆 > 0 in the both sides of the above inequality yields that

TsVaR1−𝛼1 (𝑋) ≥

(
𝛼2

𝛼1

)1−𝑞

TsVaR1−𝛼2 (𝑋).

This proves (3.7).
To prove (3.8), note that ln𝑞 E[exp𝑞 (𝜆𝑋)] ≥ 0 since 𝑋 ≥ 0. Thus, for 𝑞 ∈ (0, 1), we have

1
𝜆

ln𝑞
[

1
𝛼1
E[exp𝑞 (𝜆𝑋)]

]
=

1
𝜆
𝛼𝑞−1

1 ln𝑞 E[exp𝑞 (𝜆𝑋)] +
1
𝜆

ln𝑞
(

1
𝛼1

)
=

1
𝜆

𝛼𝑞−1
1

𝛼𝑞−1
2

𝛼𝑞−1
2 ln𝑞 E[exp𝑞 (𝜆𝑋)] +

1
𝜆

ln𝑞 (𝛼
−1
1 )

ln𝑞 (𝛼
−1
2 )

ln𝑞
(

1
𝛼2

)

≤
1
𝜆

𝛼𝑞−1
1

𝛼𝑞−1
2

·
ln𝑞 (𝛼−1

1 )

ln𝑞 (𝛼−1
2 )

𝛼𝑞−1
2 ln𝑞 E[exp𝑞 (𝜆𝑋)] +

1
𝜆

𝛼𝑞−1
1

𝛼𝑞−1
2

·
ln𝑞 (𝛼−1

1 )

ln𝑞 (𝛼−1
2 )

ln𝑞
(

1
𝛼2

)

=
𝛼𝑞−1

1

𝛼𝑞−1
2

ln𝑞 (𝛼−1
1 )

ln𝑞 (𝛼−1
2 )

·
1
𝜆

ln𝑞
(

1
𝛼2
E[exp𝑞 (𝜆𝑋)]

)

=
ln𝑞 (𝛼2

1) − ln𝑞 (𝛼1)

ln𝑞 (𝛼2
2) − ln𝑞 (𝛼2)

·
1
𝜆

ln𝑞
(

1
𝛼2
E[exp𝑞 (𝜆𝑋)]

)
, (3.9)

where the last equality follows since

𝛼𝑞−1
1

𝛼𝑞−1
2

ln𝑞 (𝛼−1
1 )

ln𝑞 (𝛼−1
2 )

=
𝛼𝑞−1

1 (𝛼𝑞−1
1 − 1)/(1 − 𝑞)

𝛼𝑞−1
2 (𝛼𝑞−1

2 − 1)/(1 − 𝑞)

=
(𝛼2(𝑞−1)

1 − 1) − (𝛼𝑞−1
1 − 1)

(𝛼2(𝑞−1)
2 − 1) − (𝛼𝑞−1

2 − 1)
=

ln𝑞 (𝛼
2
1) − ln𝑞 (𝛼1)

ln𝑞 (𝛼
2
2) − ln𝑞 (𝛼2)

.

By taking the infimum over all 𝜆 > 0 in the both sides of (3.9), we conclude that

TsVaR1−𝛼1 (𝑋) ≤
ln𝑞 (𝛼

2
1) − ln𝑞 (𝛼1)

ln𝑞 (𝛼
2
2) − ln𝑞 (𝛼2)

· TsVaR1−𝛼2 (𝑋).

This completes the proof of the proposition. �

Next, we establish the strong monotonicity of TsVaR. Ahmadi-Javid and Fallah-Tafti [3] showed that
EVaR also possesses this property, which does not hold for other popular (coherent or non-coherent)
monotone risk measures such as the VaR or Expected Shortfall. Recall the definition of strongly
monotonicity.
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Definition 3.2. A risk measure 𝜌 is called strongly monotone if it holds that 𝜌(𝑋) > 𝜌(𝑌 ) for any pair
of random variables 𝑋 and 𝑌 in the domain of 𝜌 that satisfy the conditions

(C1) 𝑋 ≥ 𝑌 and P(𝑋 > 𝑌 ) > 0.
(C2) ess-sup(𝑋) > ess-sup(𝑌 ) or ess-sup(𝑋) = ess-sup(𝑌 ) = +∞.

Theorem 3.12 (Strong monotonicity of TsVaR). Let 𝑋 and 𝑌 be random variables in the space 𝐸 ′′ that
satisfy Conditions (C1) and (C2). Then,

TsVaR1−𝛼 (𝑋) > TsVaR1−𝛼 (𝑌 ) for any 𝛼 ∈ (0, 1] .

Proof. From (3.1) and Proposition 2.1, we have

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{𝑡𝑋 (𝛼, 𝜆)} = inf
𝜆>0

{
1
𝜆
𝛼𝑞−1 ln𝑞 (E[exp𝑞 (𝜆𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)}
.

Since exp𝑞 (·) is strictly increasing, Condition (C1) ensures thatE[exp𝑞 (𝜆𝑋)] > E[exp𝑞 (𝜆𝑋)] for 𝜆 > 0.
Thus,

𝑡𝑋 (𝛼, 𝜆) =
1
𝜆
𝛼𝑞−1 ln𝑞 (E[exp𝑞 (𝜆𝑋)]) +

1
𝜆

ln𝑞
(

1
𝛼

)
>

1
𝜆
𝛼𝑞−1 ln𝑞 (E[exp𝑞 (𝜆𝑌 )]) +

1
𝜆

ln𝑞
(

1
𝛼

)
= 𝑡𝑌 (𝛼, 𝜆)

since ln𝑞 (·) is strictly increasing. Moreover, by Condition (C2), we have

lim
𝜆→∞

𝑡𝑋 (𝛼, 𝜆) = 𝛼𝑞−1 ess-sup(𝑋) > 𝛼𝑞−1 ess-sup(𝑌 ) = lim
𝜆→∞

𝑡𝑌 (𝛼, 𝜆)

or
lim
𝜆→0

𝑡𝑋 (𝛼, 𝜆) = lim
𝜆→0

𝑡𝑌 (𝛼, 𝜆) = +∞.

Note that 𝑡𝑋 (𝛼, 𝜆) is continuous in 𝜆 > 0. Therefore,

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{𝑡𝑋 (𝛼, 𝜆)} > inf
𝜆>0

{𝑡𝑌 (𝛼, 𝜆)} = TsVaR1−𝛼 (𝑌 ).

This ends the proof. �

In the end of this section, we give an example to compare the EVaR and TsVaR for a random variable
with 𝑈 (0, 1) distribution.

Example 3.13. For 𝑋 ∼ 𝑈 (0, 1) and 𝑞 ∈ (0, 1), it follows from (3.1) and (3.3) that

TsVaR1−𝛼 (𝑋) = inf
𝜆>0

{
1
𝜆

ln𝑞
(
(1 + (1 − 𝑞)𝜆) (2−𝑞)/(1−𝑞) − 1

𝛼𝜆(2 − 𝑞)

)}
,

EVaR1−𝛼 (𝑋) = inf
𝜆>0

{
𝜆 ln

(
𝜆 exp

(
1
𝜆

)
− 𝜆

)
− 𝜆 ln𝛼

}
, 𝛼 ∈ (0, 1).

Figure 1 plots EVaR1−𝛼 (𝑋) and TsVaR1−𝛼 (𝑋) with respect to different 𝛼 with 𝑞 = 0.4, 0.8 and 1. We
observe that the premium principle calculating via TsVaR is conservative when considering small 𝛼,
and that as 𝑞 ↗ 1, TsVaR converges to EVaR, which is consistent with our conclusion. The advantage
of TsVaR is that the size of 𝑞 can be determined according to the current state, which coincided with
the idea of Tsallis [25], that is, the parameter 𝑞 in Tsallis relative entropy can be viewed as a bias of the
original probability measure. If the insurer believes that the insurable loss 𝑋 has potential huge loss or
uncertainty about the distribution of 𝑋 , the insurer can choose smaller 𝑞 and 𝛼 to ensure its own safety.
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Figure 1. EVaR1−𝛼 and TsVaR1−𝛼 for a random variable 𝑋 ∼ 𝑈 (0, 1) with 𝑞 = 0.4, 0.8, and 1.

4. Banach spaces

Given a coherent risk measure 𝜌, one may define the semi-norm ‖ · ‖𝜌 := 𝜌(| · |) on the same model
space (see [17]). It is well known that risk functional 𝜌 is Lipschitz continuous with respect to the
associated norm ‖ · ‖𝜌 . In this section, we consider the TsVaR norm, which is generated by TsVaR as
follows, ‖ · ‖ = TsVaR𝛼 (| · |). Recall that we consider the nonnegative random variables. Then, the norm
can simplify to ‖ · ‖ = TsVaR𝛼 (·). We first show both 𝐸 and 𝐸 ′′ equipped with TsVaR norm ‖ · ‖ are
Banach spaces.

Theorem 4.1. For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, denote ‖ · ‖ := TsVaR𝛼 (·). Then, the pairs

(𝐸, ‖ · ‖) and (𝐸 ′′, ‖ · ‖)

are (different) Banach spaces.

Proof. First, we prove that ‖ · ‖ induced by TsVaR𝛼 is a norm. Since ‖ · ‖ is a semi-norm, it suffices to
prove that ‖𝑋 ‖ = 0 for 𝑋 ∈ 𝐸 ′′ implies 𝑋 = 0, a.s. Assume TsVaR𝛼 (𝑋) = 0. From (3.2), it follows that
E[𝑋] = 0, implying 𝑋 = 0 almost sure. Thus, ‖ · ‖ is a normal.

Next, we show that 𝐸 and 𝐸 ′′ are complete under the normal ‖ · ‖. Assume that 0 < 𝑞 < 1 since the
case of 𝑞 = 1 reduces to Theorem 2.14 in Ahmadi-Javid and Pichler [4]. We only consider the space
𝐸 ′′ since 𝐸 = 𝐸 ′′ when 0 < 𝑞 < 1. Let {𝑋𝑛} be a Cauchy sequence in 𝐸 ′′. For 𝜖 > 0, there exists
𝑛0 > 0 such that ‖𝑋𝑛 − 𝑋𝑚‖ < 𝜖 whenever 𝑚, 𝑛 > 𝑛0, and thus |‖𝑋𝑚‖ − ‖𝑋𝑛‖| ≤ ‖𝑋𝑛 − 𝑋𝑚‖ < 𝜖 . Thus,
lim𝑛→∞ ‖𝑋𝑛‖ exists and is finite, and ‖𝑋𝑛‖ < 𝐶 for all 𝑛 ≥ 1.

Now recall that ‖𝑋𝑛‖ = TsVaR𝛼 (𝑋𝑛), so there exists 𝜆𝑛 > 0 in (3.1) such that

1
𝜆𝑛

ln𝑞
[

1
1 − 𝛼

E[exp𝑞 (𝜆𝑛𝑋𝑛)]

]
< 𝐶. (4.1)

Since E[exp𝑞 (𝜆𝑛𝑋𝑛)] ≥ 1, we have

1
𝜆𝑛

ln𝑞
1

1 − 𝛼
≤

1
𝜆𝑛

ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝜆𝑛𝑋𝑛)]

)
< 𝐶.
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It follows that

𝜆𝑛 > 𝜆∗ := 𝐶−1 ln𝑞
(

1
1 − 𝛼

)
> 0,

and E[exp𝑞 (𝜆𝑋𝑛)] is well-defined by (4.1) for every 𝜆 < 𝜆∗. Recall from Remark 3.1 that (1 −

𝛼)𝑞−1E(𝑋) ≤ TsVaR𝛼 (𝑋). Thus, {𝑋𝑛} is a Cauchy sequence for 𝐿1 as well, which implies that there
exists 𝑋 ∈ 𝐿1 such that 𝑋𝑛

𝐿1
−→ 𝑋 . It remains to show that 𝑋 ∈ 𝐸 ′′ and that TsVaR𝛼 (|𝑋 − 𝑋𝑛 |) → 0 as

𝑛 → ∞.

• We prove 𝑋 ∈ 𝐸 ′′. If there exists a subsequence {𝑛𝑘 } such that 𝜆𝑛𝑘
→ 𝜆∗, from (4.1), it follows that

lim inf
𝑘→∞

E[exp𝑞 (𝜆𝑛𝑘
𝑋𝑛𝑘

)] ≤ (1 − 𝛼) exp𝑞 (𝜆
∗𝐶).

Thus, by Fatou’s lemma, we have

E[exp𝑞 (𝜆
∗𝑋)] ≤ lim inf

𝑘→∞
E[exp𝑞 (𝜆

∗𝑋𝑛𝑘
)] ≤ lim inf

𝑘→∞
E[exp𝑞 (𝜆𝑛𝑘

𝑋𝑛𝑘
)] ≤ (1 − 𝛼) exp𝑞 (𝜆

∗𝐶) < ∞,

implying 𝑋 ∈ 𝐸 ′′. If lim inf𝑛→∞ 𝜆𝑛 > 𝜆∗, then there exists a subsequence {𝑛𝑘 } such that 𝜆𝑛𝑘
> 𝜆∗ for

any 𝑘 ≥ 1. Thus, by Lemma 3.2 and (4.1),

1
𝜆∗

ln𝑞 (E[exp𝑞 (𝜆
∗𝑋𝑛𝑘

)]) =
1
𝜆∗

ln𝑞
(
E

[
exp𝑞

(
𝜆∗

𝜆𝑛𝑘

· 𝜆𝑛𝑘
𝑋𝑛𝑘

+

(
1 −

𝜆∗

𝜆𝑛𝑘

)
· 0

)])
≤

1
𝜆𝑛𝑘

ln𝑞 (E[exp𝑞 (𝜆𝑛𝑘
𝑋𝑛𝑘

)])

≤
1
𝜆𝑛𝑘

ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝜆𝑛𝑘
𝑋𝑛𝑘

)]

)
< 𝐶,

implying that E[exp𝑞 (𝜆
∗𝑋𝑛𝑘

)] < exp𝑞 (𝜆
∗𝐶). Again, applying Fatou’s lemma, we have

E[exp𝑞 (𝜆
∗𝑋)] ≤ lim inf

𝑘→∞
E[exp𝑞 (𝜆

∗𝑋𝑛𝑘
)] ≤ exp𝑞 (𝜆

∗𝐶) < ∞,

implying 𝑋 ∈ 𝐸 ′′.
• We prove that TsVaR𝛼 (|𝑋 − 𝑋𝑛 |) → 0. For 𝜖 > 0, choose 𝑛0 > 0 such that TsVaR𝛼 (|𝑋𝑛 − 𝑋𝑚 |) < 𝜖

for 𝑚, 𝑛 > 𝑛0. Therefore, there exists 𝜆𝑛,𝑚 > 0 such that

1
𝜆𝑛,𝑚

ln𝑞
(

1
1 − 𝛼

)
≤

1
𝜆𝑛,𝑚

ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝜆𝑛,𝑚 |𝑋𝑛 − 𝑋𝑚 |)]

)
< 𝜖,

implying that 𝜆𝑛,𝑚 > 𝜆∗1 := 𝜖−1 ln𝑞 (1/(1 − 𝛼)). Again, by Lemma 3.2, we have

1
𝜆∗1

ln𝑞 (E[exp𝑞 (𝜆
∗
1 |𝑋𝑛 − 𝑋𝑚 |)]) =

1
𝜆∗1

ln𝑞
(
E

[
exp𝑞

(
𝜆∗1
𝜆𝑛,𝑚

· 𝜆𝑛,𝑚 |𝑋𝑛 − 𝑋𝑚 |

)])
≤

1
𝜆𝑛,𝑚

ln𝑞 (E[exp𝑞 (𝜆𝑛,𝑚 |𝑋𝑛 − 𝑋𝑚 |)])

≤
1

𝜆𝑛,𝑚
ln𝑞

[
1

1 − 𝛼
E[exp𝑞 (𝜆𝑛,𝑚 |𝑋𝑛 − 𝑋𝑚 |)]

]
< 𝜖.

Applying Fatou’s lemma, we have

E[exp𝑞 (𝜆
∗
1 |𝑋 − 𝑋𝑚 |)] ≤ lim inf

𝑛→∞
E[exp𝑞 (𝜆

∗
1 |𝑋𝑛 − 𝑋𝑚 |)] < exp𝑞 (𝜆

∗
1𝜖).
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Hence,

1
𝜆∗1

ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝜆
∗
1 |𝑋 − 𝑋𝑚 |)]

)
=

1
𝜆∗1

(1 − 𝛼)𝑞−1 ln𝑞 E[exp𝑞 (𝜆
∗
1 |𝑋 − 𝑋𝑚 |)] +

1
𝜆∗1

ln𝑞
(

1
1 − 𝛼

)
≤ (1 − 𝛼)𝑞−1𝜖 + 𝜖 .

Since 𝜖 is arbitrary, it follows that TsVaR𝛼 (|𝑋𝑛 − 𝑋 |) → 0. Thus, 𝐸 ′′ is complete.

This completes the proof of the theorem. �

In the next theorem, we proceed with a comparison of the TsVaR norm with the 𝐿 𝑝-norms ‖ · ‖ 𝑝 .

Theorem 4.2. For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, denote ‖ · ‖ = TsVaR𝛼 (·). Then,

(1 − 𝛼)𝑞−1‖𝑋 ‖1 ≤ ‖𝑋 ‖, 𝑋 ∈ 𝐸 ′′, (4.2)

and

‖𝑋 ‖ ≤ (1 − 𝛼)𝑞−1‖𝑋 ‖∞, 𝑋 ∈ 𝐿∞
+ . (4.3)

Furthermore, for every 1 < 𝑝 < 𝜅𝑞 , there exists a finite constant 𝑐𝑝,𝑞 such that

‖𝑋 ‖ 𝑝 ≤ 𝑐𝑝,𝑞 · TsVaR𝛼 (𝑋), 𝑋 ∈ 𝐸 ′′, (4.4)

where

𝜅𝑞 =

{
(2 − 𝑞)/(1 − 𝑞), 0 < 𝑞 < 1,
+∞, 𝑞 = 1,

and

𝑐𝑝,𝑞 = max
{
(1 − 𝛼)1−𝑞 ,

ln𝑞 (1 − 𝛽)2 − ln𝑞 (1 − 𝛽)

ln𝑞 (1 − 𝛼)2 − ln𝑞 (1 − 𝛼)
· (1 − 𝛽)1−𝑞

}

with 𝛽 = 1 − exp𝑞 (1 − 𝑝).

Proof. Note that (4.2) and (4.3) follow from (3.2), and that Theorem 3.1 in Ahmadi-Javid and Pichler
[4] gives the proof for the case 𝑞 = 1.

To prove (4.4), we assume 0 < 𝑞 < 1. For any fixed 𝑝 such that 1 < 𝑝 < 𝜅𝑞 , it follows that
1− 𝑝 > 1−𝜅𝑞 = −1/(1−𝑞). Define 𝛽 = 1−exp𝑞 (1− 𝑝) so that 𝛽 ∈ (0, 1), and denote 𝜙(𝑥) = (ln𝑞 (𝑥))

𝑝 .
It can be checked that

𝜙′′(𝑥) =
𝑝

𝑥2𝑞 (ln𝑞 (𝑥))
𝑝−2

(
𝑝 − 1 + 𝑞 ln𝑞

1
𝑥

)
,
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which is negative and, hence, 𝜙(𝑥) is concave, when 𝑥 ≥ 1. Since exp𝑞 (𝜆𝑋)/exp𝑞 (1 − 𝑝) ≥ 1, by
Jensen’s inequality, we have

1
𝜆

ln𝑞
(

1
1 − 𝛽

E[exp𝑞 (𝜆𝑋)]

)
=

1
𝜆

(
𝜙

[
1

1 − 𝛽
E[exp𝑞 (𝜆𝑋)]

] )1/𝑝

≥
1
𝜆

[
E ◦ 𝜙

( exp𝑞 (𝜆𝑋)

1 − 𝛽

)]1/𝑝

=
1
𝜆

(
E

[
(1 − 𝛽)𝑞−1𝜆𝑋 + ln𝑞

(
1

1 − 𝛽

)] 𝑝)1/𝑝

≥
1
𝜆
(E[(1 − 𝛽)𝑞−1𝜆𝑋] 𝑝)1/𝑝 = (1 − 𝛽)𝑞−1‖𝑋 ‖ 𝑝 . (4.5)

Taking the infimum in (4.5) among all 𝜆 > 0 yields that

‖𝑋 ‖ 𝑝 ≤ (1 − 𝛽)1−𝑞 · TsVaR𝛽 (𝑋).

Therefore, the desired result (4.4) follows from Proposition 3.11 immediately. �

4.1. Relation to Orlicz spaces

In this subsection, we discuss the relationship between the Tsallis spaces and their equivalent Orlicz
hearts and Orlicz spaces. Let Φ : [0, +∞) → [0, +∞) be convex with Φ(0) = 0, Φ(1) = 1 and
lim𝑥→∞ Φ(𝑥) = ∞. The convex conjugate of Φ is defined as

Ψ(𝑧) := sup
𝑥∈R+

{𝑥𝑧 −Φ(𝑥)}, 𝑧 ∈ R+.

These functions are called a pair of complementary Young functions in the context of Orlicz spaces with

𝑥𝑧 ≤ Φ(𝑥) +Ψ(𝑧), 𝑥, 𝑧 ∈ R+.

Definition 4.1. For a pair Φ and Ψ of complementary Young functions, define the spaces

𝐿Φ = {𝑋 ∈ 𝐿0
+ : E[Φ(𝑐𝑋)] < ∞ for some 𝑐 > 0},

𝑀Φ = {𝑋 ∈ 𝐿0
+ : E[Φ(𝑐𝑋)] < ∞ for all 𝑐 > 0},

and the norms

‖𝑋 ‖Φ = inf
{
𝜆 > 0 : E

[
Φ

(����𝑋𝜆
����) ] ≤ 1

}
,

‖𝑋 ‖∗Φ = sup
E[Ψ( |𝑌 |) ] ≤1

E[𝑋𝑌 ] = inf
𝑡>0

{
1
𝑡
(1 + E[Φ(𝑡 |𝑋 |)])

}
.

The norms ‖𝑋 ‖Φ and ‖𝑋 ‖∗Φ are called the Luxemburg norm and Orlicz norm, respectively. The
spaces 𝐿Φ and 𝑀Φ are called the Orlicz space and Orlicz heart, respectively. Similarly, define 𝐿Ψ and
𝑀Ψ as well as the norms ‖𝑋 ‖Ψ and ‖𝑋 ‖∗Ψ.

In the rest of this paper, we assume 0 < 𝑞 ≤ 1 and consider the following pair of Young functions

Φ(𝑥) :=
{
𝑥, for 𝑥 ≤ 1,
exp𝑞 (𝑥 − 1), for 𝑥 > 1, (4.6)
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and

Ψ(𝑧) :=
{

0, for 𝑧 ≤ 1,
𝑞𝑧 ln𝑞 (𝑧1/𝑞), for 𝑧 > 1. (4.7)

Proposition 4.3. For 0 < 𝑞 ≤ 1, let Φ and Ψ be a pair of Young functions defined by (4.6) and (4.7),
respectively. Then 𝐸 = 𝑀Φ, 𝐸 ′ = 𝑀Ψ ⊂ 𝐿Ψ, and 𝐸 ′′ = 𝐿Φ. Indeed, for 0 < 𝛼 < 1, the norms

‖ · ‖ = TsVaR𝛼 (·) and ‖ · ‖∗Φ

are equivalent on 𝐸 ′′. Particularly, we have

‖𝑋 ‖ ≤ 𝑐𝑞 (1 − 𝛼)𝑞−1‖𝑋 ‖∗Φ, 𝑌 ∈ 𝐸 ′′,

where 𝑐𝑞 = max{exp𝑞 (1),− ln𝑞 (1 − 𝛼)}.

Proof. It is easy to show that, for 𝑥 ≥ 0,

ln𝑞 (𝑥) ≤ 𝑥 − 1, exp𝑞 (𝑥) − 1 − ln𝑞 (1 − 𝛼) ≤ 𝑐𝑞 �(1 +Φ(𝑥)),

where 𝑐𝑞 = max{exp𝑞 (1),− ln𝑞 (1 − 𝛼)}. Then, for 𝑋 ∈ 𝐿0
+,

ln𝑞

(
1

1 − 𝛼
E[exp𝑞 (𝜆𝑋)]

)
= (1 − 𝛼)𝑞−1(ln𝑞 E[exp𝑞 (𝜆𝑋)] − ln𝑞 (1 − 𝛼))

≤ (1 − 𝛼)𝑞−1(E[exp𝑞 (𝜆𝑋)] − 1 − ln𝑞 (1 − 𝛼))

≤ 𝑐𝑞 (1 − 𝛼)𝑞−1(1 + E[Φ(𝜆𝑋)]).

Thus, for 𝑋 ∈ 𝐿Φ, we have

TsVaR𝛼 (𝑋) ≤ 𝑐𝑞 (1 − 𝛼)𝑞−1 inf
𝜆>0

{
1
𝜆
(1 + EΦ[𝜆𝑋])

}
= 𝑐𝑞 (1 − 𝛼)𝑞−1‖𝑋 ‖∗Φ.

This proves that 𝐿Φ ⊂ 𝐸 ′′. To prove the converse inequality, let 𝑋 ∈ 𝐸 ′′, that is, there exists 𝜆 > 0 such
that E[exp𝑞 (𝜆𝑋)] < ∞. Then 𝑋 ∈ 𝐿Φ since Φ(𝑥) ≤ exp𝑞 (𝑥). So we get 𝐿Φ = 𝐸 ′′. Similarly, 𝐸 = 𝑀Φ.

Now consider the identity map 𝐴 : (𝐿Φ, ‖ · ‖∗Φ) → (𝐸 ′′,TsVaR𝛼 (·)), which is bounded. By the above
reasoning, 𝐴 is bĳective. Since (𝐸 ′′,TsVaR𝛼 (·)) is a Banach space by Theorem 4.1, it follows from
the bounded inverse theorem (open mapping theorem, see [21] Corollary 2.12) that the inverse 𝐴−1 is
continuous as well, that is, there is a constant 𝑐′ < ∞ such that

‖𝑋 ‖∗Φ ≤ 𝑐′ TsVaR𝛼 (𝑋), 𝑋 ∈ 𝐸 ′′.

Therefore, ‖ · ‖ = TsVaR𝛼 (·) and ‖ · ‖∗Φ are equivalent on 𝐸 ′′.
Finally, note that Ψ does not satisfy (Δ2) condition, that is, Ψ(2𝑥) ≤ 𝑘𝜓(𝑥) for every 𝑘 > 2 whenever

𝑥 is large enough. By Theorems 2.1.11 and 2.1.17 of Edgar et al. [9], we know 𝑀Ψ ⊂ 𝐿Ψ. This completes
the proof of the proposition. �

4.2. Characterization of the dual norm

In this subsection, we consider the associated dual norm of TsVaR𝛼:

‖𝑍 ‖∗ := sup
𝑋 ∈𝐸′′,TsVaR𝛼 (𝑋 ) ≤1

E[𝑋𝑍] = sup
𝑋 ∈𝐸′′,𝑋≠0

E[𝑋𝑍]

TsVaR𝛼 (𝑋)
, 𝑍 ∈ 𝐸 ′.
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Theorem 4.4. For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, we have

‖𝑍 ‖∗= sup
𝑐>0

E[𝑍 ln𝑞 ((𝑍/𝑐)1/𝑞 ∨ 1)]
ln𝑞

( 1
1−𝛼E[(𝑍/𝑐)

1/𝑞 ∨ 1]
) , 𝑍 ∈ 𝐸 ′, (4.8)

where 𝑥 ∨ 𝑦 = max{𝑥, 𝑦}.

Proof. The proof is similar to that of Theorem 4.4 in Ahmadi-Javid and Pichler [4]. For completeness,
we give the details. Note that, for 𝑍 ∈ 𝐸 ′,

‖𝑍 ‖∗ = sup
TsVaR𝛼 (𝑋 ) ≤1

E[𝑋𝑍] = sup
𝑋≠0

E[𝑋𝑍]

TsVaR𝛼 (𝑋)

= sup
𝑋≠0

E[𝑋𝑍]

inf𝜆>0

{
𝜆−1 ln𝑞

(
1

1−𝛼E[exp𝑞 (𝜆𝑋)]
)}

= sup
𝑋≠0

sup
𝜆>0

E[𝜆𝑋𝑍]

ln𝑞

(
1

1−𝛼E[exp𝑞 (𝜆𝑋)]
)

= sup
𝑋≠0

E[𝑋𝑍]

ln𝑞

(
1

1−𝛼E
[
exp𝑞 (𝑋)

] ) . (4.9)

For any 𝑐 > 0, define 𝑋𝑐 = ln𝑞 ((𝑍/𝑐)
1/𝑞 ∨ 1). Then 𝑋𝑐 ≥ 0 and

‖𝑍 ‖∗ ≥ sup
𝑐>0

E[𝑍 ln𝑞 ((𝑍/𝑐)1/𝑞 ∨ 1)]
ln𝑞

( 1
1−𝛼E[(𝑍/𝑐)

1/𝑞 ∨ 1]
) .

To obtain the converse inequality, from (4.9), it follows that 𝑑 ≥ ‖𝑍 ‖∗ is equivalent to

E[𝑋𝑍] − 𝑑 · ln𝑞

(
1

1 − 𝛼
E[exp𝑞 (𝑋)]

)
≤ 0, ∀𝑋 ≥ 0.

We maximize the left-hand side of the above expression with respect to 𝑋 ≥ 0. The Lagrangian of this
maximization problem is

𝐿(𝑋, 𝜇) = E[𝑋𝑍] − 𝑑 · ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝑋)]

)
− E[𝑋𝜇],

where 𝜇 is the Lagrange multiplier associated with the constraint 𝑋 ≥ 0. The Lagrangian 𝐿 is
differentiable, and its directional derivative with respect to 𝑋 in direction 𝐻 ∈ 𝐸 ′′ is

𝜕

𝜕𝑋
𝐿(𝑋, 𝜇)𝐻 = E[(𝑍 − 𝜇)𝐻] − 𝑑

(
1

1 − 𝛼

)1−𝑞

[E exp𝑞 (𝑋)]
−𝑞E[(exp𝑞 (𝑋))

𝑞𝐻] .

The derivative vanishes in every direction 𝐻 so that 𝑍 − 𝜇 = 𝑐[exp𝑞 (𝑋)]
𝑞 with 𝑐 = 𝑑 (1 − 𝛼)𝑞−1

[E exp𝑞 (𝑋)]
−𝑞 > 0. By complimentary slackness for the optimal 𝑋 and 𝜇,

𝑋 > 0 ⇐⇒ 𝜇 = 0 ⇐⇒ 𝑍 = 𝑐[exp𝑞 (𝑋)]
𝑞 > 𝑐,

which is equivalent to

𝑋 =

{
ln𝑞 (𝑍/𝑐)

1/𝑞 , if 𝑋 > 0
0, if 𝑋 = 0 = ln𝑞 ((𝑍/𝑐)1/𝑞 ∨ 1).
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This completes the proof of the theorem. �

In the next proposition, we reconsider the domain of the objective function in (4.8).

Proposition 4.5. For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, the objective function

ℎ𝛼 (𝑐) :=
E[𝑍 ln𝑞 ((𝑍/𝑐)1/𝑞 ∨ 1)]

ln𝑞
( 1

1−𝛼E((𝑍/𝑐)
1/𝑞 ∨ 1)

)
in the expression of the dual norm (4.8) can be continuously extend to [0,∞), and

lim
𝑐↓0

ℎ𝛼 (𝑐) = (1 − 𝛼)1−𝑞 ‖𝑍 ‖1/𝑞 . (4.10)

Furthermore, the supremum is attained at some 𝑐 ≥ 0. If 𝑍 ≠ 0 is bounded, then the optimal 𝑐 satisfies
0 ≤ 𝑐 < ‖𝑍 ‖∞.

Proof. First, note that ℎ𝛼 (𝑐) is continuous in 𝑐 ∈ (0,∞) and ℎ𝛼 (𝑐) ≥ 0. Note that

ℎ𝛼 (𝑐) −→
(1 − 𝛼)1−𝑞E[𝑍1/𝑞]

(E[𝑍1/𝑞])1−𝑞 = (1 − 𝛼)1−𝑞 ‖𝑍 ‖1/𝑞 , 𝑐 → 0,

and ℎ𝛼 (𝑐) −→ 0 as 𝑐 → +∞. On the other hand, for 𝑐 ≥ ‖𝑍 ‖∞, the numerator of ℎ𝛼 is 0 and, hence,
ℎ𝛼 (𝑐) = 0. Thus, the desired result follows from the continuity of ℎ𝛼 (·) on [0, ‖𝑍 ‖∞]. �

From Theorem 4.4, for given 𝑍 ∈ 𝐸 ′, we can identify a random variable 𝑋∗ ∈ 𝐸 ′′, which maximizes

‖𝑍 ‖∗= sup
𝑋 ∈𝐸′′,𝑋≠0

E[𝑋𝑍]

TsVaR𝛼 (𝑋)
. (4.11)

Proposition 4.6. For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, let 𝑍 ∈ 𝐸 ′, and suppose that 𝑐∗ > 0 be optimal in
(4.8). Then,

𝑋 := ln𝑞 ((𝑍/𝑐∗)1/𝑞 ∨ 1) (4.12)

satisfies the equality

‖𝑍 ‖∗=
E[𝑋𝑍]

TsVaR𝛼 (𝑋)
.

Proof. By (4.8) and (4.12), we have

‖𝑍 ‖∗ =
E[𝑍𝑋]

ln𝑞

(
1

1−𝛼E[exp𝑞 (𝑋)]
) .

Thus,

E[𝑍𝑋] ≤ ‖𝑍 ‖∗·TsVaR𝛼 (𝑋) ≤ ‖𝑍 ‖∗· ln𝑞
(

1
1 − 𝛼

E[exp𝑞 (𝑋)]

)
= E[𝑍𝑋],

where the inequalities follows from (4.11) and (3.1), respectively. This completes the proof. �

For 0 < 𝑞 ≤ 1 and 0 < 𝛼 < 1, let 𝑋 ∈ 𝐸 ′′ be fixed. How to identify a random variable 𝑍 ∈ 𝐸 ′, which
maximizes

TsVaR𝛼 (𝑋) := sup
𝑍 ∈𝐸′,𝑍≠0

E[𝑋𝑍]

‖𝑍 ‖∗
. (4.13)

Ahmadi-Javid and Pichler [4] gave a positive answer for 𝑞 = 1. It is still an open question for 0 < 𝑞 < 1.
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5. Conclusion

In this paper, we generalize the concept of EVaR, defined by Ahmadi-Javid [2], to TsVaR, using the
generalized 𝑞-logarithm and generalized 𝑞-exponential functions. TsVaR is not a coherent premium
principle, even not a convex premium principle. This is caused by a lack of cash invariance in general.
We show that in the class of TsVaR with 𝑞 ∈ (0, 1], only EVaR corresponding to 𝑞 = 1 is a coherent
premium principle. Dual representation for TsVaR is established by using the variational representation
for the generalized relative entropy, which is due to Ma and Tian [16]. We compare TsVaR’s under
different confidence levels 𝛼 and obtain the strong monotonicity of TsVaR. Finally, we consider the
norm and dual norm induced by TsVaR constrained on the related spaces 𝐸, 𝐸 ′, and 𝐸 ′′, which are
called the primal, dual, and bidual Tsallis spaces, respectively. It is proven that (𝐸, ‖ · ‖) and (𝐸 ′′, ‖ · ‖)
are Banach spaces when the norm ‖ · ‖ is induced by TsVaR. We also give the explicit formula of the
dual TsVaR norm.
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Appendix A

Proof. We only prove part (4) since the others are trivial. Denote 𝒛 = (𝑧1, . . . , 𝑧𝑛) =
(exp𝑞 (𝑥1), . . . , exp𝑞 (𝑥𝑛)), and let 𝒛� represent the transpose of 𝒛 and 1 = (1, . . . , 1). Then, the Hessian
matrix of 𝑓 (𝒙) is

∇2 𝑓 (𝒙) =
𝑞

(1𝒛�)𝑞+1 [(1𝒛
�) diag(𝒛2𝑞−1) − (𝒛�)𝑞 𝒛𝑞] .

To prove that 𝑓 (𝒙) is convex, it suffices to show that for all 𝒗 = (𝑣1, . . . , 𝑣𝑛), we have

𝒗∇2 𝑓 (𝒙)𝒗� =
𝑞

(1𝒛�)𝑞+1

⎡⎢⎢⎢⎢⎣
(

𝑛∑
𝑖=1

𝑧𝑖

) (
𝑛∑
𝑖=1

𝑣2
𝑖 𝑧

2𝑞−1
𝑖

)
−

(
𝑛∑
𝑖=1

𝑣𝑖𝑧
𝑞
𝑖

)2⎤⎥⎥⎥⎥⎦ ≥ 0,

which follows from the Cauchy–Schwarz inequality. �

Proof. First note that the set {(𝑋, 𝜆) : 𝜆 > 0,E[exp𝑞 (𝜆𝑋)] < ∞} is convex. Then, it suffices to show
that for 𝛽 ∈ [0, 1],

𝑔𝛼 (𝛽𝑋 + (1 − 𝛽)𝑌, 𝛽𝜆1 + (1 − 𝛽)𝜆2) ≤ 𝛽𝑔𝛼 (𝑋, 𝜆1) + (1 − 𝛽)𝑔𝛼 (𝑌, 𝜆2),

which can be rewrite as

[𝛽𝜆1 + (1 − 𝛽)𝜆2] ln𝑞

[
1
𝛼
E

[
exp𝑞

(
𝛽𝑋 + (1 − 𝛽)𝑌

𝛽𝜆1 + (1 − 𝛽)𝜆2

)] ]
≤ 𝛽𝜆1 ln𝑞

[
1
𝛼
E

[
exp𝑞

(
𝑋

𝜆1

)] ]
+ (1 − 𝛽)𝜆2 ln𝑞

[
1
𝛼
E

[
exp𝑞

(
𝑌

𝜆2

)] ]
.

By Proposition 2.1(2), the above inequality reduces to

[𝛽𝜆1 + (1 − 𝛽)𝜆2] ln𝑞 E
[
exp𝑞

(
𝛽𝑋 + (1 − 𝛽)𝑌

𝛽𝜆1 + (1 − 𝛽)𝜆2

)]
≤ 𝛽𝜆1 ln𝑞 E

[
exp𝑞

(
𝑋

𝜆1

)]
+ (1 − 𝛽)𝜆2 ln𝑞 E

[
exp𝑞

(
𝑌

𝜆2

)]
. (A.1)

Setting 𝜆 = 𝛽𝜆1 + (1 − 𝛽)𝜆2 and 𝑤 = 𝛽𝜆1/𝜆, (A.1) is equivalent to

ln𝑞 E
[
exp𝑞

(
𝑤
𝑋

𝜆1
+ (1 − 𝑤)

𝑌

𝜆2

)]
≤ 𝑤 ln𝑞 E

[
exp𝑞

(
𝑋

𝜆1

)]
+ (1 − 𝑤) ln𝑞 E

[
exp𝑞

(
𝑌

𝜆2

)]
,

which follows from Proposition 2.1(4). This completes the proof of the lemma. �

Proof. For any 𝜖 > 0 and 𝑋,𝑌 ∈ 𝐸 ′′, there exist 𝜆1, 𝜆2 > 0 such that E[exp𝑞 (𝜆1𝑋)] < ∞,
E[exp𝑞 (𝜆2𝑌 )] < ∞ and

𝑔𝛼 (𝑋, 𝜆1) ≤ inf
𝜆>0

{𝑔𝛼 (𝑋, 𝜆)} + 𝜖, 𝑔𝛼 (𝑌, 𝜆2) ≤ inf
𝜆>0

{𝑔𝛼 (𝑋, 𝜆)} + 𝜖

https://doi.org/10.1017/S0269964822000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000444


20 Z. Zou et al.

by using the continuity of 𝑔𝛼 (𝑋, 𝜆) in 𝜆 > 0. By Lemma 3.2, 𝑔𝛼 (𝑋, 𝜆) is convex in (𝑋, 𝜆). So, for any
𝛽 ∈ [0, 1],

inf
𝜆>0

{𝑔𝛼 (𝛽𝑋 + (1 − 𝛽)𝑌, 𝜆)} ≤ 𝑔𝛼 (𝛽𝑋 + (1 − 𝛽)𝑌, 𝛽𝜆1 + (1 − 𝛽)𝜆2)

≤ 𝛽𝑔𝛼 (𝑋, 𝜆1) + (1 − 𝛽)𝑔𝛼 (𝑌, 𝜆2)

≤ 𝛽 inf
𝜆>0

{𝑔𝛼 (𝑋, 𝜆)} + (1 − 𝛽) inf
𝜆>0

{𝑔𝛼 (𝑋, 𝜆)} + 𝜖 .

Therefore, the desired result follows by letting 𝜖 ↓ 0. �

Proof. We use the idea in the proof of Lemma 1.3 in Ahmadi-Javid [1]. Define 𝑓 (𝑥) = 𝑥𝑞 ln𝑞 (𝑥), and
denote 𝑌 = dQ/dP. Then (3.5) can be rewritten as

sup
𝜆>0

𝐿(𝜆) = inf
Q�P,E[ 𝑓 (𝑌 ) ] ≤− ln𝑞 (𝛼)

{−E[𝑌𝑞𝑋]},

where

𝐿(𝜆) = inf
𝑌 ∈𝑆

{
−E[𝑋𝑌𝑞] + 𝜆

(
E[ 𝑓 (𝑌 )] − 𝛼1−𝑞 ln𝑞

1
𝛼

)}
= inf

𝑌 ∈𝑆
{−E[𝑋𝑌𝑞] + 𝜆(E[ 𝑓 (𝑌 )] + ln𝑞 (𝛼))}

is the Lagrangian function associated with the optimization problem in the right-hand side, and 𝑆 = {𝑌 ∈

𝐿1
+ : E(𝑌 ) = 1}. Hence, it suffices to show that the optimal duality gap for optimization problem in the

right-hand side is zero. This is possible by showing that the generalized Slater’s constraint qualification
in Jeyakumar and Wolkowicz [14] holds for this problem, that is, there exists𝑌 ∈ 𝐿1 satisfyingE[𝑌 ] = 1,
𝑌 ∈ 𝐿1

+, and E[ 𝑓 (𝑌 )] < 𝛼1−𝑞 ln𝑞 (1/𝛼) = − ln𝑞 (𝛼). Note that 𝑌 = 1 fulfills these conditions. Thus, we
complete the proof of the lemma. �
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