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SMALL EMBEDDINGS OF PARTIAL DIRECTED CYCLE SYSTEMS

C.C. LINDNER AND C.A. RODGER

In this paper, a generalisation of the Andersen, Hilton, Rodger Theorem for em-
bedding partial idempotent latin squares is proved. This result is then used to
prove that a partial directed m-cycle system of order n can be embedded in a
directed m-cycle system of order (2n + l)"i if m is odd, of order 2nm if m ^ 8
is even, 12n + 1 if m = 6 and approximately In + \/2n if m = 4.

1. INTRODUCTION

By a cyclic triangle of the complete directed graph Dn (based on the set 5)
is meant a collection of three directed edges of the form {(o,6),(6,c),(c,a)}, where
a, b, and c are three distinct elements of S. We will denote the cyclic triangle
{(a, &),(&, c),(c, a)} by (a, 6, c), (6, c, a) or (c, a, 6). A Mendelsohn triple system (MTS)
is a pair (S, T), where T is a collection of edge disjoint cyclic triangles which partition
the edge set of Dn with vertex set 5. The number \S\ = n is called the order (or
size) of the Mendelsohn triple system (S, T) and it is (by now) well-known [9] that the
spectrum of MTSs (that is, the set of all n such that a MTS of order n exists) is
precisely the set of all n = 0 or 1 (mod 3), except n = 6 for which no such system
exists. It is trivial to see that if (S,T) is a MTS of order n then \T\ = n(n - l ) /3 .

A partial MTS of order n is a pair (S,P), where P is a collection of edge disjoint
cyclic triangles of the edge set of Dn with vertex set 5. The difference between a
(complete) MTS and a partial MTS is that the edge disjoint cyclic triangles belonging
to a partial MTS do not necessarily include all of the edges of Dn.

EXAMPLE 1.1. {S,P) is a partial MTS of order 5, where 5 = {1,2,3,4,5} and P =
{(1,2,3),(3,2,4),(3,1,5)}.

Now, given a partial MTS (S,P) the obvious question of completion arises. That
is, can we decompose E(Dn)\E(P) into cyclic triangles? The above example shows
that this cannot be done in general since |5| = 5 is not the order of a MTS. Since a
partial MTS cannot necessarily be completed to a MTS, the problem of whether or not
a partial MTS can always be embedded in a (complete) MTS is immediate. The partial
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MTS (S,P) is said to be embedded in the MTS (S*,T) provided S C S* and P C T.
Naturally, we would like |5*| to be as small as possible.

In 1971 Lindner [4] showed that a partial MTS of order n can be embedded in a
MTS of order < 22 n . In 1976 Lindner and Cruse [5] reduced the size of the containing
MTS to 12n. This was subsequently reduced to 6n + 3 [1] in 1982 by Andersen, Hilton
and Rodger and finally in 1986 to the smallest admissible order ^ 4n by Rodger [10].
Although the best possible embedding is the smallest admissible order ^ In + 1, the
approximately 4n embedding by C.A. Rodger is the best to date. This is where the
partial MTS embedding problem stands at the moment. (We remark that if the partial
system is complete, then the best possible embedding can be obtained. In particular
D.G. Hoffman and C.C. Lindner proved in 1981 that a MTS of order n can be embedded
in a MTS of order t for every admissible t ^ 2n + 1 [3].)

A directed m-cycle of Dn (based on S ) is a collection of m directed edges of the
form {(zi.a^), {x2, x3), {xs,Xi),..., (a;m_i,zTO),(a:m,a;i)} where x1,z2,x3, •.. ,xm are
m distinct elements of S. We will denote this directed m-cycle by any cyclic shift of
(xi,X2,X3,... ,xm). A directed m-cycle system (mDCS) is a pair (S,C), where C is
a collection of edge disjoint directed m-cycles which partition the edge set of Dn with
vertex set S. As with MTSs, the number \S\ = n is called the order (or size) of the
mDCS (S, C) and of course \C\ = n(n — l ) /m.

Now a Mendelsohn triple system is a directed 3-cycle system. Since there is nothing
particularly sacred about the number 3, we can ask the same questions for directed m-
cycle systems that are asked for directed 3-cycle systems. In particular, for a given
m ^ 4, we can ask for the spectrum (that is, the set of all n such that an mDCS of
order n exists) of mDCSs as well as for an embedding (as small as possible) of partial
mDCSs. An obvious definition here: a partial mDCS is a pair (S,P), where P is an
edge disjoint collection of directed m-cycles.

The obvious necessary conditions for the existence of a mDCS of order n are

{ (1) n ^ m, if n > 1, and

(2) n(n — l)/m is an integer.

For a given m Wilson [13] has shown that these necessary conditions are sufficient
for sufficiently large n. However the general spectrum problem is far far from being
settled [6]. Wilson has also shown that a partial mDCS can be embedded in a mDCS

[13]. The containing system however is exponentially large with respect to the partial
system. Apart from Mendelsohn triple systems, nothing has been done on the problem
of obtaining a "small" embedding for partial mDCSs. (The analogous problem for
undirected cycle systems is addressed by the authors in [7].) The purpose of this paper
is to rectify this situation by showing that a partial mDCS of order n can always be
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embedded in a mDCS of order (2n + l )m when m is odd, and order nm when m is
even, m ^ 4 or 6. For m = 4 or 6 the bounds are 4n + 1 and 6n + 1 respectively.
Additionally, we give an ad hoc argument to reduce the size of the embedding for m = 4
to about In + -\/2n. Since the techniques of proof are completely different for m odd,
m even, and 771 = 4, we will handle each case in a separate section.

Finally, the principal ingredient in the embedding for odd m is a generalisation
of a theorem due to Andersen, Hilton and Rodger [1] from embedding partial idem-
potent quasigroups to embedding partial idempotent groupoids. So, we will begin our
discussion with this generalisation.

2. A GENERALISATION OF THE ANDERSEN, HlLTON, RODGER THEOREM

In [1] Andersen, Hilton and Rodger proved the following result.

THEOREM 2 . 1 . A partial idempotent quasigroup of order r (based on
{1 ,2 ,3 , . . . ,r}) can be embedded in an idempotent quasigroup of order t, for all
t ^ 2r + 1.

To obtain a small embedding for partial directed m-cycle systems, we need to
generalise this result. But first we need some definitions.

An r x a (partial) groupoid based on { 1 , . . . ,<} is an r x s array R in which each
cell is occupied by (at most) one of the symbols from the set {1, . . . , < } . If the symbols
in each row of R are all different then we say that R is row latin, and if the symbols in
each column of R are all different then we say that R is column latin. If r = s then we
say that R has order r. If R is a (partial) groupoid that is both row latin and column
latin then we have the usual definition of a (partial) r X s latin rectangle. Let R(i)
denote the number of times the symbol i £ { 1 , . . . , t} occurs in R. A hole of order r
is a subset H of the set of cells {(i,j) | 1 ^ i,j ^ r}. A patterned hole of order r

based on { 1 , . . . , t} is a triple (H, R, C) where R and C are partial groupoids of order
r based on {1, . . . , < } , and H is a hole of order r, that satisfy:

(a) cell (i,j) of R contains a symbol if and only if cell (t, j ) of C contains a
symbol,

(b) H = {{i,j) I cell (i,j) of R contains a symbol},
(c) R is row latin and C is column latin, and
(d) R(i) = C(i) for 1 ^ t ^ t (we say that R and C have the same frequency).

In what follows, unless otherwise stated, everything is based on {1, . . . , < } . We will
denote by P(H) a partial latin rectangle in which the empty cells are precisely the cells
belonging to the hole H. We will say that the patterned hole (H, R, C) is embedded in
the partial latin rectangle P(H) if and only if the groupoid P(R) obtained from P{S)
by filling in H with R is row latin, and the groupoid P(C) obtained from P(B) by
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filling in H with C is column latin. Finally, we say that the patterned hole (H, R, C)
of order r is idempotent if both R and C are idempotent (so cell (i,i) contains symbol
i for 1 ^ i ^ T).

We shall need the following result of Hall [2].

THEOREM 2 . 2 . Every r xt latin rectangle based on {1,2,3,. . . , t} (r < t) can
be embedded in a latin square of order t.

We are now ready to state and prove the generalisation of Theorem 2.1.

THEOREM 2 . 3 . An idempotent patterned hole (H,R,C) of order r based on
{ l , . . . , r } can be embedded in a partial idempotent latin square P(H) of order
t (based on {1,...,<}) for all t ^ 2r + 1.

PROOF: Clearly we can assume that r ^ 4. Suppose that a symbol, say symbol r,
occurs exactly once in R. Then either all cells (u,v), 1 ^ u,v ^ r — 1, are filled with
symbols 1, . . . ,r — 1, or one such cell (x,y) is empty. In the former case, all cells in
rows and columns r of R and C are empty except for the diagonal cell, so the result
follows by deleting rows and columns r from R and C and then applying Theorem
2.1. In the latter case, place symbol r in cell (x,y) of both R and C. Continue this
process until in the resulting partial groupoids R' and C" we have R'(i) = C'(i) ^ 2
for 1 ^ i ^ r, R' is row latin, and C is column latin.

If R'(i) — r for 1 ^ i ^ r then clearly the result follows from Theorem 2.1, so we
can assume that at least one cell of R' (and so also of C") is empty. Let (j/, z) be such
an empty cell (so y ^ z).

The proof of the theorem has three main steps (the second of which is quite long!).
As a first step, we embed (H',R', C") in a partial (r + 1) x (r + 2) latin rectangle

Lr+i with the following properties:

f 2 r + 4 - t {oir + l ^ i ^ t - 2 ,
( 1 ) Lr(R')(i) L(C'){i)>\r + 1 ( ) { ) > \ _ _ , , . .

^ 2r + 3 — t otherwise,
(2) cells (r,r + l) ,(r ,r + 2), (r + l ,r + 1) and ( r + l , r + 2) contain symbols,

t,t — l,t — 1 and t respectively, and
(3) Lr+i(R') and Lr+i(C) are row and column latin respectively.

To do this when t ^ 2r + 2, let L be an incomplete (r + 1) x (r + 2) latin rectangle
on the symbols {r+1, ...,<} that satisfies (2) and, if t — 2r+3, then the symbol missing
from row r + 1 of L occurs in column r + 2 of L. L is easy to construct by first filling
rows r and r + 1 as required and then using Hall's Theorem. Fill each cell (j,k) £ H
of jDr+i with the symbol in cell (j,k) of L. It is easy to check that Lr+i(R') satisfies
(1) and that (3) is satisfied.

If t = 2r + 1 then let L be a latin square of order r + 2 on the symbols
{0,r + l , r + 2, . . . ,2r + 1} (0 is a dummy symbol that does not appear in £P+i) in
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which cells (r,r + l ) , ( r , r + 2),{r + l , r + l ) , ( r + l , r + 2),(r + 2,r + l ) , ( r + 2,r + 2)
and (r + l ,z) contain symbols 2r + l ,2r ,0,2r + l ,2r ,0 and 2r respectively (recall cell
(y,z) of C" is empty), and for 1 ^ t ^ r cell (t,i) contains symbol 0. Again L is easy
to construct by filling rows r, r + 1 and r + 2 as required, and then completing £ using
Hall's Theorem. Fill each cell (j,k) £ H of Lr+1 with the symbol in cell (j,k) of £,
except that cell (r + l , r + 1) is filled with symbol 2r and cell (r + l ,z) is filled with
a symbol from { 1 , . . . , r} that does not occur in column z of C" (such a symbol exists
because cell (y, z) of C" is empty). Then each symbol in {r + 1 , . . . , 2r — 1} occurs in
columns r + 1 and r + 2 and in row r + 1, so (1) is satisfied, and clearly (3) is satisfied.

The second step is to embed Lr+i in a partial (t — 1) x t latin rectangle Lt-i in
which cell (i,i + 1) for r + 2 ^ i ^ t — 1 contains symbol i - 1 (eventually row r + 1
and columns r + 1 and r + 2 are deleted, so these cells "become" diagonal idempotent
cells), and so that Lt-i(B!) and £t_1(C") are row and column latin respectively (see
Figure 1). The proof that this can be done follows the proof of Theorem 3.2 in [1], but
we present it here since the setting is a little different.

Lt-i =

1

2

(H.R.C) r

t

t-1

t-1

t

r+1

t-2

Figure 1. The embedding of Lr+i in Lt-i.

Lt-i is obtained inductively by forming Lx for r + 1 ^ z < t - 1, where Lx is an
x x (z + 1) partial latin rectangle, formed by adding a row and a column to Lx-\ (for
z ^ r + 2), that satisfies

y 2x + 1 — ( otherwise,
(5) cell (z, z + 1) of .£„ contains symbol x — 1, for z > r + l , and
(6) LX(R') and LX(C) are row and column latin.

Clearly £ r +i satisfies these properties, so we now proceed by induction assuming that
Lx satisfies (4), (5) and (6).
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Form two simple bipartite graphs, Br and Bc as follows. Br is denned on the
vertex sets {pi,... ,px,p*} and {o-J,...,crj} by joining <rj to pj if and only if symbol i
does not occur in row j of LX(R') and joining p* to <rj for x ^ i ^ t — 2. 5 C is formed
on the vertex sets { c i , . . . , cx+i, c*} and {or",..., <r"} by joining <r" to ĉ  if and only if
symbol i does not occur in column j of LX(C) and joining c* to a" for x ^ i ^ < — 2.
Since, by (6), each row of LX(R') contains x + 1 symbols, d.Br{pj) = t — x — 1,1 ^ j ^ x.
Similarly d.Bc{cj) = t — x for 1 ^ j ' ^ x + 1. Also, <fBP(p*) = t — x — 1 = dBc(c*). From
(4), dBr{<r'i) ^x-(2x + l-t) = t-x-l and <ZBCK') < (as + l ) - (2a ; + 1 - *) = < - z
with equality if and only if symbol i satisfies equality in (4).

For each i with ^BrC^i) = t — x — 2 (and so dBc (<?•") = < — x — 1), add a vertex
<j\ and join it to <J\ and to <r|', thus forming a single bipartite graph B.

We now want to select a matching M in B with the following properties:

(7) M contains the edges p*a'x_1 and c*a'^_1}

(8) Pi and Cj are incident with an edge in M, 1 ^ i ^ x and 1 ^ j ^ x + 1 ,
(9) if Lx(R')(i) satisfies equality in (4) then both a\ and a" are incident

with an edge in M, and
(10) if Lx(R')(i) is one less than equality in (4) then either o\ or a" is incident

with an edge in M that is not also incident with <rt*.

If such a matching M is found, then Lx+i can be found by filling cell (j, x + 2) or
(x + 1, k) with symbol i if pj(r\ or cjfecr" is in M respectively, and fill cell (x + 1, x + 2)
with symbol x — 1. Then clearly (5) is satisfied. (6) is satisfied since M is a matching
and by the definition of edges in B. (4) is satisfied because of (9) and (10): symbols
satisfying equality in (4) are placed in both the added row and column, while symbols
satisfying one less than equality are placed in at least one of the added row and column.

So how do we find M ? Begin by giving B a proper edge-colouring with t — x

colours, say 1,... ,t — x. Since «£B(C*) = t — x — 1, let t — x be the colour occurring
on no edge incident with c*. Let 5 be the set of edges coloured t — x that are incident
with Cj (1 ^ j ^ x + 1) or with cr" (1 < i ^ t). Give B — S a proper edge-colouring
with t — x — 1 colours so that c*cr'x'_x is coloured 1, and replace the edges in 5 , coloured
t — x, to obtain a proper edge-colouring of B in which

(11) pj (1 ^ j ^ x) and Cfc (1 ^ k ^ x + 1) are incident with an edge coloured

1,
(12) if Lx(R)(i) satisfies equality in (4) then cr\ and a" are incident with

edges coloured 1, and
(13) if Lx(R)(i) is one less than equality in (4) then since <T\ is incident with

edges coloured 1 , . . . , t — x — 1, a" is incident with edges coloured 1 , . . . , f —
x and a\ is incident with at most one edge coloured 1, at least one of <T;
and <r" is incident with an edge coloured 1 that is not incident with a*.
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It looks as if we're nearly done, since the edges coloured 1 satisfy (8), (9) and (10),
but possibly not (7) yet. We have assumed that c*«r"-i is coloured 1, so suppose that
p*cr'x_1 is coloured 2. Let P be the path starting at c* in which edges are alternately
coloured 2 and t — x that stops at the first vertex <r£ that it reaches, or if it reaches
no such vertex then is maximal. Interchange colours along P (so c£ , if defined, is now
incident with two edges coloured 2). Now let Q be a path or cycle that contains the
edge p*<r'x_1, has edges alternately coloured 1 and 2, which (in one direction) stops
at the first vertex o^ it comes across for which o^o^ is coloured 1, and otherwise
is maximal. Since c* is incident with no edge coloured 2, Q does not contain the
edge c*a"_1 , so interchanging colours along Q produces a set of edges coloured 1 that
satisfies (7), (8), (9) and (10).

The third and final step is to obtain the required embedding. Delete row r + 1 and
columns r + 1 and r + 2 from Lt-i to obtain a partial idempotent latin square T of
order t - 2. Notice that

(14) T{C'){i) = t - 3 for t - 1 ^ i ^ t, and
(15) symbols t — 1 and t are both missing from row r of T(R').

Form a bipartite graph on the vertex sets { c j , . . . , Ct-2} and {1, . . . ,<} by joining Cj to
i if and only if symbol i is missing from column j of T(C'). Each vertex Cj has degree
2, vertices t — 1 and t have degree 1 (by (14)) and the maximum degree is 2. Give
this a proper edge-colouring with two colours, namely t — 1 and t, making sure that
the edges incident with vertices t — 1 and t receive colours t and t — 1 respectively; it
is easy to see that this is possible. Now add two rows to T by filling cell (x,y) with
symbol i if and only if the edge {cy,i} is coloured x. For the resulting partial latin
rectangle T', by (15) we have that in T'(R'), symbol t — 1 is missing from rows r and
t, while symbol t is missing from rows r and t — 1. Therefore, using Hall's Theorem
to add two columns to T'(R') produces the required embedding of (H,R,C). D

3. EMBEDDING DIRECTED ODD CYCLE SYSTEMS

Let m = 2k + 1 be odd and let (X, C\) be a partial mDCS of order n. Define a
pair of partial idempotent groupoids R and C of order n as follows:

(i) cell (i,i) is occupied by i for each i £ X = { 1 , 2 , 3 , . . . ,n} in each of R
and C (and so both are idempotent), and

(ii) if the directed edge (a, 6) belongs to a directed cycle of C\ fill in cell (a, 6)
of R with 6 and cell (a,b) of C with a.

If H = {(i,i) I i £ X}\J{(a,b) | (a,b) belongs to a cycle of d } , then (H,R,C) is an
idempotent patterned hole of order n based on { 1 , 2 , 3 , . . . , n} and so by Theorem 2.3
can be embedded in a partial idempotent quasigroup (P(H),o) of order t for every
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t ^ 2n + l . Let (P(H),o) be based on P = {1,2,3 , . . . ,t} and set S = PxZm. Define
a collection of directed m-cycles C2 as follows:

(1) For each a 6 P, let ({a} X Zm,c(a)) be a mDCS (such a system always
exists [12]) and place the directed 771-cycles of c(a) in C2.

(2) For each directed cycle (xi,X2,. • • ,xm) £ C\ place the m directed tri-
cycles ((x1,i),(x2,i),...,(xm,i)), i 6 Zm, in C2.

(3) Let (zi, 22, • • • i zk, Zk+i) be a sequence such that

z i | , N - z2\,... ,\zk+1 -zk\) = (1 ,2 ,3 , . . . , * ) ,

where \z\ = min{z,—z} (mod 771). (Forexample, define z; = (—1)*|_i/2j .)
Let

I={(0,i,2i,3i,...,(m-l)i), ( ( m - l ) i , (m - 2)i,(m - 3)i,... ,2i,i,0)

(modm) \i e {1 ,2 ,3 , . . . ,Jfe}}.

For each cycle c £ C\ take a fixed representation [xi,xz,... ,xm) of c
and define a collection of 2km directed ra-cycles as follows: Set o(c) =
{{{xi,a1),(xmta2), {xm-1,a3),...,(x2,am)) \ (en, a2,... ,am) e I and t
is ODD } and e(c) = {((zi,&i), (x2,b2),(xs,h), • • • ,(xm,bm)) \

(61,62,•••,6m) e I and i is EVEN}. Place the 2km cycles o(c) + j
and e(c)-t-_j (j £ Zm) in C2, where o(c)+j and e(c)+j are the directed
77i-cycles obtained from o(c) and e(c) by adding j (mod 771) to the second
coordinates.

(4) If x ^ y £ P and the directed edge (x,y) is NOT in a directed cycle of
Ci, x o y is defined in (P(JJ),o) . Let

if Jfe is EVEN, and

= ( ( ^ , ^ i ) , (2/ ,zi) , {x,z2), {y,z3), . . - ,

) , (a: °V,Zk+i), {x,Zk), {y,Zk-i), {x,Zk-i), • • - , {x,z3), (y,z2))

if fc is O D D . (zi ,Z2,Z3, . . . , z^+i are defined in (3).) Now place the

771 directed m-cycles c(x,y) + j,j 6 Zm, in C2 where c(x,y) + j is

the m-cycle obtained from c(x,y) by adding j (mod 771) to the second

coordinates.
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CLAIM. (S, C2) is a directed m-cycle system of order tm containing m disjoint copies
of the partial mDCS(X, d).

PROOF: A counting argument shows that IC21 contains the correct number of Tri-
cycles and so in order to prove that (5 , C2) is a mDCS it remains to show that each
edge in Dtm (based on 5 ) belongs to a directed m-cycle of Gi • So let ((x,i),(y,j))
be an edge. There are several cases to consider.

(i) x = y. Then ((x,i),(y,j)) £ ({x} x Zm,c(x)) and so belongs to a di-
rected m-cycle of c(x) and therefore to a directed m-cycle of C2 •

(ii) x ^ y and i = j . If (x,y) belongs to a cycle of C\ , say (x, y, xs, x4 , . . . ,
xm), then ((x,i),(y,i),(x3,i),(xi,i),... ,(xm,i)) £ C2 (part (2) of the
construction). If (x,y) does not belong to a cycle of C\ let Zi + j = i.
Then c(x,y) + j £ Ci (part (4) of the construction).

(iii) x^y and i ^ j . One of two things is true: \i — j \ is ODD or EVEN.

|i — j \ is ODD. If (y,x) belongs to a directed m-cycle in C\, then c =
(... ,(x,ar),(y,ar+i),...) £ C2 where \ar — ar+i| = »— j (the other cases are sim-
ilar). Let ar + d = i and ar+i + d = j . Then the edge ((x,i),(y,j)) belongs to the
directed m-cycle c + d, where c + d is obtained from c by adding d (mod m) to the
second coordinates of c. If (y,x) does not belong to a directed m-cycle in C\ and
\i — j I 7̂  k + 1 we can assume zT — -zr_i = i— j . Let zr + d = j and z, 1 + d = i. Then
((x,i),(y,j)) belongs to the cycle c(y,x) + d. If (y,x) does not belong to a directed
m-cycle in C\ and \i — j \ — k + 1, then \zk+i — z*| = k + 1 = |t — j | . We can assume
O'k + d = i and Zk+i + d = j (the other cases are similar). In (P(C),o), z o x = y for
some z £ P . Now (z,x) ^ H, since if so z o x — z = y implies that (y,x) 6 H; that
is, the directed edge (y,x) belongs to a cycle of C\. Hence ((x,i), (y,j)) belongs to
the cycle c(z,x) + d (a type (4) cycle).

\i = j \ is EVEN. An argument similar to the odd case handles this case. D

Combining all of the above cases shows that (5,C2) is a mDCS. The type (2)
directed m-cycles show that m disjoint copies of (X,Ci) are embedded in (5,(72). We
now have the following theorem.

THEOREM 3 . 1 . If m is ODD, a partial directed m-cycle system of order n can
be embedded in a directed m-cycle system of order tm for every t ^ 2n + 1.

4. EMBEDDING DIRECTED EVEN CYCLE SYSTEMS

The techniques for embedding partial directed even cycle systems are in stark
contrast to the directed odd cycle case.

Let m = 2k ^ 4 or 6 be EVEN and let (X, Cx) be a partial mDCS of order
n. Let X* be a set of size t ^ 2n such that X C X* and t is even. Further, let
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H = {h\,h2,... ,ht/2} be a partition of X* into "holes" of size 2 (2-element subsets)
such that the elements of X belong to different holes of X*. Let 5 = X* x Zk and
define a collection of directed m-cycles C2 as follows:

(1) For each hi £ H, let (hi x Zk,c(hi)) be a mDCS (such a system always
exists [12]) and place the directed m-cycles of c(hi) in C2 •

(2) For each cycle (xi,X2,- • • ,xm) £ C\ place the k directed m-cycles
((x1,i),(x2,i),... ,{xm,i)), iE Zk, in C2 .

(3) For each directed m-cycle (z i ,z 2 , . . . ,xm) £ Ci letc = ((xi,0),
(x m , l ) , (z m _ i ,2 ) , . . . ,(x2)fc — 1)) and put the k directed m-cycles c +
i,i = 1,2,..., k — 1, in C2 where c + i is obtained from c by adding i
(mod k) to the second coordinates.

(4) If x and y belong to different holes and (x,y) does not belong to a
cycle of Ci, place the directed m-cycle ((z,0), (y, 0), (x, 1), (y, 1 ) , . . . ,
(x,k-l),(y,k-l)) in C2.

(5) If x and j / belong to different holes place the k — 2 directed m-cycles
c(z,y) + i, i = 0,l,2,...,fc - 3, in C2, where c(x,y) - ((x,0),(y,2),
(x,l),(y,3),(x,2),{y,4:),...,(x,k-l),(y,l)) and c(x,y) + i is obtained
from c(x, y) by adding i (mod k) to the second coordinates of the ordered
pairs with first coordinate y.

CLAIM. (S,Ci) is a mDCS of order kt = mt/2 containing k disjoint copies of the
partial m£>CS(X,Ci).

PROOF: AS with the odd cycle case, a counting argument shows that \C2\ contains
the correct number of directed m-cycles and so it remains to show that each directed
edge in Dkt (based on S) belongs to a directed m-cycle of C2. So let {{x,i),(y,j)) be
an edge. Again there are several cases to consider.

(i) x and y G hi £ H. Then ((x,i),(y,j)) £ (hi x Zk,c(hi)) and so belongs
to a directed m-cycle of c(h{) and therefore to a directed m-cycle of C2.
All of the remaining cases are predicated on x and y belonging to different
holes of H.

(ii) x ^ y and i = j . If (x,y) belongs to a cycle of C\, then the edge
((x,i),(y,j)) belongs to a cycle of type (2). If (x,y) does not belong to
a cycle of C\ , then ((x,i),(y, j)) belongs to a cycle of type (4).

(iii) x ^ y and i j£ j . If |i — j | = 1, one of two things is true: j = i + 1
or i = j + 1. If j — i + 1 and (y, x) is in a directed m-cycle of C\,
then ((x,i),(y,j)) is in a directed m-cycle of type (3). If (y,x) is not in
a directed m-cycle of C\, then ((x,i), (y,j)) is in a directed m-cycle of
type (4). A similar argument takes case of the case where i = j -f 1. If
\i-j\ ^ 2, write j -i+2 + d (mod k). Then the edge ((x,i),(y,j))

https://doi.org/10.1017/S0004972700011850 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700011850


[11] Small embeddings 223

belongs to the type (5) directed m-cycle c(x,y) + d.

Combining the above cases shows that (S, C2) is a mDCS. The type (2) directed
m-cydes show that k disjoint copies of (X,Ci) are embedded in (5, C2). D

We have the following theorem (replacing t in the previous discussion with t/2).

THEOREM 4 . 1 . If m is EVEN and m ^ 4 or 6, a partial directed m-cycle
system of order n can be embedded in a directed m-cycle system of order tm for every
even t ^ n. If m = 4 or 6 t i e containing system has size tm + 1 for every even t ^ 8
or 12 respectively.

PROOF: In the construction set S = {cx>}[j{X* X Zk) and replace (1) by: for

each hi e H, let {oo}\J(hi x Zk,c(hi)) be a mDCS of order m + 1 = 5 or 7 as

the case may be (such a system exists [8]) and place the directed m-cycles of c(hi) in

C2. •

5. EMBEDDING DIRECTED 4-CYCLE SYSTEMS

In the case where m = 4 we can obtain a smaller embedding that that of Theo-
rem 4.1. The proof of Theorem 5.2 closely follows the proof of the related result for
undirected cycles [8]. But we shall also need the following theorem due to Dominique
Sotteau:

THEOREM 5 . 1 . [11] The complete directed bipartite graph DXtV can be decom-

posed into directed 2k-cycles if and only if x ^ k,y ^ k and k divides xy.

THEOREM 5 . 2 . Let (N, C) be a partial directed 4-cycle system of order n, and

let x be the smallest odd number such that (*) ^ n. Then (N,C) can be embedded

in a directed 4-cycle system of order x2.

PROOF: Let N = { l , . . . , n } , let 5 = {1, . . . , (* )} and let X = {(*)+ 1 , . . . , (I) +
x}.

Form a directed 4-cycle system (^,Ci) of order x2 , with V = (S X {1,2}) U X as
follows:

(1) For each (a,b,c,d) E C, and for 1 ^ i ^ 2, place the directed 4-cycles
((o,i), (b,i),(c,i),(d,i)),((a,i),(d,i + l),(c,i),(b,i + l)) in d (reducing
the second component modulo 2).

(2) If {o, t } C S and (a, 6) does not occur in any directed 4-cycle in C, then
((a,l),(6,l),(a,2),(6,2)) 6 d .

(3) Let T(x) be the set of 2-element subsets of X and let <f> : S —*
T(x) be any bijection. For each s g 5 place ((s,l), (s,2),t,u) and
({s,l),u,t,{s,2)) in d , where <j>(s) = {t,u},t < u.

(4) For each t £ X let D(t) be the set of (s,i) € S x {1,2} such that
((s,i),t) is in a directed 4-cycle defined in (3). (Notice that if (s(i),t)
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is replaced with (t,s(i)) in this definition then D(t) remains the same.)
Clearly \D(t)\ =x-l. Also {£>(*) | t 6 X} is a partition of 5 x {1, 2}.
By Sotteau's Theorem, there exists a directed 4-cycle system (Vt,Ct) of
the complete directed bipartite graph Z)x_i)j:_i on the vertex set V(t) =
D(t)\J(X\{t}). For each t G X let Ct C Cx.

It is easy to check that (V, C\) is a directed 4-cycle system, and from (1) it contains
2 disjoint copies of (N,C). D

Note that x2 is approximately 2n + \ /2n.
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