CIRCUMSCRIBING AN ELLIPSOID ABOUT THE INTERSECTION OF TWO ELLIPSOIDS

W. Kahan
(received December 27, 1967)

An ellipsoid G is associated uniquely with a positive definite matrix A via

$$
x \in G \text { if and only if } x^{\prime} A x \leq 1
$$

Note that all ellipsoids discussed here are centred at 0 . Given a_{1} and G_{2} we seek another ellipsoid \nexists circumscribed about $a_{1} \cap a_{2}$. It is easy to see that
$\nexists \supseteq a_{1} \cap a_{2}$ if and only if $x^{\prime} H x \leq \max _{i} x_{i}^{\prime} A_{i}$ for all vectors x.
However, the last condition does not determine H uniquely; there are many circumscribing ellipsoids \mathcal{H}.

Let us say that \dot{H} is tight whenever

$$
H \supseteq m \supseteq a_{1} \cap a_{2} \text { implies } m=z ;
$$

in other words, \sharp circumscribes $G_{1} \bigcap G_{2}$ so tightly that no other ellipsoid m can be slipped between. Tightness does not determine \ddagger uniquely either, as we shall see, but yields a worthwhile simplification.

THEOREM. \forall is tight if and only if $H=\alpha_{1} A_{1}+\alpha_{2} A_{2}$ for some $\alpha_{i} \geq 0$ satisfying $\alpha_{1}+\alpha_{2}=1$, except that if $a_{i} \supseteq a_{j}$ then only $H=a_{j}$ is tight.

Proof. Suppose \neq is tight and let

$$
\phi \equiv \min _{x \neq 0} \max _{i} x^{\prime} A_{i} x / x^{\prime} H x
$$

Since ϕ is the minimum of a continuous function on a compact set ($x^{\prime} H x=1$), the minimum is achieved at some vector $z \neq 0$; say

Canad. Math. Bull. vol. 11, no. 3, 1968

$$
\frac{z^{\prime} A_{1} z}{z^{\prime} H z} \leq \phi=\frac{z^{\prime} A_{2} z}{z^{\prime} H z} \leq \max _{i} \frac{x_{i}^{\prime} A_{i} x}{x^{\prime} H x} \text { for all } x \neq 0
$$

Clearly $\phi \geq 1$ since $\forall \supseteq \bigcap_{1} \bigcap_{2}$. Since \forall is also tight, the inequality

$$
\phi x^{\prime} H x \leq x^{\prime} M x \leq \max _{i} x^{\prime} A_{i} x \text { for all } x
$$

implies $H=M$. We shall prove the theorem by constructing an $M \equiv \alpha_{1} A_{1}+\alpha_{2} A_{2}$ which satisfies the last inequality and has $\alpha_{i} \geq 0$ and $\alpha_{1}+\alpha_{2}=1$.

There are three cases:
Case 1: Suppose $z^{\prime} A_{1} z<z^{\prime} A_{2} z=\phi^{\prime} H z$. We shall show $H \supseteq m \equiv G_{2}$, whence tightness will imply $H=A_{2}$, by showing that $y^{\prime} H y \leq y^{\prime} A_{2} y$ for all y. Indeed, we shall show that $\phi y^{\prime} H y \leq y^{\prime} A_{2} y$, which is a stronger statement because $\phi \geq 1$.

Given any y, let $x \equiv z+\lambda y$; it is easily seen that

$$
x^{\prime} A_{1} x<x^{\prime} A_{2} x \text { and } \phi x^{\prime} H x \leq x^{\prime} A_{2} x
$$

for all sufficiently small λ. For these λ we have $0 \leq x^{\prime}\left(A_{2}-\phi H\right) x=2 \lambda y^{\prime}\left(A_{2}-\phi H\right) z+\lambda^{2} y^{\prime}\left(A_{2}-\phi H\right) y$; and if we choose $\operatorname{sign}(\lambda) \neq 0$ in such a way that $\lambda y^{\prime}\left(A_{2}-\phi H\right) z \leq 0$, as can be done for any y, we obtain $y^{\prime}\left(A_{2}-\phi H\right) y \geq 0$. Therefore $\sharp \supseteq A_{2}$ as claimed.

Cases 2 and 3: Suppose $z^{\prime} A_{1} z=z^{\prime} A_{2} z=\phi z^{\prime} H z$. Now define

$$
\mathrm{y} \equiv \phi \mathrm{~Hz}-\alpha_{1} \mathrm{~A}_{1} \mathrm{z}-\alpha_{2} \mathrm{~A}_{2} \mathrm{z}
$$

by choosing α_{1} and α_{2} in such a way that

$$
y^{\prime} A_{1} z=y^{\prime} A_{2} z=0
$$

Such a choice of α_{1} and α_{2} is easily seen to be possible, though not necessarily unique. Furthermore, we can deduce that $y=0$ as follows.

$$
\text { Set } x \equiv \lambda z+y ; \text { since } \phi x^{\prime} H x \leq \max _{i} x^{\prime} A_{i} x \text { and } \phi^{\prime} H z=z^{\prime} A_{i} z
$$

$$
\begin{equation*}
2 \lambda \phi y^{\prime} H z+\phi y^{\prime} H y \leq \max _{i}\left(2 \lambda y^{\prime} A_{i} z+y^{\prime} A_{i} y\right) \tag{*}
\end{equation*}
$$

for all y and λ. In particular, the y defined above must satisfy

$$
2 \lambda y^{\prime} y+\phi y^{\prime} H y \leq \max _{i} y^{\prime} A_{i} y
$$

for all λ, and letting $\lambda \rightarrow+\infty$ implies $y=0$ as claimed. Therefore there are some α_{i} such that

$$
\phi \mathrm{Hz}=\alpha_{1} \mathrm{~A}_{1} \mathrm{z}+\alpha_{2} \mathrm{~A}_{2} \mathrm{z}
$$

pre-multiplying by z^{\prime} shows that $\alpha_{1}+\alpha_{2}=1$.
Case 2: Suppose $A_{1} z \neq A_{2} z$. We shall show next that both $\alpha_{1} \geq 0$ and $\alpha_{2} \geq 0$. Note that the $A_{i} z$ are linearly independent; if $\beta_{1} A_{1} z=\beta_{2} A_{2} z$ then pre-multiplication by z^{\prime} yields $\beta_{1}=\beta_{2}$, which contradicts our supposition unless $\beta_{1}=\beta_{2}=0$. Therefore we may so choose y that $y^{\prime} A_{1} z>0>y^{\prime} A_{2} z$; one such choice is $y \equiv A_{1} z / J\left(z^{\prime} A_{1}{ }^{2} z\right)-A_{2} z / J\left(z^{\prime} A_{2}^{2} z\right)$. Substitute this y in ($\%$) above and let λ approach first $-\infty$ and then $+\infty$; we find that

$$
y^{\prime} A_{2} z \leq \alpha_{1} y^{\prime} A_{1} z+\alpha_{2} y^{\prime} A_{2} z \leq y^{\prime} A_{1} z
$$

Since $\alpha_{1}+\alpha_{2}=1$, it soon follows that both $\alpha_{i} \geq 0$.
Now set $M \equiv \alpha_{1} A_{1}+\alpha_{2} A_{2}$, and observe that $m \supseteq G_{1} \cap a_{2}$.
We shall show that $\neq m$ by showing that $y^{\prime} M y \geq \phi y^{\prime} H y\left(\geq y^{\prime} H y\right)$ for all y. Given any y for which $y^{\prime}\left(A_{1}-A_{2}\right) z \neq 0$, set $\lambda \equiv \frac{1}{2} y^{\prime}\left(A_{2}-A_{1}\right) y / y^{\prime}\left(A_{1}-A_{2}\right) z$ and $x \equiv \lambda z+y$. After verifying that $x^{\prime} A_{1} x=x^{\prime} A_{2} x=x^{\prime} M x$, we infer from the definition of ϕ that $x^{\prime} M x \geq \phi x^{\prime} H x$, and from the suppositions about z and $M z=\phi H z$ that $y^{\prime} M y \geq \phi y^{\prime} H y$. This inequality has been proved for all y not in the plane $y^{\prime}\left(A_{1}-A_{2}\right) z=0$; the inequality is true for all y by virtue of continuity.

Case 3: Suppose $A_{1} z=A_{2} z$. We may restrict our attention to the subspace L of vectors y satisfying $y^{\prime} H z=y^{\prime} A_{i} z=0$, because every vector x can be decomposed uniquely into a sum $x=\lambda z+y$ with $y \varepsilon L$, and $x^{\prime}\left(A_{i}-\phi H\right) x=y^{\prime}\left(A_{i}-\phi H\right) y$. Therefore the theorem's proof is reduced to the problem of finding $M \equiv \alpha_{1} A_{1}+\alpha_{2} A_{2}$ with both $\alpha_{i} \geq 0$
and $\alpha_{1}+\alpha_{2}=1$ such that $\phi y^{\prime} H y \leq y^{\prime} M y$ for all $y \varepsilon L$, given only that $\phi y^{\prime} H y \leq \max _{i} y^{\prime} A_{i} y$ for all $y \varepsilon L$. This is just the problem with which the proof began. The problem is obviously solved if L is 1-dimensional, and otherwise the problem is solved by repeating the foregoing calculations in L.

Therefore, if \neq is tight then $H=\alpha_{1} A_{1}+\alpha_{2} A_{2}$. Conversely, suppose $H=\alpha_{1} A_{1}+\alpha_{2} A_{2}$ with both $\alpha_{i} \geq 0$ and $\alpha_{1}+\alpha_{2}=1$; is \dot{H} tight ? The foregoing calculations provide $M \equiv \beta_{1} A_{1}+\beta_{2} A_{2}$ with both $\beta_{i} \geq 0, \beta_{1}+\beta_{2}=1$, and $x^{\prime} H x \leq x^{\prime} M x$ for all x; in other words, $\left(\alpha_{1}-\beta_{1}\right) x^{\prime}\left(A_{2}-A_{1}\right) x \geq 0$. If $a_{2} \neq a_{1} \pm a_{2}$ then $x^{\prime}\left(A_{2}-A_{1}\right) x$ takes on both positive and negative values, so $\alpha_{i}=\beta_{i}$; otherwise if $\alpha_{1} \supseteq a_{2}$ then obviously only a_{2} can be tight (cf. Case 1). So ends the proof.

Must the proof be so long?

Remarks. The theorem has applications to certain schemes for circumscribing complicated regions by simple ones in an electronic computer. Ellipsoids are regarded as simple because they are representable by matrices. However, complicated regions are often far smaller than the simplest region circumscribed around them, and therefore we are sometimes forced to manipulate unions, intersections, sums and other combinations of simple regions. Storage capacity limits the complexity achievable in practice, and forces simplifications of which one kind has been discussed above. For further work along these lines see Schweppe (1967) and Kahan (1967-8)

There are several questions requiring further study. If several ellipsoids $\underset{i}{G}$ are given, then $H \equiv \Sigma_{i} \alpha_{i} A_{i}$ with all $\alpha_{i} \geq 0$ and $\Sigma_{i} \alpha_{i}=1$ produces $\neq \supseteq \bigcap_{i} Q_{i}$; but what characterizes the tight ellipsoids み? If ellipsoids a_{i} are not centred at 0 , but instead consist of points x for which $\left(x-c_{i}\right)^{\prime} A_{i}\left(x-c_{i}\right) \leq 1$, then the characterization of tight ellipsoids is further complicated. Indeed, even to tell whether two such ellipsoids intersect seems to demand the solution of an eigenproblem; see Forsythe and Golub (1965) and Burrows (1966).

Acknowledgement: The author's work has been assisted by grants from the National Research Council of Canada.

REFERENCES

J. W. Burrows (1966), Maximization of a second-degree polynomial on the unit sphere. Math. of Comp. 20, 441-444.
G.E. Forsythe and G.H. Golub (1965), On the stationary values of a second-degree polynomial on the unit sphere. J. Soc. Indust. Appl. Math. 13, 1050-1068.
W. Kahan (1967), Circumscribing an ellipsoid about the Minkowski sum of given ellipsoids. (Submitted to J. Linear AIgebra).*
W. Kahan (1968), An ellipsoidal error bound for linear systems of ordinary differential equations. (Manuscript to appear).
F.C. Schweppe (1967), Recursive state estimation when observation errors and system inputs are bounded. (Sperry Rand Research Centre Report RR-67-25, Sudbury, Mass.)

University of Toronto

[^0]
[^0]: * Added in proof: Related problems are considered by D.K. Faddeèv and V.N. Faddeèva (1968) "Stability in Linear Algebra Problems". Proc. IFIP Congress 68 in Edinburgh.

