A New Characterization of Hardy Martingale Cotype Space

Turdebek. N. Bekjan

Abstract

We give a new characterization of Hardy martingale cotype property of complex quasiBanach space by using the existence of a kind of plurisubharmonic functions. We also characterize the best constants of Hardy martingale inequalities with values in the complex quasi-Banach space.

1 Introduction

It is well known, by now, that some special functions are closely related to the inequalities of martingales and the geometric structure of Banach space. Burkholder[Bul] [Bu2] gave the biconvex function characterization of Hilbert space and UMD space, and the convex function characterization of martingale cotype space. Lee [L] gave the biconcave function characterization of Hilbert space and UMD space. Piasecki [P] obtained the shew-plurisubharmonic function characterization of AUMD space. In this paper we establish a geometric characterization of Hardy martingale cotype space via the plurisubharmonic function.

2 Preliminaries

Let $\Omega=[0,2 \pi]^{\mathbb{N}}, \Sigma$ be Borel σ-algebra on $[0,2 \pi]^{\mathbb{N}}$ and P the product measure of normalized Lebesgue measure on $[0,2 \pi]$. An element $\theta \in \Omega$ is written as $\theta=$ $\left(\theta_{1}, \theta_{2}, \ldots\right)$. Let Σ_{n} stand for σ-algebra generated by the first n coordinates $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$. Where $\Sigma_{0}=\{\phi,[0,2 \pi]\}$ and E is the expectation with respect to P. Suppose that X is a complex quasi-Banach space. For simplicity, we assume that the quasi-norm of X is plurisubharmonic, i.e.,

$$
\begin{equation*}
\|x\| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\|x+y e^{i \theta}\right\| d \theta \quad \forall x, y \in X \tag{1}
\end{equation*}
$$

Then, by the result of Kalton [K], there is an equivalent quasi-norm which is both plurisubharmonic and ρ-subadditive $\left(\|x+y\|^{\rho} \leq\|x\|^{\rho}+\|y\|^{\rho}, \forall x, y \in X\right)$ for some $0<\rho \leq 1$. So without loss of generality, throughout this paper, we assume that the quasi-norm of X is ρ-subadditive.

A sequence $F=\left(F_{n}\right)$ of X-valued random variables adapted to the sequence of sub- σ-algebras $\left(\Sigma_{n}\right)$ is called Hardy martingale if

$$
F_{0}=x, d F_{n}=F_{n}-F_{n-1}=\sum_{k=1}^{\infty} \varphi_{n, k}\left(\theta_{1}, \ldots, \theta_{n-1}\right) e^{i \theta_{n}} \quad \text { for } n \geq 1
$$

[^0]where $x \in X, \varphi_{n, k}$ are X-valued (strongly) measurable function of $\theta_{1}, \ldots, \theta_{n-1}$, for $k=1,2, \ldots$. If additionally $\varphi_{n, k}=0$ for all $k \geq 2, n=1,2, \ldots$, then $F=\left(F_{n}\right)$ is called analytic martingale.

We say that X is of Hardy (resp. analytic) martingale cotype $q(2 \leq q<\infty)$ if there is a constant C such that

$$
\left(\sum_{n \geq o}\left\|d F_{n}\right\|_{q}^{q}\right)^{\frac{1}{q}} \leq C \sup _{n \geq o}\left\|F_{n}\right\|
$$

for all Hardy (resp. analytic) martingales $F=\left(F_{n}\right)$ with values in X. By the renorming theorem of [X1](see also [X2], [LB]), X is of Hardy martingale cotype q iff X has an equivalent quasi-norm $|\cdot|$ whose uniform H_{q}-convexity modulus is of power type q :

$$
h_{q}^{X}(\varepsilon) \geq C \varepsilon^{q}, \quad \forall 0<\varepsilon \leq 1
$$

where $C>0$ is a constant, and the so called uniform H_{q}-convexity modulus is

$$
\begin{aligned}
h_{q}^{X}(\varepsilon)=\inf \left\{\|f\|_{L_{q}([0,2 \pi] ;(X,|\cdot|))}:|\hat{f}(0)|\right. & =1 \\
& \left.\|f-\hat{f}(0)\|_{L_{q}([0,2 \pi] ;(X,|\cdot|))}>\varepsilon, f \in H_{q}(X)\right\}
\end{aligned}
$$

Several other equivalent conditions for the Hardy martingale cotype can be found in [LB, X1, X2, X3]. For convenience we state the following criteria (see [LB]) that will be applied below. We use the customary notations

$$
\begin{aligned}
& F_{n}^{*}=\sup _{k \leq n}\left\|F_{k}\right\|, \quad F^{*}=\sup _{n \geq 0}\left\|F_{k}\right\|, \quad\|F\|_{p}=\sup _{k \geq 0}\left\|F_{k}\right\|_{p} \\
& S_{n}^{(p)}(F)=\left(\sum_{k=0}^{n}\left\|d F_{k}\right\|^{p}\right)^{\frac{1}{p}}, \quad S^{(p)}(F)=\left(\sum_{k=0}^{\infty}\left\|d F_{k}\right\|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Theorem A Let $2 \leq q<\infty, X$ be a quasi-Banach space, the following statements are equivalent:
(i) X is of Hardy martingale cotype q.
(ii) If $\|F\|_{\infty}<\infty$, then $S^{q}(F)<\infty$ a.e. for every X-valued Hardy martingale $F=$ $\left(F_{n}\right)$.
(iii) For $0<p<\infty$ there is a constant C_{p} such that

$$
\begin{equation*}
\left\|S^{(q)}(F)\right\|_{p} \leq C_{p}\|F\|_{p} \tag{2}
\end{equation*}
$$

for every X-valued Hardy martingale $F=\left(F_{n}\right)$.
We recall a classical fact about lower semi-continuous functions (see [R 2.1.3]).
Lemma B Let u be a lower semi-continuous real-valued function defined on a metric space X, such that u is bounded below on X. Then there exist uniformly continuous functions $\phi_{n}: X \rightarrow \mathbf{R}$ such that the sequence ϕ_{n} is increasing and $\lim _{n \rightarrow \infty} \phi_{n}=u$ on X.

3 Main Theorems and Their Proofs

Let X be a quasi-Banach space. An X-valued Hardy(resp. analytic) martingale $F=$ $\left(F_{n}\right)$ is called simple if there is n such that $F_{m}=F_{n}$ for all $m \geq n$, and every $\varphi_{l, k}$ (resp. $\varphi_{l, 1}$) is X-valued simple function of $\theta_{1}, \ldots, \theta_{l-1}$ for $l=1, \ldots, n, k=1,2, \ldots$ One may check that such martingales are dense in the space of Bochner integrable X-valued Hardy(resp. analytic) martingales.

Let $2 \leq q<\infty$ and $v: X \times[0, \infty) \rightarrow \mathbb{R}$ a function satisfying

$$
\begin{gather*}
v(0,0)>0 \tag{3}\\
v(x, t) \leq\|x\|^{\rho} \quad \text { if } t \geq 1 \tag{4}\\
v(x, t) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(x+\sum_{k=1}^{n} x_{k} e^{i k \theta}, t+\left\|\sum_{k=1}^{n} x_{k} e^{i k \theta}\right\|^{q}\right) d \theta \tag{5}
\end{gather*}
$$

for all $x, x_{k} \in X,(k=1,2, \ldots, n), n \geq 1$ and $t \geq 0$.
If $(x, t) \in X \times[0, \infty)$, let $L(x, t)$ be the set of all X-valued simple Hardy martingales $F=\left(F_{n}\right)$ such that $F_{0}=x$ and

$$
P\left(t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q} \geq 1\right)=1
$$

It is clear that $L(x, t)$ is nonempty. Set

$$
\begin{equation*}
u(x, t)=\inf \left\{\|F\|_{\rho}^{\rho}: F \in L(x, t)\right\} \tag{6}
\end{equation*}
$$

Lemma 1 Let X be a complex quasi-Banach space. Then u is the greatest plurisubharmonic function $X \times[0, \infty) \rightarrow \mathbb{R}$ which satisfies (4) and (5).

Proof If $t \geq 1$ and $F_{n}=x$ for all $n \geq 0$, then $F=\left(F_{n}\right) \in L(x, t)$ and $\|F\|_{\rho}^{\rho}=\|x\|^{\rho}$, which implies that $u(x, t) \leq\|x\|^{\rho}$.

We next show that u has the property (5). Let $L_{k}(x, t)$ be the set of all X-valued simple Hardy martingales $F=\left(F_{n}\right)$ such that $F_{0}=x$ and

$$
P\left(t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q} \geq 1+\frac{1}{k}\right)=1
$$

Define $u_{k}(x, t)=\inf \left\{\|F\|_{\rho}^{\rho}: F \in L_{k}(x, t)\right\}$ for $k=1,2, \ldots$. Then it is clear that

$$
L_{k}(x, t) \subseteq L_{k+1}(x, t), \quad u_{k+1}(x, t) \leq u_{k}(x, t)
$$

and

$$
\begin{equation*}
u(x, t)=\inf _{k \geq 1} u_{k}(x, t) \tag{7}
\end{equation*}
$$

In fact, $L_{k}(x, t) \subseteq L(x, t)$ and $u(x, t) \leq u_{k}(x, t)$, so

$$
\begin{equation*}
u(x, t) \leq \inf _{k \geq 1} u_{k}(x, t) \tag{8}
\end{equation*}
$$

On the other hand, for arbitrary $\varepsilon>0$, there is a simple Hardy martingale $F=\left(F_{n}\right) \in L(x, t)$ which satisfies

$$
\begin{equation*}
\|F\|_{\rho}^{\rho} \leq u(x, t)+\varepsilon \tag{9}
\end{equation*}
$$

Choose k and $y \in X$ so that $\left(\frac{1}{k}\right)^{\rho / q} \leq \varepsilon,\|y\|^{q}=\frac{1}{k}$. We introduce a new Hardy martingale $G=\left(G_{n}\right)$ by

$$
G_{0}=x, G_{n+1}=F_{n}+e^{i \theta} y, \quad \text { for } \theta \in[0,2 \pi], n \geq 0
$$

Notice that

$$
\begin{aligned}
t-\|x\|^{q}+\left(S^{(q)}(G)\right)^{q} & =t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q}+\|y\|^{q} \\
& =t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q}+\frac{1}{k}
\end{aligned}
$$

therefore, $G=\left(G_{n}\right) \in L_{k}(x, t)$. Hence, by (9),

$$
u_{k}(x, t) \leq\|G\|_{\rho}^{\rho} \leq\|F\|_{\rho}^{\rho}+\|y\|^{\rho} \leq\|F\|_{\rho}^{\rho}+\left(\frac{1}{k}\right)^{\frac{\rho}{q}} \leq u(x, t)+2 \varepsilon
$$

and

$$
\inf _{k \geq 1} u_{k}(x, t) \leq u(x, t)+2 \varepsilon
$$

We deduce that

$$
\begin{equation*}
\inf _{k \geq 1} u_{k}(x, t) \leq u(x, t) \tag{10}
\end{equation*}
$$

since $\varepsilon>0$ is arbitrary. By (8) and (10), we obtain (7).
To show the function $u_{k}(k \geq 1)$ is continuous, it suffices to prove that
(11) $\left|u_{k}(x, t)-u_{k}\left(x^{\prime}, t^{\prime}\right)\right| \leq\left\|x-x^{\prime}\right\|^{\rho}+\left|t-t^{\prime}\right|^{\frac{\rho}{q}} \quad$ if $(x, t),\left(x^{\prime}, t^{\prime}\right) \in X \times[0, \infty)$.

To see this, for $t^{\prime}=t$ and $\varepsilon>0$ take $F=\left(F_{n}\right) \in L_{k}(x, t)$ such that $\|F\|_{\rho}^{\rho} \leq u_{k}(x, t)+\varepsilon$. We define a new Hardy martingale $G=\left(G_{n}\right)$ by $G_{0}=x^{\prime}, G_{n}=\left(F_{n}-F_{0}\right)+G_{0}$. Notice that $G=\left(G_{n}\right) \in L_{k}\left(x^{\prime}, t\right)$, then

$$
u_{k}\left(x^{\prime}, t\right) \leq\|G\|_{\rho}^{\rho} \leq\|F\|_{\rho}^{\rho}+\left\|x-x^{\prime}\right\|^{\rho} \leq u_{k}(x, t)+\left\|x-x^{\prime}\right\|^{\rho}+\varepsilon
$$

This gives $u_{k}\left(x^{\prime}, t\right)-u_{k}(x, t) \leq\left\|x-x^{\prime}\right\|^{\rho}$. Similarly we have $u_{k}(x, t)-u_{k}\left(x^{\prime}, t\right) \leq$ $\left\|x-x^{\prime}\right\|^{\rho}$, so $\left|u_{k}(x, t)-u_{k}\left(x^{\prime}, t\right)\right| \leq\left\|x-x^{\prime}\right\|^{\rho}$ and (11) holds for the special case $t^{\prime}=t$. If $t^{\prime}>t$ and $y \in X$ is chosen to satisfy $\|y\|=\left(t^{\prime}-t\right)^{\frac{1}{q}}$, we take $F=\left(F_{n}\right) \in L_{k}\left(x, t^{\prime}\right)$ such that $\|F\|_{\rho}^{\rho} \leq u_{k}\left(x, t^{\prime}\right)+\varepsilon$ and define a new Hardy martingale $G=\left(G_{n}\right)$ by $G_{0}=x, G_{n+1}=F_{n}+y e^{i \theta}$. Then $G=\left(G_{n}\right) \in L_{k}(x, t)$,

$$
u_{k}(x, t) \leq\|G\|_{\rho}^{\rho} \leq\|F\|_{\rho}^{\rho}+\|y\|^{\rho} \leq u_{k}\left(x, t^{\prime}\right)+\left|t^{\prime}-t\right|^{\frac{\rho}{q}}+\varepsilon
$$

Hence, we get $u_{k}(x, t)-u_{k}\left(x, t^{\prime}\right) \leq\left|t-t^{\prime}\right|^{\rho / q}$ or $\left|u_{k}(x, t)-u_{k}\left(x, t^{\prime}\right)\right| \leq\left|t-t^{\prime}\right|^{\rho / q}$. That is to say (11) holds for the special case $x=x^{\prime}$. Combining these two special cases with the triangle inequality, we derive (11).

Now suppose that

$$
f(\theta)=\sum_{l=1}^{n} x_{l} e^{i l \theta}, \theta \in[0,2 \pi], x_{l} \in X, l=1, \ldots, n, n \geq 1
$$

and $\varepsilon>0, k \geq 1$. A continuity argument gives $J>0$ such that

$$
\begin{gather*}
\left\|f\left(\frac{j}{J} 2 \pi\right)-f(\theta)\right\|^{\rho}<\varepsilon, \quad\left|\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}-\|f(\theta)\|^{q}\right|<\frac{1}{2 k} \tag{12}\\
\left|u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right)-u_{k}\left(x+f\left(\frac{j}{J} 2 \pi\right), t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}\right)\right|<\varepsilon \tag{13}
\end{gather*}
$$

whenever $\frac{j-1}{J} 2 \pi<\theta \leq \frac{j}{J} 2 \pi$ for $1 \leq j \leq J$. Clearly,
(14) $\sum_{j=1}^{J} \frac{1}{2 \pi} \int_{\frac{j-1}{J} 2 \pi}^{\frac{j}{j} 2 \pi} u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta$

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta
$$

For each $1 \leq j \leq J$, there exists $F^{(j)} \in L_{k}\left(x+f\left(\frac{j}{J} 2 \pi\right), t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}\right)$ with

$$
\begin{equation*}
\left\|F^{(j)}\right\|_{\rho}^{\rho} \leq u_{k}\left(x+f\left(\frac{j}{J} 2 \pi\right), t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}\right)+\varepsilon . \tag{15}
\end{equation*}
$$

We now define a Hardy martingale $F=\left(F_{n}\right)$ by

$$
F_{0}=x, F_{n}\left(\theta, \theta_{1}, \ldots, \theta_{n-1}\right)=F_{n-1}^{(j)}\left(\theta_{1}, \ldots, \theta_{n-1}\right)+f(\theta)-f\left(\frac{j}{j} 2 \pi\right)
$$

for $\frac{j-1}{J} 2 \pi<\theta \leq \frac{j}{J} 2 \pi, 1 \leq j \leq J$ and $n \geq 1$. If $\theta \in\left(\frac{j-1}{J} 2 \pi, \frac{j}{J} 2 \pi\right]$, we have

$$
t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q}=t+\|f(\theta)\|^{q}+\sum_{l=1}^{\infty}\left\|d F_{l}^{(j)}\right\|^{q}
$$

We use $F^{(j)} \in L_{k}\left(x+f\left(\frac{j}{J} 2 \pi\right), t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}\right)$, i.e.,

$$
\begin{aligned}
t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}-\left\|x+f\left(\frac{j}{J} 2 \pi\right)\right\|^{q} & +\left(S^{(q)}\left(F^{(j)}\right)\right)^{q} \\
& =t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}+\sum_{l=1}^{\infty}\left\|d F_{l}^{(j)}\right\|^{q} \geq 1+\frac{1}{k} \text { a.e. }
\end{aligned}
$$

and (12) to obtain that

$$
t-\|x\|^{q}+\left(S^{(q)}(F)\right)^{q}=t+\|f(\theta)\|^{q}+\sum_{l=1}^{\infty}\left\|d F_{l}^{(j)}\right\|^{q} \geq 1+\frac{1}{2 k} \text { a.e. }
$$

when $\theta \in\left(\frac{j-1}{J} 2 \pi, \frac{j}{J} 2 \pi\right]$. So $F=\left(F_{n}\right) \in L_{2 k}(x, t)$. From (12-15), it follows that

$$
\begin{aligned}
u_{2 k}(x, t) & \leq\|F\|_{\rho}^{\rho} \leq \sum_{j=1}^{J} \frac{1}{2 \pi} \int_{\frac{j-1}{J} 2 \pi}^{\frac{j}{j} 2 \pi}\left\|F^{(j)}\right\|_{\rho}^{\rho} d \theta+\varepsilon \\
& \leq \sum_{j=1}^{J} \frac{1}{2 \pi} \int_{\frac{i-1}{J} 2 \pi}^{\frac{j}{j} 2 \pi}\left[u_{k}\left(x+f\left(\frac{j}{J} 2 \pi\right), t+\left\|f\left(\frac{j}{J} 2 \pi\right)\right\|^{q}\right)+\varepsilon\right] d \theta+\varepsilon \\
& \leq \sum_{j=1}^{J} \frac{1}{2 \pi} \int_{\frac{j-1}{J} 2 \pi}^{\frac{j}{j} 2 \pi} u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta+3 \varepsilon \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta+3 \varepsilon
\end{aligned}
$$

this implies

$$
u_{2 k}(x, t) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u_{k}\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta
$$

Now take limits to obtain

$$
u(x, t) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x+f(\theta), t+\|f(\theta)\|^{q}\right) d \theta
$$

which shows that u satisfies (5).
To see that u is the greatest function, let v satisfy (4), (5), $F=\left(F_{n}\right) \in L(x, t)$ and choose n so that $P\left(t-\|x\|^{q}+\left(S_{n}^{(q)}(F)\right)^{q} \geq 1\right)=1$. Then, by (4) and (5), we have

$$
\begin{aligned}
\|F\|_{\rho}^{\rho} & \geq E\left\|F_{n}\right\|^{\rho} \geq E v\left(F_{n}, t-\|x\|^{q}+\left(S_{n}^{(q)}(F)\right)^{q}\right) \\
& \geq E v\left(F_{0}, t-\|x\|^{q}+\left(S_{0}^{(q)}(F)\right)^{q}\right)=v(x, t)
\end{aligned}
$$

which implies that $u \geq v$.
Now we have
Corollary If u satisfies (3), (4) and (5), and $F=\left(F_{n}\right)$ is a X-valued Hardy martingale, then, for all $\lambda>0$,

$$
\begin{equation*}
P\left(S^{(q)}(F) \geq \lambda\right) \leq \frac{\|F\|_{\rho}^{\rho}}{\lambda^{\rho} \mathcal{u}(0,0)} \tag{16}
\end{equation*}
$$

Proof It suffices to prove (16), for u as in Lemma 1 . We assume that $\lambda=1$. For X-valued Hardy martingale $F=\left(F_{n}\right), F_{0}=0$, by (4) and Chebyshev's inequality,

$$
\begin{aligned}
P\left(S_{n}^{(q)}(F) \geq 1\right) & \leq P\left(\left\|F_{n}\right\|^{\rho}-u\left(F_{n},\left(S_{n}^{(q)}(F)\right)^{q}\right)+u(0,0) \geq u(0,0)\right) \\
& \leq \frac{E\left[\left\|F_{n}\right\|^{\rho}-u\left(F_{n},\left(S_{n}^{(q)}(F)\right)^{q}\right)+u(0,0)\right]}{u(0,0)}
\end{aligned}
$$

On the other hand, by (5),

$$
\begin{aligned}
u(0,0)= & E u\left(F_{0},\left(S_{0}^{(q)}(F)\right)^{q}\right) \\
\leq & E u\left(F_{1},\left(S_{1}^{(q)}(F)\right)^{q}\right) \\
& \cdots \\
\leq & E u\left(F_{n-1},\left(S_{n-1}^{(q)}(F)\right)^{q}\right) \\
\leq & E u\left(F_{n},\left(S_{n}^{(q)}(F)\right)^{q}\right)
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
P\left(S_{n}^{(q)}(F) \geq 1\right) \leq \frac{E\left\|F_{n}\right\|^{\rho}}{u(0,0)} \tag{17}
\end{equation*}
$$

Now we use homogeneity and take limits to obtain

$$
\begin{equation*}
P\left(S^{(q)}(F) \geq \lambda\right) \leq \frac{\|F\|_{\rho}^{\rho}}{\lambda^{\rho} u(0,0)} \tag{18}
\end{equation*}
$$

If X-valued Hardy martingale $F=\left(F_{n}\right), F_{0}=x \neq 0$, we define a Hardy martingale $G=\left(G_{n}\right)$ by

$$
G_{0}=0, G_{n+1}=G_{n}+e^{i \theta} d F_{n}, \quad \text { for } \theta \in[0,2 \pi], \quad n \geq 0
$$

Then $S_{n}^{(q)}(F)=S_{n+1}^{(q)}(G),\left\|F_{n}\right\|=\left\|G_{n+1}\right\|$; thus (18) yields (16).
Theorem 1 Let $2 \leq q<\infty, X$ be a quasi-Banach space. Then X is of Hardy martingale cotype q iff there is a plurisubharmonic function $u: X \times[0, \infty) \rightarrow \mathbb{R}$ such that (3), (4) and (5) hold.

Proof Suppose that X is of Hardy martingale cotype q. Theorem A implies that there is a constant $C>0$ such that $\|F\|_{\rho}^{\rho} \geq C$ whenever $F=\left(F_{n}\right) \in L(0,0)$. Let u be defined by (6), then $u(0,0) \geq C>0$ i.e., u satisfies (3). From Lemma 1 we know that (4) and (5) hold.

Conversely, suppose that there is a plurisubharmonic function $u: X \times[0, \infty) \rightarrow \mathbb{R}$ such that (3), (4) and (5) hold, from the corollary of Lemma 1 and Theorem A, we obtain that X is of Hardy martingale cotype q.

Let $\gamma_{p, q}^{H}$ (resp. $\gamma_{p, q}^{A}$) be the least $\gamma<\infty$ such that

$$
\begin{equation*}
\left\|S^{q}(F)\right\|_{p} \leq \gamma\|F\|_{p} \tag{19}
\end{equation*}
$$

for all Hardy (resp. analytic) martingales $F=\left(F_{n}\right)$ with values in X.

Theorem 2 Suppose that X is a complex quasi-Banach space, $p \in(0, \infty), q \in[2, \infty)$ and $\gamma \in[1, \infty)$. Then

$$
\begin{equation*}
\gamma_{p, q}^{H} \leq \gamma \tag{20}
\end{equation*}
$$

iff there is a lower semi-continuous function $u: X \times[0, \infty) \rightarrow[-\infty, \infty]$ such that, for all $x, x_{k} \in X(k=1,2, \ldots, n), n \geq 1$ and $t \geq 0$,

$$
\begin{gather*}
u(x, t) \geq \phi(x, t) \tag{21}\\
u(x, t) \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x+\sum_{1}^{n} x_{k} e^{i k \theta}, t+\left\|\sum_{1}^{n} x_{k} e^{i k \theta}\right\|^{q}\right) d \theta \tag{22}
\end{gather*}
$$

where $\phi(x, t)=t^{\frac{p}{q}}-\gamma^{p}\|x\|^{p}$.
Proof Assume that (20) holds. Let $x \in X, L(x)$ be the set of all X-valued simple Hardy martingales $F=\left(F_{n}\right)$ satisfying $F_{0}=x$. Set

$$
\begin{equation*}
u(x, t)=\sup \left\{E \phi\left(F_{\infty}, t-|x|^{q}+\left(S^{(q)}(F)\right)^{q}\right): F \in L(x)\right\} \tag{23}
\end{equation*}
$$

where F_{∞} denotes the pointwise limit of the simple martingale F. Through considering the martingale $F \in L(x)$ with $F_{n}=x, n \geq 0$, we deduce that u satisfies (21).

From the definition of u, it is straightforward to verify that

$$
\begin{equation*}
u(x, t)=\sup \left\{E \phi\left(x+F_{\infty}, t+\left(S^{(q)}(F)\right)^{q}\right): F \in L(0)\right\} \tag{24}
\end{equation*}
$$

In the following we will show that u is lower semi-continuous. Notice that for fixed $F=\left(F_{n}\right) \in L(0)$, the map

$$
(x, t) \rightarrow E \phi\left(x+F_{\infty}, t+\left(S^{(q)}(F)\right)^{q}\right)
$$

is continuous. Indeed, if $x_{k} \rightarrow x, t_{k} \rightarrow t$ then we have

$$
\lim _{k \rightarrow \infty} \phi\left(x_{k}+F_{\infty}(\theta), t_{k}+\left(S^{(q)}(F)\right)^{q}(\theta)\right)=\phi\left(x+F_{\infty}(\theta), t+\left(S^{(q)}(F)\right)^{q}(\theta)\right)
$$

for all $\theta \in \Omega$. So

$$
\lim _{k \rightarrow \infty} E \phi\left(x_{k}+F_{\infty}, t_{k}+\left(S^{(q)}(F)\right)^{q}\right)=E \phi\left(x+F_{\infty}, t+\left(S^{(q)}(F)\right)^{q}\right)
$$

Hence, u is lower semi-continuous.
To show that u satisfies (22), let

$$
f(s)=\sum_{k=1}^{n} x_{k} e^{i k s}, s \in[0,2 \pi], x_{k} \in X, k=1, \ldots, n, n \geq 1
$$

Let $m(s)$ be a continuous function on $[0,2 \pi]$ and

$$
u\left(x+f(s), t+\|f(s)\|^{q}\right) \geq m(s), s \in[0,2 \pi]
$$

For each fixed $s \in[0,2 \pi]$ and $\varepsilon>0$, there exists $F^{(s)} \in L(0)$ with

$$
\begin{equation*}
E \phi\left(x+f(s)+F^{(s)}, t+\left(S^{(q)}\left(F^{(s)}\right)\right)^{q}\right)>m(s)-\varepsilon \tag{25}
\end{equation*}
$$

Let

$$
g_{s}(r)=E \phi\left(x+f(r)+F^{(s)}, t+\left(S^{(q)}\left(F^{(s)}\right)\right)^{q}\right)-m(r)+\varepsilon .
$$

Since $E \phi\left(x+f(r)+F^{(s)}, t+\left(S^{(q)}\left(F^{(s)}\right)\right)^{q}\right)$ and $m(s)$ are continuous, $g_{s}(r)$ is continuous function. By (25) it follows that $g_{s}(s)>0$. Hence there exists an open interval I_{s} such that $s \in I_{s}$ and $g_{s}(r)>0$ for $r \in I_{s}$. From compactness of [0, 2 $]$], we obtain that there are finitely many disjoint semi-open intervals $I_{s_{1}}, I_{s_{2}}, \ldots, I_{s_{J}}$ covering $(0,2 \pi] \subseteq[0,2 \pi], s_{j} \in[0,2 \pi], j=1,2, \ldots, J$ and corresponding martingales $F^{\left(s_{j}\right)}, j=1,2, \ldots, J$ such that the following inequality

$$
E \phi\left(x+f(r)+F^{\left(s_{j}\right)}, t+\left(S^{(q)}\left(F^{\left(s_{j}\right)}\right)\right)^{q}\right)>m(r)-\varepsilon \text { for } r \in I_{s_{j}}
$$

holds. We now define a Hardy martingale $F=\left(F_{n}\right)$ by

$$
F_{0}=0, F_{n}\left(s, \theta_{1}, \ldots, \theta_{n-1}\right)=F_{n-1}^{s_{j}}\left(\theta_{1}, \ldots, \theta_{n-1}\right)+f(s)
$$

for $s \in I_{s_{j}}, 1 \leq j \leq J$ and $n \geq 1$, then it is clear that $F=\left(F_{n}\right) \in L(0)$. Hence

$$
\begin{aligned}
u(x, t) & \geq E \phi\left(x+F_{\infty}, t+\left(S^{(q)}(F)\right)^{q}\right) \\
& =\sum_{j=1}^{J} \frac{1}{2 \pi} \int_{I_{s_{j}}} E \phi\left(x+f(s)+F^{\left(s_{j}\right)}, t+\|f(s)\|^{q}+\left(S^{(q)}\left(F^{\left(s_{j}\right)}\right)\right)^{q}\right) d s \\
& \geq \sum_{j=1}^{J} \frac{1}{2 \pi} \int_{I_{s_{j}}} m(s) d s-\varepsilon=\frac{1}{2 \pi} \int_{0}^{2 \pi} m(s) d s-\varepsilon
\end{aligned}
$$

Then $u(x, t) \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} m(s) d s$. Hence, using Theorem B, we derive that

$$
u(x, t) \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x+f(s), t+\|f(s)\|^{q}\right) d s
$$

so u satisfies (22).
u is the least function satisfying (21) and (22). To see this, let v satisfy (21), (22), $F=\left(F_{n}\right) \in L(x)$. Then, by (21) and (22), it follows that

$$
\begin{gathered}
E F\left(F_{\infty}, t-|x|^{q}+S^{q}(F)^{q}\right) \leq E v\left(F_{\infty}, t-|x|^{q}+S^{q}(F)^{q}\right) \\
\leq E v\left(F_{0}, t-\|x\|^{q}+\left(S_{0}^{(q)}(F)\right)^{q}\right)=v(x, t)
\end{gathered}
$$

which implies that $u \leq v$.
Conversely, without loss of generality, we can assume that u as in (23). Then

$$
\begin{equation*}
u\left(\alpha x,|\alpha|^{q} t\right)=|\alpha|^{p} u(x, t), \quad \forall \alpha \in \mathbb{R}, \tag{26}
\end{equation*}
$$

To see this, consider $v: X \times[0, \infty) \rightarrow[-\infty, \infty]$ defined by

$$
v(x, t)=\inf _{\lambda \neq 0} \frac{u\left(\lambda x,|\lambda|^{q} t\right)}{|\lambda|^{p}}
$$

Then v satisfies (21), (22) and $v \leq u$. Using the minimality of u, we obtain that $u=v$, this gives (26). To show (20) for the γ in the definition of ϕ, we need to prove that (19) holds for all Hardy martingales $F=\left(F_{n}\right)$ with values in X. To do this, we can assume that Hardy martingale $F=\left(F_{n}\right)$ is simple and $F_{0}=0$. Then, from (21), (22) and (26), we derive that

$$
E \phi\left(F_{n},\left(S_{n}^{(q)}(F)\right)^{q}\right) \leq E u\left(F_{n},\left(S_{n}^{(q)}(F)\right)^{q}\right) \leq \cdots \leq E u\left(F_{0},\left(S_{0}^{(q)}(F)\right)^{q}\right)=u(0,0)=0
$$

so $\left\|S^{q}(F)\right\|_{p}^{p}-\gamma^{p}\|F\|_{p}^{p} \leq 0$ and (19) follows.
Theorem 3 Suppose that X is a complex quasi-Banach space, $p \in(0, \infty), q \in[2, \infty)$ and $\gamma \in[1, \infty)$. Then

$$
\begin{equation*}
\gamma_{p, q}^{A} \leq \gamma \tag{27}
\end{equation*}
$$

iff there is a lower semi-continuous function $u: X \times[0, \infty) \rightarrow[-\infty, \infty]$ such that, for all $x, y \in X$ and $t \geq 0$,

$$
\begin{gather*}
u(x, t) \geq \phi(x, t) \tag{28}\\
u(x, t) \geq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x+y e^{i \theta}, t+\|y\|^{q}\right) d \theta \tag{29}
\end{gather*}
$$

where $\phi(x, t)=t^{\frac{p}{q}}-\gamma^{p}\|x\|^{p}$.
The proof of Theorem 3 is the same as the proof of Theorem 2, therefore we omit it.

References

[Bu1] D. L. Burkholder, Martingale and Fourier analysis in Banach space. In: Probability and analysis (Varenna, 1985), Lecture Notes in Math. 1206, Springer, Berlin, 1986, pp. 61-108.
[Bu2] D. L. Burkholder, Explorations in martingale theory and its applications. In: École d'Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math. 1464 Springer, Berlin, 1991, pp. 1-66.
[K] N. J. Kalton, Plurisubharmonic functions on quasi-Banach spaces. Studia Math. 84(1986), 297-324.
[L] J. M. Lee, Biconcave function characterization of UMD and Hilbert spaces. Bull. Austral. Math. Soc. 47(1993), 297-306.
[LB] P. D. Liu, T. N. Bekjan, Inequalities of Hardy martingales and convexity in Complex space. Acta Mathematica Sinica 40(1997), 133-143.
[P] M. Piasecki, A geometric characterization of AUMD Banach spaces via subharmonic functions. Demonstratio Math. 30(1997), 641-654.
[R] T. Ransford, Potential theory in the complex plane. Cambridge University Press, Cambridge, 1995.
[X1] Q. Xu, Inégalités pour les martingales de Hardy et renormage des espaces quasi-normés. C. R. Acad. Paris 306(1988), 601-604.
[X2] Q. Xu, Convexités uniformes et inégalités de martingales. Math. Ann. 287(1990), 193-211.
[X3] Q. Xu, Littlewood-Paley theory for functions with values in uniformly convex spaces. J. Reine Angew. Math. 504(1998), 195-226.

College of Mathematics and Systems Science
Xinjiang University
Urumqi 830046
China
e-mail: bek@xju.edu.cn

[^0]: Received by the editors November 12, 2002; revised April 20,2003.
 AMS subject classification: 46B20, 52A07, 60G44.
 Keywords: Hardy martingale, Hardy martingale cotype, plurisubharmonic function.
 (C)Canadian Mathematical Society 2004.

