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A New Characterization of Hardy
Martingale Cotype Space

Turdebek. N. Bekjan

Abstract. We give a new characterization of Hardy martingale cotype property of complex quasi-

Banach space by using the existence of a kind of plurisubharmonic functions. We also characterize the

best constants of Hardy martingale inequalities with values in the complex quasi-Banach space.

1 Introduction

It is well known, by now, that some special functions are closely related to the inequal-

ities of martingales and the geometric structure of Banach space. Burkholder[Bu1]

[Bu2] gave the biconvex function characterization of Hilbert space and UMD space,

and the convex function characterization of martingale cotype space. Lee [L] gave the

biconcave function characterization of Hilbert space and UMD space. Piasecki [P]

obtained the shew-plurisubharmonic function characterization of AUMD space. In

this paper we establish a geometric characterization of Hardy martingale cotype space

via the plurisubharmonic function.

2 Preliminaries

Let Ω = [0, 2π]N, Σ be Borel σ-algebra on [0, 2π]N and P the product measure

of normalized Lebesgue measure on [0, 2π]. An element θ ∈ Ω is written as θ =

(θ1, θ2, . . . ). Let Σn stand for σ-algebra generated by the first n coordinates

θ1, θ2, . . . , θn. Where Σ0 = {φ, [0, 2π]} and E is the expectation with respect to

P. Suppose that X is a complex quasi-Banach space. For simplicity, we assume that

the quasi-norm of X is plurisubharmonic, i.e.,

(1) ‖x‖ ≤
1

2π

∫ 2π

0

‖x + yeiθ‖ dθ ∀x, y ∈ X.

Then, by the result of Kalton [K], there is an equivalent quasi-norm which is both

plurisubharmonic and ρ-subadditive (‖x + y‖ρ ≤ ‖x‖ρ + ‖y‖ρ, ∀x, y ∈ X) for some

0 < ρ ≤ 1. So without loss of generality, throughout this paper, we assume that the

quasi-norm of X is ρ-subadditive.

A sequence F = (Fn) of X-valued random variables adapted to the sequence of

sub-σ-algebras (Σn) is called Hardy martingale if

F0 = x, dFn = Fn − Fn−1 =

∞
∑

k=1

ϕn,k(θ1, . . . , θn−1)eiθn for n ≥ 1,
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where x ∈ X, ϕn,k are X-valued (strongly) measurable function of θ1, . . . , θn−1, for

k = 1, 2, . . . . If additionally ϕn,k = 0 for all k ≥ 2, n = 1, 2, . . . , then F = (Fn) is

called analytic martingale.

We say that X is of Hardy (resp. analytic) martingale cotype q (2 ≤ q < ∞) if

there is a constant C such that

(

∑

n≥o

‖dFn‖
q
q

)

1

q ≤ C sup
n≥o

‖Fn‖

for all Hardy (resp. analytic) martingales F = (Fn) with values in X. By the renorm-

ing theorem of [X1](see also [X2], [LB]), X is of Hardy martingale cotype q iff X

has an equivalent quasi-norm | · | whose uniform Hq-convexity modulus is of power

type q:

hX
q (ε) ≥ Cεq, ∀0 < ε ≤ 1,

where C > 0 is a constant, and the so called uniform Hq-convexity modulus is

hX
q (ε) = inf

{

‖ f ‖Lq([0,2π];(X,|·|)) : | f̂ (0)| = 1,

‖ f − f̂ (0)‖Lq([0,2π];(X,|·|)) > ε, f ∈ Hq(X)
}

.

Several other equivalent conditions for the Hardy martingale cotype can be found in

[LB, X1, X2, X3]. For convenience we state the following criteria (see [LB]) that will

be applied below. We use the customary notations

F∗
n = sup

k≤n

‖Fk‖, F∗
= sup

n≥0

‖Fk‖, ‖F‖p = sup
k≥0

‖Fk‖p,

S(p)
n (F) = (

n
∑

k=0

‖dFk‖
p)

1

p , S(p)(F) = (

∞
∑

k=0

‖dFk‖
p)

1

p .

Theorem A Let 2 ≤ q < ∞, X be a quasi-Banach space, the following statements are

equivalent:

(i) X is of Hardy martingale cotype q.

(ii) If ‖F‖∞ < ∞, then Sq(F) < ∞ a.e. for every X-valued Hardy martingale F =

(Fn).

(iii) For 0 < p < ∞ there is a constant C p such that

(2) ‖S(q)(F)‖p ≤ C p‖F‖p

for every X-valued Hardy martingale F = (Fn).

We recall a classical fact about lower semi-continuous functions (see [R 2.1.3]).

Lemma B Let u be a lower semi-continuous real-valued function defined on a metric

space X, such that u is bounded below on X. Then there exist uniformly continuous

functions φn : X → R such that the sequence φn is increasing and limn→∞ φn = u

on X.
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3 Main Theorems and Their Proofs

Let X be a quasi-Banach space. An X-valued Hardy(resp. analytic) martingale F =

(Fn) is called simple if there is n such that Fm = Fn for all m ≥ n, and every ϕl,k

(resp. ϕl,1) is X-valued simple function of θ1, . . . , θl−1 for l = 1, . . . , n, k = 1, 2, . . . .

One may check that such martingales are dense in the space of Bochner integrable

X-valued Hardy(resp. analytic) martingales.

Let 2 ≤ q < ∞ and v : X × [0,∞) → R a function satisfying

v(0, 0) > 0,(3)

v(x, t) ≤ ‖x‖ρ if t ≥ 1,(4)

v(x, t) ≤
1

2π

∫ 2π

0

v(x +

n
∑

k=1

xkeikθ, t + ‖
n

∑

k=1

xkeikθ‖q)dθ,(5)

for all x, xk ∈ X, (k = 1, 2, . . . , n), n ≥ 1 and t ≥ 0.

If (x, t) ∈ X×[0,∞), let L(x, t) be the set of all X-valued simple Hardy martingales

F = (Fn) such that F0 = x and

P(t − ‖x‖q + (S(q)(F))q ≥ 1) = 1.

It is clear that L(x, t) is nonempty. Set

(6) u(x, t) = inf
{

‖F‖ρ
ρ : F ∈ L(x, t)

}

.

Lemma 1 Let X be a complex quasi-Banach space. Then u is the greatest plurisubhar-

monic function X × [0,∞) → R which satisfies (4) and (5).

Proof If t ≥ 1 and Fn = x for all n ≥ 0, then F = (Fn) ∈ L(x, t) and ‖F‖ρ
ρ = ‖x‖ρ,

which implies that u(x, t) ≤ ‖x‖ρ.

We next show that u has the property (5). Let Lk(x, t) be the set of all X-valued

simple Hardy martingales F = (Fn) such that F0 = x and

P
(

t − ‖x‖q + (S(q)(F))q ≥ 1 +
1

k

)

= 1.

Define uk(x, t) = inf
{

‖F‖ρ
ρ : F ∈ Lk(x, t)

}

for k = 1, 2, . . . . Then it is clear that

Lk(x, t) ⊆ Lk+1(x, t), uk+1(x, t) ≤ uk(x, t)

and

(7) u(x, t) = inf
k≥1

uk(x, t).

In fact, Lk(x, t) ⊆ L(x, t) and u(x, t) ≤ uk(x, t), so

(8) u(x, t) ≤ inf
k≥1

uk(x, t).
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On the other hand, for arbitrary ε > 0, there is a simple Hardy martingale

F = (Fn) ∈ L(x, t) which satisfies

(9) ‖F‖ρ
ρ ≤ u(x, t) + ε.

Choose k and y ∈ X so that ( 1
k
)ρ/q ≤ ε, ‖y‖q

=
1
k
. We introduce a new Hardy

martingale G = (Gn) by

G0 = x, Gn+1 = Fn + eiθ y, for θ ∈ [0, 2π], n ≥ 0.

Notice that

t − ‖x‖q + (S(q)(G))q
= t − ‖x‖q + (S(q)(F))q + ‖y‖q

= t − ‖x‖q + (S(q)(F))q +
1

k
,

therefore, G = (Gn) ∈ Lk(x, t). Hence, by (9),

uk(x, t) ≤ ‖G‖ρ
ρ ≤ ‖F‖ρ

ρ + ‖y‖ρ ≤ ‖F‖ρ
ρ + (

1

k
)

ρ
q ≤ u(x, t) + 2ε

and

inf
k≥1

uk(x, t) ≤ u(x, t) + 2ε.

We deduce that

(10) inf
k≥1

uk(x, t) ≤ u(x, t),

since ε > 0 is arbitrary. By (8) and (10), we obtain (7).

To show the function uk (k ≥ 1) is continuous, it suffices to prove that

(11) |uk(x, t) − uk(x ′, t ′)| ≤ ‖x − x ′‖ρ + |t − t ′|
ρ
q if (x, t), (x ′, t ′) ∈ X × [0,∞).

To see this, for t ′ = t and ε > 0 take F = (Fn) ∈ Lk(x, t) such that ‖F‖ρ
ρ ≤ uk(x, t)+ε.

We define a new Hardy martingale G = (Gn) by G0 = x ′, Gn = (Fn−F0)+G0. Notice

that G = (Gn) ∈ Lk(x ′, t), then

uk(x ′, t) ≤ ‖G‖ρ
ρ ≤ ‖F‖ρ

ρ + ‖x − x ′‖ρ ≤ uk(x, t) + ‖x − x ′‖ρ + ε.

This gives uk(x ′, t) − uk(x, t) ≤ ‖x − x ′‖ρ. Similarly we have uk(x, t) − uk(x ′, t) ≤
‖x−x ′‖ρ, so |uk(x, t)−uk(x ′, t)| ≤ ‖x−x ′‖ρ and (11) holds for the special case t ′ = t .

If t ′ > t and y ∈ X is chosen to satisfy ‖y‖ = (t ′ − t)
1

q , we take F = (Fn) ∈ Lk(x, t ′)

such that ‖F‖ρ
ρ ≤ uk(x, t ′) + ε and define a new Hardy martingale G = (Gn) by

G0 = x, Gn+1 = Fn + yeiθ. Then G = (Gn) ∈ Lk(x, t),

uk(x, t) ≤ ‖G‖ρ
ρ ≤ ‖F‖ρ

ρ + ‖y‖ρ ≤ uk(x, t ′) + |t ′ − t|
ρ
q + ε.
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Hence, we get uk(x, t) − uk(x, t ′) ≤ |t − t ′|ρ/q or |uk(x, t) − uk(x, t ′)| ≤ |t − t ′|ρ/q.

That is to say (11) holds for the special case x = x ′. Combining these two special

cases with the triangle inequality, we derive (11).

Now suppose that

f (θ) =

n
∑

l=1

xle
ilθ, θ ∈ [0, 2π], xl ∈ X, l = 1, . . . , n, n ≥ 1

and ε > 0, k ≥ 1. A continuity argument gives J > 0 such that

‖ f (
j

J
2π) − f (θ)‖ρ < ε,

∣

∣‖ f (
j

J
2π)‖q − ‖ f (θ)‖q

∣

∣ <
1

2k
,(12)

∣

∣

∣
uk(x + f (θ), t + ‖ f (θ)‖q) − uk

(

x + f
( j

J
2π

)

, t + ‖ f
( j

J
2π

)

‖q
)

∣

∣

∣
< ε,(13)

whenever
j−1

J
2π < θ ≤ j

J
2π for 1 ≤ j ≤ J. Clearly,

(14)

J
∑

j=1

1

2π

∫

j

J
2π

j−1

J
2π

uk(x + f (θ), t + ‖ f (θ)‖q) dθ

=
1

2π

∫ 2π

0

uk(x + f (θ), t + ‖ f (θ)‖q) dθ.

For each 1 ≤ j ≤ J, there exists F( j) ∈ Lk(x + f (
j
J
2π), t + ‖ f (

j
J
2π)‖q) with

(15) ‖F( j)‖ρ
ρ ≤ uk(x + f (

j

J
2π), t + ‖ f (

j

J
2π)‖q) + ε.

We now define a Hardy martingale F = (Fn) by

F0 = x, Fn(θ, θ1, . . . , θn−1) = F
( j)
n−1(θ1, . . . , θn−1) + f (θ) − f (

j

J
2π)

for j−1

J
2π < θ ≤ j

J
2π, 1 ≤ j ≤ J and n ≥ 1. If θ ∈ ( j−1

J
2π, j

J
2π], we have

t − ‖x‖q + (S(q)(F))q
= t + ‖ f (θ)‖q +

∞
∑

l=1

‖dF
( j)
l ‖q.

We use F( j) ∈ Lk(x + f ( j
J
2π), t + ‖ f ( j

J
2π)‖q), i.e.,

t + ‖ f (
j

J
2π)‖q − ‖x + f (

j

J
2π)‖q + (S(q)(F( j)))q

= t + ‖ f (
j

J
2π)‖q +

∞
∑

l=1

‖dF
( j)
l ‖q ≥ 1 +

1

k
a.e.
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and (12) to obtain that

t − ‖x‖q + (S(q)(F))q
= t + ‖ f (θ)‖q +

∞
∑

l=1

‖dF
( j)
l ‖q ≥ 1 +

1

2k
a.e.

when θ ∈ (
j−1

J
2π, j

J
2π]. So F = (Fn) ∈ L2k(x, t). From (12–15), it follows that

u2k(x, t) ≤ ‖F‖ρ
ρ ≤

J
∑

j=1

1

2π

∫
j

J
2π

j−1

J
2π

‖F( j)‖ρ
ρ dθ + ε

≤

J
∑

j=1

1

2π

∫

j

J
2π

j−1

J
2π

[

uk

(

x + f (
j

J
2π), t + ‖ f (

j

J
2π)‖q

)

+ ε
]

dθ + ε

≤

J
∑

j=1

1

2π

∫

j

J
2π

j−1

J
2π

uk

(

x + f (θ), t + ‖ f (θ)‖q
)

dθ + 3ε

=
1

2π

∫ 2π

0

uk

(

x + f (θ), t + ‖ f (θ)‖q
)

dθ + 3ε,

this implies

u2k(x, t) ≤
1

2π

∫ 2π

0

uk

(

x + f (θ), t + ‖ f (θ)‖q
)

dθ.

Now take limits to obtain

u(x, t) ≤
1

2π

∫ 2π

0

u
(

x + f (θ), t + ‖ f (θ)‖q
)

dθ,

which shows that u satisfies (5).

To see that u is the greatest function, let v satisfy (4), (5), F = (Fn) ∈ L(x, t) and

choose n so that P(t − ‖x‖q + (S
(q)
n (F))q ≥ 1) = 1. Then, by (4) and (5), we have

‖F‖ρ
ρ ≥ E‖Fn‖

ρ ≥ Ev(Fn, t − ‖x‖q + (S(q)
n (F))q)

≥ Ev(F0, t − ‖x‖q + (S
(q)

0 (F))q) = v(x, t),

which implies that u ≥ v.

Now we have

Corollary If u satisfies (3), (4) and (5), and F = (Fn) is a X-valued Hardy martingale,

then, for all λ > 0,

(16) P(S(q)(F) ≥ λ) ≤
‖F‖ρ

ρ

λρu(0, 0)
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Proof It suffices to prove (16), for u as in Lemma 1. We assume that λ = 1. For

X-valued Hardy martingale F = (Fn), F0 = 0, by (4) and Chebyshev’s inequality,

P(S(q)
n (F) ≥ 1) ≤ P

(

‖Fn‖
ρ − u(Fn, (S(q)

n (F))q) + u(0, 0) ≥ u(0, 0)
)

≤
E
[

‖Fn‖
ρ − u(Fn, (S

(q)
n (F))q) + u(0, 0)

]

u(0, 0)
.

On the other hand, by (5),

u(0, 0) = Eu(F0, (S
(q)

0 (F))q)

≤ Eu(F1, (S
(q)

1 (F))q)

· · ·

≤ Eu(Fn−1, (S
(q)

n−1(F))q)

≤ Eu(Fn, (S(q)
n (F))q).

Hence, we have

(17) P
(

S(q)
n (F) ≥ 1

)

≤
E‖Fn‖

ρ

u(0, 0)
.

Now we use homogeneity and take limits to obtain

(18) P
(

S(q)(F) ≥ λ
)

≤
‖F‖ρ

ρ

λρu(0, 0)
.

If X-valued Hardy martingale F = (Fn), F0 = x 6= 0, we define a Hardy martingale

G = (Gn) by

G0 = 0, Gn+1 = Gn + eiθdFn, for θ ∈ [0, 2π], n ≥ 0.

Then S
(q)
n (F) = S

(q)

n+1(G), ‖Fn‖ = ‖Gn+1‖; thus (18) yields (16).

Theorem 1 Let 2 ≤ q < ∞, X be a quasi-Banach space. Then X is of Hardy martin-

gale cotype q iff there is a plurisubharmonic function u : X × [0,∞) → R such that (3),

(4) and (5) hold.

Proof Suppose that X is of Hardy martingale cotype q. Theorem A implies that

there is a constant C > 0 such that ‖F‖ρ
ρ ≥ C whenever F = (Fn) ∈ L(0, 0). Let u

be defined by (6), then u(0, 0) ≥ C > 0 i.e., u satisfies (3). From Lemma 1 we know

that (4) and (5) hold.

Conversely, suppose that there is a plurisubharmonic function u : X×[0,∞) → R

such that (3), (4) and (5) hold, from the corollary of Lemma 1 and Theorem A, we

obtain that X is of Hardy martingale cotype q.

Let γH
p,q (resp. γA

p,q) be the least γ < ∞ such that

(19) ‖Sq(F)‖p ≤ γ‖F‖p

for all Hardy (resp. analytic) martingales F = (Fn) with values in X.
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Theorem 2 Suppose that X is a complex quasi-Banach space, p ∈ (0,∞), q ∈ [2,∞)

and γ ∈ [1,∞). Then

(20) γH
p,q ≤ γ

iff there is a lower semi-continuous function u : X × [0,∞) → [−∞,∞] such that, for

all x, xk ∈ X (k = 1, 2, . . . , n), n ≥ 1 and t ≥ 0,

u(x, t) ≥ φ(x, t),(21)

u(x, t) ≥
1

2π

∫ 2π

0

u
(

x +

n
∑

1

xkeikθ, t +
∥

∥

n
∑

1

xkeikθ
∥

∥

q
)

dθ(22)

where φ(x, t) = t
p

q − γ p‖x‖p.

Proof Assume that (20) holds. Let x ∈ X, L(x) be the set of all X-valued simple

Hardy martingales F = (Fn) satisfying F0 = x. Set

(23) u(x, t) = sup
{

Eφ
(

F∞, t − |x|q + (S(q)(F))q
)

: F ∈ L(x)
}

where F∞ denotes the pointwise limit of the simple martingale F. Through consid-

ering the martingale F ∈ L(x) with Fn = x, n ≥ 0, we deduce that u satisfies (21).

From the definition of u, it is straightforward to verify that

(24) u(x, t) = sup
{

Eφ
(

x + F∞, t + (S(q)(F))q
)

: F ∈ L(0)
}

.

In the following we will show that u is lower semi-continuous. Notice that for

fixed F = (Fn) ∈ L(0), the map

(x, t) → Eφ
(

x + F∞, t + (S(q)(F))q
)

is continuous. Indeed, if xk → x, tk → t then we have

lim
k→∞

φ
(

xk + F∞(θ), tk + (S(q)(F))q(θ)
)

= φ
(

x + F∞(θ), t + (S(q)(F))q(θ)
)

for all θ ∈ Ω. So

lim
k→∞

Eφ
(

xk + F∞, tk + (S(q)(F))q
)

= Eφ
(

x + F∞, t + (S(q)(F))q
)

.

Hence, u is lower semi-continuous.

To show that u satisfies (22), let

f (s) =

n
∑

k=1

xkeiks, s ∈ [0, 2π], xk ∈ X, k = 1, . . . , n, n ≥ 1.
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Let m(s) be a continuous function on [0, 2π] and

u
(

x + f (s), t + ‖ f (s)‖q
)

≥ m(s), s ∈ [0, 2π].

For each fixed s ∈ [0, 2π] and ε > 0, there exists F(s) ∈ L(0) with

(25) Eφ
(

x + f (s) + F(s), t + (S(q)(F(s)))q
)

> m(s) − ε.

Let

gs(r) = Eφ
(

x + f (r) + F(s), t + (S(q)(F(s)))q
)

− m(r) + ε.

Since Eφ(x + f (r) + F(s), t + (S(q)(F(s)))q) and m(s) are continuous, gs(r) is contin-

uous function. By (25) it follows that gs(s) > 0. Hence there exists an open inter-

val Is such that s ∈ Is and gs(r) > 0 for r ∈ Is. From compactness of [0, 2π], we

obtain that there are finitely many disjoint semi-open intervals Is1
, Is2

, . . . , Is J
cover-

ing (0, 2π] ⊆ [0, 2π], s j ∈ [0, 2π], j = 1, 2, . . . , J and corresponding martingales

F(s j ), j = 1, 2, . . . , J such that the following inequality

Eφ
(

x + f (r) + F(s j ), t + (S(q)(F(s j )))q
)

> m(r) − ε for r ∈ Is j

holds. We now define a Hardy martingale F = (Fn) by

F0 = 0, Fn(s, θ1, . . . , θn−1) = F
s j

n−1(θ1, . . . , θn−1) + f (s)

for s ∈ Is j
, 1 ≤ j ≤ J and n ≥ 1, then it is clear that F = (Fn) ∈ L(0). Hence

u(x, t) ≥ Eφ(x + F∞, t + (S(q)(F))q)

=

J
∑

j=1

1

2π

∫

Is j

Eφ
(

x + f (s) + F(s j ), t + ‖ f (s)‖q + (S(q)(F(s j )))q
)

ds

≥

J
∑

j=1

1

2π

∫

Is j

m(s) ds − ε =
1

2π

∫ 2π

0

m(s) ds − ε

Then u(x, t) ≥ 1
2π

∫ 2π

0
m(s) ds. Hence, using Theorem B, we derive that

u(x, t) ≥
1

2π

∫ 2π

0

u
(

x + f (s), t + ‖ f (s)‖q
)

ds,

so u satisfies (22).

u is the least function satisfying (21) and (22). To see this, let v satisfy (21), (22),

F = (Fn) ∈ L(x). Then, by (21) and (22), it follows that

EF
(

F∞, t − |x|q + Sq(F)q
)

≤ Ev
(

F∞, t − |x|q + Sq(F)q
)

≤ Ev
(

F0, t − ‖x‖q + (S
(q)

0 (F))q) = v(x, t
)

,
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which implies that u ≤ v.

Conversely, without loss of generality, we can assume that u as in (23). Then

(26) u(αx, |α|qt) = |α|pu(x, t), ∀α ∈ R,

To see this, consider v : X × [0,∞) → [−∞,∞] defined by

v(x, t) = inf
λ 6=0

u(λx, |λ|qt)

|λ|p
.

Then v satisfies (21), (22) and v ≤ u. Using the minimality of u, we obtain that

u = v, this gives (26). To show (20) for the γ in the definition of φ, we need to prove

that (19) holds for all Hardy martingales F = (Fn) with values in X. To do this, we

can assume that Hardy martingale F = (Fn) is simple and F0 = 0. Then, from (21),

(22) and (26), we derive that

Eφ(Fn, (S(q)
n (F))q) ≤ Eu(Fn, (S(q)

n (F))q) ≤ · · · ≤ Eu(F0, (S
(q)

0 (F))q) = u(0, 0) = 0

so ‖Sq(F)‖
p
p − γ p‖F‖

p
p ≤ 0 and (19) follows.

Theorem 3 Suppose that X is a complex quasi-Banach space, p ∈ (0,∞), q ∈ [2,∞)

and γ ∈ [1,∞). Then

(27) γA
p,q ≤ γ

iff there is a lower semi-continuous function u : X × [0,∞) → [−∞,∞] such that, for

all x, y ∈ X and t ≥ 0,

u(x, t) ≥ φ(x, t),(28)

u(x, t) ≥
1

2π

∫ 2π

0

u
(

x + yeiθ, t + ‖y‖q
)

dθ(29)

where φ(x, t) = t
p

q − γ p‖x‖p.

The proof of Theorem 3 is the same as the proof of Theorem 2, therefore we

omit it.
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