AN ANALOGY BETWEEN PRODUCTS OF TWO CONJUGACY CLASSES AND PRODUCTS OF TWO IRREDUCIBLE CHARACTERS IN FINITE GROUPS

by ZVI ARAD and ELSA FISMAN*

(Received 10th August 1985)

Introduction

It is well-known that the number of irreducible characters of a finite group G is equal to the number of conjugate classes of G. The purpose of this article is to give some analogous properties between these basic concepts.

We present the following theorems:

Theorem A. If C and D are non-trivial conjugacy classes of a finite group G such that either $C D=m C+n D$ or $C D=m C^{-1}+n D$, where m, n are non-negative integers, then G is not a non-abelian simple group.

Theorem B. If χ and ψ are non-trivial irreducible characters of a finite group G such that either $\chi \psi=m \chi+n \psi$ or $\chi \psi=m \bar{\chi}+n \psi$, where m, n are non-negative integers, then G is not a non-abelian simple group.

Analogous theorems between products of conjugacy classes and products of characters were studied in [1-4]. For example a finite group G is isomorphic to J_{1} (the first Janko group) iff $C^{2}=G$ for every non-trivial conjugacy class C of the finite group G [1]. The analogous theorem is that a finite group G is isomorphic to J_{1} iff $\operatorname{Irr}\left(\chi^{2}\right)=\operatorname{Irr}(G)$ (i.e., all the irreducible characters of G are constituents of χ^{2}) for every non-trivial irreducible character χ of the finite group G [4].

The proofs of Theorems A and B are elementary; chapters 1-4 of [5] suffice for background.
Our notation is standard and is taken mainly from Isaacs [5].

Proofs of theorems

Let \mathbb{N} be the set of all positive integers and set \mathbb{N}^{*} to be $\mathbb{N} \cup\{0\}$.
Let $\operatorname{lrr}(G)=\left\{\chi_{1}, \ldots, \chi_{k}\right\}$ be the set of all irreducible characters of a finite group G. It is well known that χ is a character if and only if $0 \neq \chi=\sum_{i=1}^{k} n_{i} \chi_{i}$, where n_{i} are elements of

[^0]\mathbb{N}^{*} for $1 \leqq i \leqq k$. If $\chi=\sum_{i=1}^{k} n_{i} \chi_{i}$ is a character then those χ_{i} with $n_{i}>0$ are called the irreducible constituents of χ.

Let χ and ψ be characters of G. The fact that $\chi+\psi$ is a character is a triviality. We may define a new class function $\chi \psi$ on G by setting $(\chi \psi)(g)=\chi(g) \psi(g)$. It is true but somewhat less trivial that $\chi \psi$ is a character.

It is well known (see Theorem 4.1 of [5]) that if the $\mathbb{C}[G]$-modules V and W afford characters χ and ψ, respectively, then the tensor product $V \otimes W$ affords the character $\chi \psi$ and is independent of the choice of bases of V and W.

Thus as a consequence of Theorem B we have that for irreducible $\mathbb{C}[G]$-modules V and W of a finite non-abelian simple group

$$
V \otimes W \not \approx \underbrace{V \oplus \cdots \oplus V}_{m \text { times }} \oplus \underbrace{W \oplus \cdots \oplus W}_{n \text { times }} \text {, where } \quad m, n \in \mathbb{N}^{*} \text {. }
$$

We can state Theorem B as follows:
Theorem 1. Let G be a finite non-abelian simple group, $\left\{n_{1}, n_{2}\right\} \subset \mathbb{N}$ and $\left\{\psi_{1}, \psi_{2}\right\} \cong \operatorname{Irr}(G)-1_{G}$. Then:
(a) $\psi_{1} \psi_{2} \neq n_{1} \psi_{1}$ and $\psi_{1} \psi_{2} \neq n_{1} \psi_{1}$,
(b) $\psi_{1} \psi_{2} \neq n_{1} \psi_{1}+n_{2} \psi_{2}$,
(c) $\psi_{1} \psi_{2} \neq n_{1} \psi_{1}+n_{2} \psi_{2}$.

Proof of (a). By the First Orthogonality Relation there exists $g \in G-\{1\}$ such that $\psi_{1}(g) \neq 0$. The simplicity of G implies that $Z\left(\psi_{2}\right)=1$. Therefore $\left|\psi_{1}(g)\right|\left|\psi_{2}(g)\right| \neq\left|\psi_{1}(g)\right|\left|\psi_{2}(1)\right|$ and the inequalities of (a) hold.

Proof of (b). Let G be a counterexample with $\psi_{1} \psi_{2}=n_{1} \psi_{1}+n_{2} \psi_{2}$ then clearly $\psi_{1} \neq \psi_{2} \neq \psi_{1}$. We will show:
b(i). $\quad \psi_{1} \Psi_{2}=n_{1} \psi_{1}+n_{2} \Psi_{2}$.
Proof. Since $n_{1}=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=\left[\psi_{1}, \psi_{1} \psi_{2}\right]$ and $n_{2}=\left[\psi_{1} \psi_{2}, \psi_{2}\right]=\left[\psi_{1} \psi_{2}, \psi_{2}\right]$ then: $\psi_{1} \psi_{2}=n_{1} \psi_{1}+n_{2} \psi_{2}+\alpha$, with $\left[\alpha, \psi_{i}\right]=0$ for $i \in\{1,2\}$. Since $n_{1} \psi_{1}(1)+n_{2} \psi_{2}(1)=n_{1} \psi_{1}(1)+$ $n_{2} \psi_{2}(1)=\psi_{1}(1) \psi_{2}(1)=\psi_{1}(1) \Psi_{2}(1)=n_{1} \psi_{1}(1)+n_{2} \Psi_{2}(1)+\alpha(1)$ then $\alpha(1)=0$. So $\alpha=0$.
b(ii). $\psi_{i}=\bar{\psi}_{i}$ for $i \in\{1,2\}$.
Proof. By b(i) we get that:

$$
\Psi_{2}\left(\psi_{1} \psi_{2}\right)=\Psi_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}\left(n_{1} \psi_{1}+n_{2} \Psi_{2}\right)+n_{2} \psi_{2} \Psi_{2}
$$

and

$$
\left(\psi_{2} \psi_{1}\right) \psi_{2}=\psi_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)+n_{2} \psi_{2} \psi_{2}
$$

Since $\psi_{2}\left(\psi_{1} \psi_{2}\right)=\left(\psi_{2} \psi_{1}\right) \psi_{2}$ then $\psi_{2}=\Psi_{2}$ and similarly $\psi_{1}=\psi_{1}$.
b(iii). $\psi_{1}^{2}=1_{G}+n_{1} \psi_{2}+s_{1} \psi_{1}+\alpha_{1}, \psi_{2}^{2}=1_{G}+n_{2} \psi_{1}+s_{2} \psi_{2}+\alpha_{2}$, where $s_{i} \in \mathbb{N}^{*}, \alpha_{i} \neq 0$ and $\left(\alpha_{i}, \chi\right)=0$ for $\chi \in\left\{1_{G}, \psi_{1}, \psi_{2}\right\}$, $i \in\{1,2\}$.

Proof. By b(ii) $1=\left[\psi_{i}, \psi_{i}\right]=\left[\psi_{i}^{2}, 1_{G}\right]$ for $i \in\{1,2\}$ and $n_{1}=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=\left[\psi_{1}^{2}, \psi_{2}\right]$ then: $\psi_{1}^{2}=1_{G}+n_{1} \psi_{2}+s_{1} \psi_{1}+\alpha_{1}$. Since $\psi_{1}(1)>1$ then by Burnside's theorem ([5] (3.15)) there exists $g \in G$ such that $\psi_{1}(g)=0$. Hence $0=\psi_{1}(g) \psi_{2}(g)=n_{1} \psi_{1}(g)+n_{2} \psi_{2}(g)=n_{2} \psi_{2}(g)$. So $\psi_{2}(g)=0$. It follows that $0=\psi_{1}(g)^{2}=1_{G}+n_{1} \psi_{2}(g)+s_{1} \psi_{1}(g)+\alpha_{1}(g)=1+\alpha_{1}(g)$ and then $\alpha_{1} \neq 0$. Similarly $\psi_{2}^{2}=1_{G}+n_{2} \psi_{1}+\mathrm{s}_{2} \psi_{2}+\alpha_{2}$ with $\alpha_{2} \neq 0$.
b(iv). (1) $n_{1} \alpha_{1}=n_{1} \alpha_{2}+\alpha_{1} \psi_{2}-\left[\alpha_{1}, \alpha_{2}\right] \psi_{2}$ and
(2) $n_{2} \alpha_{2}=n_{2} \alpha_{1}+\alpha_{2} \psi_{1}-\left[\alpha_{1}, \alpha_{2}\right] \psi_{1}$.

Proof. By b(iii) we get that:

$$
\begin{gathered}
\psi_{1}^{2} \psi_{2}=\left(1_{G}+n_{1} \psi_{2}+s_{1} \psi_{1}+\alpha_{1}\right) \psi_{2}=\psi_{2}+n_{1}\left(1_{G}+n_{2} \psi_{1}+s_{2} \psi_{2}+\alpha_{2}\right)+s_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)+\alpha_{1} \psi_{2} \\
=n_{1} 1_{G}+\left(n_{1} n_{2}+s_{1} n_{1}\right) \psi_{1}+\left(1+n_{1} s_{2}+s_{1} n_{2}\right) \psi_{2}+n_{1} \alpha_{2}+\alpha_{1} \psi_{2} \\
\\
\psi_{1}\left(\psi_{1} \psi_{2}\right)=\psi_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}\left(1_{G}+n_{1} \psi_{2}+s_{1} \psi_{1}+\alpha_{1}\right)+n_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right) \\
=n_{1} 1_{G}+\left(n_{1} s_{1}+n_{1} n_{2}\right) \psi_{1}+\left(n_{1}^{2}+n_{2}^{2}\right) \psi_{2}+n_{1} \alpha_{1} .
\end{gathered}
$$

Since $\psi_{1}^{2} \psi_{2}=\psi_{1}\left(\psi_{1} \psi_{2}\right)$ then: $n_{1} \alpha_{1}=n_{1} \alpha_{2}+\alpha_{1} \psi_{2}-\left[\alpha_{1} \psi_{2}, \psi_{2}\right] \psi_{2}$. Since $\left[\alpha_{1} \psi_{2}, \psi_{2}\right]=$ $\left[\alpha_{1}, \psi_{2}^{2}\right]=\left[\alpha_{1}, \alpha_{2}\right]$ then (1) holds and similarly also (2).
b(v). Final contradiction.
Proof. Let us multiply $\mathrm{b}(\mathrm{iv})(1)$ by n_{2} and $\mathrm{b}(\mathrm{iv})(2)$ by n_{1}. By adding these equations we get that

$$
n_{1} n_{2}\left(\alpha_{1}+\alpha_{2}\right)=n_{1} n_{2}\left(\alpha_{1}+\alpha_{2}\right)+n_{2} \alpha_{1} \psi_{2}+n_{1} \alpha_{2} \psi_{1}-\left[\alpha_{1}, \alpha_{2}\right]\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)
$$

Hence $n_{1} \alpha_{2} \psi_{1}+n_{2} \alpha_{1} \psi_{2}=\left[\alpha_{1}, \alpha_{2}\right]\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)$. It follows that $\left[\alpha_{2} \psi_{1}, \beta\right]=0$ for every $\beta \in \operatorname{Irr}(G)-\left\{\psi_{1}, \psi_{2}\right\}$. Moreover, since $\left[\alpha_{2} \psi_{1}, \psi_{2}\right]=\left[\alpha_{2}, \psi_{1} \psi_{2}\right]=\left[\alpha_{2}, n_{1} \psi_{1}+n_{2} \psi_{2}\right]=0$ then $\alpha_{2} \psi_{1}=l \psi_{1}$ with $l \in \mathbb{N}$. Let χ be an irreducible constituent of α_{2} then $\chi \psi_{1}=k \psi_{1}$ with $k \in \mathbb{N}$ which contradicts (a).

Proof of (c). Let G be a counterexample with $\psi_{1} \psi_{2}=n_{1} \psi_{1}+n_{2} \psi_{2}$. By (b) $\psi_{1} \neq \psi_{1}$. We consider the following two cases:
c(1) $\psi_{2}=\psi_{2} \quad$ and
c(2) $\psi_{2} \neq \psi_{2}$.
Case c(1)(i). $\quad \psi_{1}^{2}+n_{2} \psi_{1}=\psi_{1}^{2}+n_{2} \psi_{1}$.

Proof. Since $\psi_{1} \psi_{2}=n_{1} \psi_{1}+n_{2} \psi_{2}$ then

$$
\bar{\psi}_{1}\left(\psi_{1} \psi_{2}\right)=\bar{\psi}_{1}\left(n_{1} \bar{\psi}_{1}+n_{2} \psi_{2}\right)=n_{1} \bar{\psi}_{1} \bar{\psi}_{1}+n_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)
$$

and

$$
\left(\psi_{1} \psi_{2}\right) \psi_{1}=\psi_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1} \psi_{1}^{2}+n_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)
$$

then $\psi_{1}^{2}+n_{2} \psi_{1}=\psi_{1}^{2}+n_{2} \psi_{1}$.
Case c(1)(ii). $\psi_{1}^{2}=n_{1} \psi_{2}+n_{2} \psi_{1}+\alpha_{1}, \psi_{2}^{2}=1_{G}+n_{2}\left(\psi_{1}+\psi_{1}\right)+\alpha_{2}$ with $\alpha_{i}=\bar{\alpha}_{i},\left[\alpha_{i}, \chi\right]=0$ for $\chi \in\left\{1_{G}, \psi_{1}, \bar{\psi}_{1}, \psi_{2}\right\}, i \in\{1,2\}$, and $n_{1} \psi_{1} \bar{\psi}_{1}=n_{1} \psi_{2}^{2}+\alpha_{1} \psi_{2}$.

Proof. Since $n_{1}=\left[\psi_{1} \psi_{2}, \Psi_{1}\right]=\left[\psi_{1}^{2}, \psi_{2}\right]$ then $\psi_{1}^{2}=n_{1} \psi_{2}+l_{1} \psi_{1}+l_{2} \Psi_{1}+\alpha_{1} \quad$ with $\left\{l_{1}, l_{2}\right\} \subset \mathbb{N}^{*}$ and $\left[\alpha_{1}, \beta\right]=0$ for $\beta \in\left\{1_{G}, \psi_{1}, \psi_{1}, \psi_{2}\right\}$. By $\mathrm{c}(1)(\mathrm{i}) n_{1} \psi_{2}+\left(n_{2}+l_{2}\right) \psi_{1}+l_{1} \psi_{1}+\bar{\alpha}_{1}=$ $\bar{\psi}_{1}^{2}+n_{2} \psi_{1}=\psi_{1}^{2}+n_{2} \bar{\psi}_{1}=n_{1} \psi_{2}+l_{1} \psi_{1}+\left(n_{2}+l_{2}\right) \psi_{1}+\alpha_{1}$. So $\alpha_{1}=\bar{\alpha}_{1}$ and $l_{1}=l_{2}+n_{2}$.

Now

$$
\begin{aligned}
\psi_{1}^{2} \psi_{2} & =\psi_{2}\left[n_{1} \psi_{2}+\left(l_{2}+n_{2}\right) \psi_{1}+l_{2} \psi_{1}+\alpha_{1}\right] \\
& =n_{1} \psi_{2}^{2}+\left(l_{2}+n_{2}\right)\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)+l_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)+\alpha_{1} \psi_{2}
\end{aligned}
$$

and

$$
\psi_{1}\left(\psi_{1} \psi_{2}\right)=\psi_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1} \psi_{1} \psi_{1}+n_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)
$$

so

$$
n_{1} \psi_{1} \Psi_{1}=n_{1} \psi_{2}^{2}+l_{2} n_{1}\left(\psi_{1}+\Psi_{1}\right)+2 l_{2} n_{2} \psi_{2}+\alpha_{1} \psi_{2} .
$$

Since $\left[\psi_{1} \psi_{1}, \psi_{2}\right]=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=0$ then $n_{2} l_{2}=0$. So $l_{2}=0$. Moreover $\left[\psi_{1} \psi_{1}, \psi_{2}\right]=0$ implies that $\left[\psi_{2}^{2}, \psi_{2}\right]=0=\left[\alpha_{1} \psi_{2}, \psi_{2}\right]$. Since $n_{2}=\left[\psi_{1} \psi_{2}, \psi_{2}\right]=\left[\psi_{2}^{2}, \psi_{1}\right]$ then $\psi_{2}^{2}=1_{G}+$ $n_{2}\left(\psi_{1}+\Psi_{1}\right)+\alpha_{2}$.

Case $\mathrm{c}(1)$ (iii). $\quad \alpha_{1}=0$.
Proof. By c(1)(ii)

$$
\begin{aligned}
\left(n_{1} \psi_{1} \psi_{1}\right) \psi_{2} & =\psi_{2}\left(n_{1} \psi_{2}^{2}+\alpha_{1} \psi_{2}\right)=n_{1} \psi_{2}\left[1_{G}+n_{2}\left(\psi_{1}+\psi_{1}\right)+\alpha_{2}\right]+\alpha_{1} \psi_{2}^{2} \\
& =n_{1} \psi_{2}+n_{1} n_{2}\left(n_{1} \psi_{1}+n_{1} \psi_{1}+2 n_{2} \psi_{2}\right)+n_{1} \alpha_{2} \psi_{2}+\alpha_{1} \psi_{2}^{2}
\end{aligned}
$$

and

$$
n_{1} \psi_{1}\left(\psi_{1} \psi_{2}\right)=n_{1} \Psi_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}^{2}\left(n_{1} \psi_{2}+n_{2} \psi_{1}+\alpha_{1}\right)+n_{1} n_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)
$$

We get that $n_{1}^{2} n_{2} \psi_{1}=n_{1}^{2} n_{2} \psi_{1}+\left[n_{1} \alpha_{2} \psi_{2}+\alpha_{1} \psi_{2}^{2}, \psi_{1}\right] \psi_{1}$ and then $\left[\alpha_{1} \psi_{2}^{2}, \psi_{1}\right]=0$.
But $\alpha_{1} \psi_{2}^{2}=\alpha_{1}\left(1_{G}+n_{2} \psi_{1}+n_{2} \Psi_{1}+\alpha_{2}\right)$; so in particular $0=\left[\alpha_{1} \bar{\psi}_{1}, \psi_{1}\right]=\left[\alpha_{1}, \psi_{1}^{2}\right]=$ $\left[\alpha_{1}, \alpha_{1}\right]$. Thus $\alpha_{1}=0$.

Case c(1)(iv). $\quad \psi_{2} \neq \Psi_{2}$.
Proof. By c(1)(ii) and c(1)(iii) $\psi_{1} \psi_{1}=\psi_{2}^{2}$. So

$$
\psi_{2}^{2} \psi_{1}=\left(1_{G}+n_{2} \psi_{1}+n_{2} \Psi_{1}+\alpha_{2}\right) \psi_{1}=\psi_{1}+n_{2} \psi_{1}^{2}+n_{2} \psi_{2}^{2}+\alpha_{2} \psi_{1}
$$

and

$$
\psi_{2}\left(\psi_{2} \psi_{1}\right)=\psi_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)+n_{2} \psi_{2}^{2}
$$

Hence

$$
\psi_{1}+n_{2}\left(n_{1} \psi_{2}+n_{2} \psi_{1}\right)+\alpha_{2} \psi_{1}=n_{1}^{2} \psi_{1}+n_{1} n_{2} \psi_{2}
$$

Then $n_{1}^{2} \psi_{1}=\left(1+n_{2}^{2}\right) \psi_{1}+\alpha_{2} \psi_{1}$ implies that $\alpha_{2} \psi_{1}=l \psi_{1}$ which contradicts (a). Then $\alpha_{2}=0$ and $n_{1}^{2}=1+n_{2}^{2}$. So ψ_{2} is not a real character.

Case c(2). In this case $0=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=\left[\psi_{1} \psi_{1}, \psi_{2}\right]=\left[\psi_{1}, \psi_{1} \psi_{2}\right], \quad 0=\left[\psi_{1} \psi_{2}, \psi_{2}\right]=$ $\left[\psi_{2}^{2}, \Psi_{1}\right], n_{1}=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=\left[\psi_{1}^{2}, \psi_{2}\right]$ and $n_{2}=\left[\psi_{1} \psi_{2}, \psi_{2}\right]=\left[\psi_{1}, \psi_{2} \psi_{2}\right]=\left[\psi_{1} \psi_{2}, \Psi_{2}\right]$.

Denote by $l_{1}=\left[\psi_{1} \psi_{2}, \psi_{1}\right]=\left[\psi_{1}^{2}, \psi_{2}\right]$, by $l_{2}=\left[\psi_{1} \psi_{2}, \psi_{2}\right]=\left[\psi_{1}, \psi_{2}^{2}\right]$, by $j_{1}=\left[\psi_{1}^{2}, \psi_{1}\right]=$ $\left[\psi_{1} \psi_{1}, \psi_{1}\right]$, by $j_{2}=\left[\psi_{2}^{2}, \psi_{2}\right]=\left[\psi_{2} \Psi_{2}, \psi_{2}\right]$, by $d_{1}=\left[\psi_{1}^{2}, \psi_{1}\right]$ and by $d_{2}=\left[\psi_{2}^{2}, \psi_{2}\right]$. So we have the following table:

	1_{G}	ψ_{1}	ψ_{1}	ψ_{2}	ψ_{2}	
$\psi_{1} \psi_{2}$	0	0	n_{1}	n_{2}	0	
$\psi_{1} \Psi_{2}$	0	0	l_{1}	l_{2}	n_{2}	α_{12}
ψ_{1}^{2}	0	j_{1}	d_{1}	l_{1}	n_{1}	α_{11}
ψ_{2}^{2}	0	l_{2}	0	j_{2}	d_{2}	α_{22}
$\psi_{1} \psi_{1}$	1	j_{1}	j_{1}	0	0	β_{1}
$\psi_{2} \psi_{2}$	1	n_{2}	n_{2}	j_{2}	j_{2}	β_{2}

where β_{i} is real and $[\gamma, \delta]=0$ for $\gamma \in\left\{\alpha_{i j} \beta_{i} / 1 \leqq i \leqq 2,1 \leqq j \leqq 2\right\}$ and $\delta \in\left\{1_{G}, \psi_{1}, \Psi_{1}, \psi_{2}, \Psi_{2}\right\}$.
Case c(2)(i). $\quad n_{1} \psi_{1} \psi_{2}=l_{2} \psi_{2}^{2}+\alpha_{12} \psi_{2}, l_{1}=0$ and $\left[\alpha_{12}, \beta_{2}\right]=0$.
Proof. Since

$$
\begin{equation*}
\left(\psi_{1} \psi_{2}\right) \psi_{2}=\Psi_{2}\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1} \psi_{1} \psi_{2}+n_{2} \psi_{2} \Psi_{2} \tag{*}
\end{equation*}
$$

and

$$
\left(\psi_{1} \psi_{2}\right) \psi_{2}=\psi_{2}\left(l_{1} \psi_{1}+l_{2} \psi_{2}+n_{2} \psi_{2}+\alpha_{12}\right)=l_{1} \psi_{1} \psi_{2}+l_{2} \psi_{2}^{2}+n_{2} \psi_{2} \psi_{2}+\alpha_{12} \psi_{2}
$$

then $n_{1} \psi_{1} \Psi_{2}=l_{1} \Psi_{1} \psi_{2}+l_{2} \psi_{2}^{2}+\alpha_{12} \psi_{2}$. Since $\left[\Psi_{1} \Psi_{2}, \psi_{2}\right]=0$ then $0=l_{1}\left[\psi_{1} \psi_{2}, \psi_{2}\right]=l_{1} n_{2}$, so $l_{1}=0$ and $0=\left[\alpha_{12} \psi_{2}, \psi_{2}\right]=\left[\alpha_{12}, \beta_{2}\right]$.

Case c(2)(ii). $\quad \alpha_{12} \psi_{2}=\left[\alpha_{12}, \alpha_{12}\right] \psi_{1}+\left[\alpha_{12}, \bar{\alpha}_{22}\right] \Psi_{2}$.

Proof. Since $\left[\alpha_{12} \psi_{2}, \psi_{1}\right]=\left[\alpha_{12}, \alpha_{12}\right], \quad\left[\alpha_{12} \psi_{2}, \psi_{1}\right]=\left[\alpha_{12}, \psi_{1} \psi_{2}\right]=0, \quad\left[\alpha_{12} \psi_{2}, \Psi_{2}\right]=$ $\left[\alpha_{12}, \bar{\alpha}_{22}\right]$ and $0=\left[\bar{\psi}_{1} \psi_{2}, \chi\right]$ for $\chi \in \operatorname{Irr}(G)-\left\{\psi_{1}, \Psi_{2}\right\}$ then by $\mathrm{c}(2)(\mathrm{i}) 0=l_{2} \alpha_{22}+\alpha_{12} \psi_{2}$ $-\left[\alpha_{12}, \alpha_{12}\right] \psi_{1}-\left[\alpha_{12}, \bar{\alpha}_{22}\right] \psi_{2}$.

Case $\mathbf{c}(2)\left(\right.$ iii). $\quad\left[\alpha_{12}, \alpha_{11}\right]=0$.
Proof. By c(2)(ii) $0=\left[\alpha_{12} \psi_{2}, \psi_{1} \psi_{2}\right]=\left[\alpha_{12} \psi_{1}, \psi_{2} \psi_{2}\right]$. Hence, in particular $0=$ $\left[\alpha_{12} \psi_{1}, \psi_{1}\right]=\left[\alpha_{12}, \alpha_{11}\right]$.

Case c(2)(iv). $j_{2}=0,\left[\alpha_{11}, \bar{\alpha}_{22}\right]=0$ and $\psi_{2}\left(j_{1} \psi_{1}+d_{1} \psi_{1}+n_{1} \psi_{2}+\alpha_{11}\right)=\psi_{1}\left(n_{1} \Psi_{1}+n_{2} \psi_{2}\right)$.
Proof. By c(2)(i) $\psi_{1}^{2} \psi_{2}=\psi_{2}\left(j_{1} \psi_{1}+d_{1} \psi_{1}+n_{1} \psi_{2}+\alpha_{11}\right)$ and $\left(\psi_{1} \psi_{2}\right) \psi_{1}=\psi_{1}\left(n_{1} \psi_{1}+\right.$ $n_{2} \psi_{2}$). Since $\left[\psi_{1} \psi_{1}, \psi_{2}\right]=0=\left[\psi_{1} \psi_{2}, \psi_{2}\right]$ then we obtain that $0=\left[\psi_{2} \psi_{2}, \psi_{2}\right]=j_{2}$ and $0=\left[\alpha_{11} \psi_{2}, \bar{\psi}_{2}\right]=\left[\alpha_{11}, \bar{\alpha}_{22}\right]$.

Case c(2)(v). $\quad j_{1}=n_{2}$.
Proof. Since $\left[\psi_{1} \psi_{2}, \psi_{1}\right]=0=\left[\psi_{1} \psi_{2}, \psi_{1}\right],\left[\psi_{1} \psi_{2}, \psi_{1}\right]=l_{1}=0$ then $\mathrm{c}(2)(\mathrm{iv})$ yields that $n_{1} j_{1}=n_{1}\left[\psi_{1} \psi_{1}, \psi_{1}\right]=n_{1}\left[\psi_{2} \psi_{2}, \psi_{1}\right]+\left[\alpha_{11} \psi_{2}, \psi_{1}\right]=n_{1} n_{2}+\left[\alpha_{11}, \alpha_{12}\right]=n_{1} n_{2}$ by c(2)(iii). So $j_{1}=n_{2}$.

Case $\mathbf{c}(2)(\mathrm{vi}) . \quad d_{1}=0$ and $\left[\alpha_{11}, \beta_{2}\right]=0$.
Proof. Since $\left[\psi_{1} \psi_{1}, \psi_{2}\right]=0, j_{1}=n_{2}$ then $\mathrm{c}(2)(\mathrm{iv})$ yields that $n_{2}\left[\psi_{1} \psi_{2}, \psi_{2}\right]=$ $n_{2}\left[\psi_{1} \psi_{2}, \psi_{2}\right]+d_{1}\left[\psi_{1} \psi_{2}, \psi_{2}\right]+\left[\alpha_{1}, \psi_{2}, \psi_{2}\right]$. Hence $0=d_{1}\left[\psi_{1} \psi_{2}, \psi_{2}\right]=d_{1} n_{2}$ so $d_{1}=0$ and $0=\left[\alpha_{11} \psi_{2}, \psi_{2}\right]=\left[\alpha_{11}, \beta_{2}\right]$.

Case c(2)(vii). $\quad n_{1} \beta_{1}=n_{1} \beta_{2}+\alpha_{11} \psi_{2}$.
Proof. By c(2)(iii), c(2)(iv) and c(2)(vi) $\left[\alpha_{11} \psi_{2}, \psi_{1}+\Psi_{1}+\psi_{2}+\psi_{2}\right]=0$. It follows from c(2)(iv) that $n_{1} \beta_{1}=n_{1} \beta_{2}+\alpha_{11} \psi_{2}$.

Case c(2)(viii). $\quad \alpha_{11}=\beta_{2}=0$.
Proof. By c(2)(iv)

$$
\begin{equation*}
\left(\psi_{2} \psi_{2}\right) \psi_{1}=\left(1_{G}+n_{2} \psi_{1}+n_{2} \psi_{1}+\beta_{2}\right) \psi_{1} \tag{**}
\end{equation*}
$$

Since $\left[\beta_{2} \psi_{1}, \Psi_{2}\right]=\left[\beta_{2}, \psi_{1} \psi_{2}\right]=0, \quad\left[\beta_{2} \psi_{1}, \psi_{1}\right]=\left[\beta_{2}, \alpha_{11}\right]=0 \quad$ by $\quad c(2)(v i), \quad\left[\beta_{2} \psi_{1}, \psi_{2}\right]=$ $\left[\beta_{2}, \alpha_{12}\right]=0$ by $c(2)(i)$ then (${ }^{*}$) and (${ }^{* *}$) yield that $n_{2} \beta_{2}=n_{2} \alpha_{11}+n_{2} \beta_{1}+\beta_{2} \psi_{1}-$ [$\left.\beta_{2} \psi_{1}, \psi_{1}\right] \psi_{1}$. Multiplying this equation by n_{1} and using $c(2)(v i i)$ we get:

$$
n_{1} n_{2} \beta_{2}=n_{1} n_{2} \alpha_{11}+n_{2}\left(n_{1} \beta_{2}+\alpha_{11} \psi_{2}\right)+n_{1} \beta_{2} \psi_{1}-n_{1}\left[\beta_{2} \psi_{1}, \psi_{1}\right] \psi_{1} .
$$

So $\alpha_{11}=0$ and $\beta_{2} \psi_{1}=\left[\beta_{2} \psi_{1}, \psi_{1}\right] \psi_{1}$ so by (a) (as in $\left.b(v)\right) \beta_{2}=0$.

Case c(2)(ix). Final contradiction.
Proof. By $\mathrm{c}(2)(\mathrm{vii})$ and $\mathrm{c}(2)(\mathrm{viii}) \beta_{1}=0$. It follows by $\mathrm{c}(2)(\mathrm{iv})$ and $\mathrm{c}(2)(\mathrm{v})$ that $\psi_{1} \psi_{1}=$ $\psi_{2} \Psi_{2}=1_{G}+n_{2}\left(\psi_{1}+\psi_{1}\right)$. So

$$
\left(\psi_{1} \bar{\psi}_{1}\right)\left(\psi_{2} \psi_{2}\right)=\left(1_{G}+n_{2} \psi_{1}+n_{2} \psi_{1}\right)^{2}=1_{G}+2 n_{2}\left(\psi_{1}+\psi_{1}\right)+n_{2}^{2}\left(\psi_{1}^{2}+\psi_{1}^{2}+2 \psi_{1} \psi_{1}\right)
$$

and

$$
\left(\psi_{1} \psi_{2}\right)\left(\Psi_{1} \psi_{2}\right)=\left(n_{1} \bar{\psi}_{1}+n_{2} \psi_{2}\right)\left(n_{1} \psi_{1}+n_{2} \psi_{2}\right)=n_{1}^{2} \psi_{1} \psi_{1}+n_{1} n_{2}\left(\psi_{1} \psi_{2}+\Psi_{1} \psi_{2}\right)+n_{2}^{2} \psi_{2} \Psi_{2}
$$

So

$$
1+2 n_{2}^{2}=\left[\psi_{1} \Psi_{1} \psi_{2} \psi_{2}, 1_{G}\right]=n_{1}^{2}+n_{2}^{2}
$$

and then $1+n_{2}^{2}=n_{1}^{2}$, a contradiction.
Proof of Theorem A. The proof of Theorem A is similar to the proof of Theorem B with a few changes.

Let g_{1}, \ldots, g_{k} be representatives of the conjugacy classes of a finite group G. Let $K=$ $\sum_{i=1}^{k} n_{i} C l\left(g_{i}\right)$ with $n_{i} \in N^{*}$ for $1 \leqq i \leqq k$. Define: $\left(K, C l\left(g_{i}\right)\right)=n_{i}$. Clearly, $\left(C l\left(g_{i}\right), C l\left(g_{j}\right)\right)=\delta_{i j}$. So $n_{i}=\left(K, C l\left(g_{i}\right)\right)=\sum_{j=1}^{k} n_{j}\left(C l\left(g_{j}\right), C l\left(g_{i}\right)\right)$. Let $L=\sum_{i=1}^{k} m_{i} C l\left(g_{i}\right)$ with $m_{i} \in \mathbb{N}^{*}$, we extend the above definition by:

$$
(K, L)=\sum_{i=1}^{k} m_{i}\left(K, C l\left(g_{i}\right)\right)=\sum_{i=1}^{k} n_{i} m_{i}=(L, K) .
$$

Let $j_{i} \in\{1, \ldots, k\}$ for $1 \leqq i \leqq s$ and let

$$
\prod_{i=j_{1}}^{j_{n}} C l\left(g_{i}\right)=K=\sum_{i=1}^{k} n_{i} C l\left(g_{i}\right) .
$$

Clearly, $n_{i} \in \mathbb{N}^{*}$ and it is known that

$$
n_{l}=|G|^{-1} \prod_{i=j_{1}}^{j_{s}}\left|C l\left(g_{i}\right)\right| \sum_{x \in \operatorname{lirr}(G)} \bar{\chi}\left(g_{i}\right) \chi(1)^{1-s} \prod_{i=j_{1}}^{j_{s}} \chi\left(g_{i}\right) .
$$

In particular, if D_{1}, D_{2}, D_{3} are conjugacy classes then:
(i) $\left(D_{1} D_{2}, D_{3}\right)=\left(D_{1}^{-1} D_{2}^{-1}, D_{3}^{-1}\right)$.

It is easy to compute that:
(ii) $\left(D_{1} D_{2}, D_{3}\right)=\left|D_{2}\right|\left|D_{3}\right|^{-1}\left(D_{1} D_{3}^{-1}, D_{2}^{-1}\right)$.

For $D_{1}=D_{3}$ we get that:
(iii) $\left(D_{1} D_{2}, D_{1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1} D_{1}^{-1}, D_{2}^{-1}\right)=\left(D_{2} D_{1}^{-1}, D_{1}^{-1}\right)=\left(D_{2}^{-1} D_{1}, D_{1}\right)$.

It is appropriate to introduce here the following:

Definition. The covering number, $c n(G)$, of a group G is the smallest positive integer n, such that $C^{n}=G$ for all non-identity conjugacy classes, C, of G. If no such integer exists we say that the covering number is infinite. The notion of a covering number was mentioned in [3] where it is shown:

Lemma. A finite group has a finite covering number if and only if it is a nonabelian simple group.
(In [4] we proved the analogous lemma for character covering numbers.)
Now we can state Theorem A as follows:
Theorem 2. Let D_{1}, D_{2} be conjugacy classes of a finite nonabelian simple group G with $D_{1} \neq C l(1) \neq D_{2}$ and $\left\{n_{1}, n_{2}\right\} \subset \mathbb{N}$. Then
(a) $D_{1} D_{2} \neq n_{1} D_{1}$ and $D_{1} D_{2} \neq n_{1} D_{1}^{-1}$.
(b) $D_{1} D_{2} \neq n_{1} D_{1}+n_{2} D_{2}$.
(c) $D_{1} D_{2} \neq n_{1} D_{1}^{-1}+n_{2} D_{2}$.

Proof of (a). Let $D_{1} D_{2}=n_{1} D_{1}$ be a counterexample then $D_{1} D_{2}^{2}=n_{1} D_{1} D_{2}=n_{1}^{2} D_{1}$. By induction $D_{1} D_{2}^{s}=n_{1}^{s} D_{1}$ for every $s \in \mathbb{N}$ which contradicts the lemma.

Similarly, if $D_{1} D_{2}=n_{1} D_{1}^{-1}$ then $D_{1} D_{2} D_{2}^{-1}=n_{1} D_{1}^{-1} D_{2}^{-1}=n_{1}^{2} D_{1} . \quad$ By induction $D_{1}\left(D_{2}^{-1}\right)^{s} D_{2}^{s}=n_{1}^{2 s} D_{1}$, the same contradiction.

Proof of (b). Let $D_{1} D_{2}=n_{1} D_{1}+n_{2} D_{2}$ be a counterexample. We will show:
b(i). $\quad D_{1} D_{2}^{-1}=n_{1} D_{1}+n_{2} D_{2}^{-1}$.
Proof. By (iii) $n_{1}=\left(D_{1} D_{2}, D_{1}\right)=\left(D_{1} D_{2}^{-1}, D_{1}\right)$ and $n_{2}=\left(D_{1} D_{2}, D_{2}\right)=\left(D_{1} D_{2}^{-1}, D_{2}^{-1}\right)$. So $D_{1} D_{2}^{-1}=n_{1} D_{1}+n_{2} D_{2}^{-1}+T$ with $(T, L)=0$ for $L \in\left\{D_{1}, D_{2}^{-1}\right\}$. Since

$$
n_{1}\left|D_{1}\right|+n_{2}\left|D_{2}^{-1}\right|=n_{1}\left|D_{1}\right|+n_{2}\left|D_{2}\right|=\left|D_{1}\right|\left|D_{2}\right|=\left|D_{1}\right|\left|D_{2}^{-1}\right|=n_{1}\left|D_{1}\right|+n_{2}\left|D_{2}^{-1}\right|+|T|
$$

then $T=0$.
b(ii). $\quad D_{i}=D_{i}^{-1}$ for $1 \leqq i \leqq 2$.
Proof. By b(i)

$$
\left(n_{1} D_{1}+n_{2} D_{2}^{-1}\right) D_{2}=\left(D_{1} D_{2}^{-1}\right) D_{2}=\left(D_{1} D_{2}\right) D_{2}^{-1}=\left(n_{1} D_{1}+n_{2} D_{2}\right) D_{2}^{-1} .
$$

So $D_{1} D_{2}^{-1}=D_{1} D_{2}$ or equivalently $n_{1} D_{1}+n_{2} D_{2}^{-1}=n_{1} D_{1}+n_{2} D_{2}$ then $D_{2}=D_{2}^{-1}$ and similarly $D_{1}=D_{1}^{-1}$.
b(iii). $\quad D_{1}^{2}=\left|D_{1}\right| C l(1)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+s_{1} D_{1}+M_{1}$
and

$$
D_{2}^{2}=\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} D_{1}+s_{2} D_{2}+M_{2}
$$

where $s_{i} \in N^{*}, M_{i} \neq 0$ and $\left(M_{i}, C\right)=0$ for $C \in\left\{C l(1), D_{j}\right\}, i, j \in\{1,2\}$.
Proof. Since

$$
\left.\left(D_{1}^{2}, C l(1)\right)\right)=\left|D_{1}\right|\left(D_{1} C l(1), D_{1}\right)=\left|D_{1}\right|
$$

and by (ii)

$$
\left(D_{1}^{2}, D_{2}\right)=\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{1} D_{2}, D_{1}\right)=\left|D_{1}\right|\left|D_{2}\right|^{-1} n_{1}
$$

then $\quad D_{1}^{2}=\left|D_{1}\right| C l(1)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+s_{1} D_{1}+M_{1}$. If $M_{1}=0$, by the lemma $G=$ $1 \cup D_{1} \cup D_{2}$ which contradicts the assumption that G is a nonabelian simple group. So $M_{1} \neq 0$. Similarly for D_{2}^{2}.
b(iv).

$$
n_{1} M_{1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} M_{2}+M_{1} D_{2}-\left(M_{1} D_{2}, D_{2}\right) D_{2}
$$

and

$$
n_{2} M_{2}=n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} M_{1}+M_{2} D_{1}-\left(M_{2} D_{1}, D_{1}\right) D_{1}
$$

Proof. By b(iii)

$$
\begin{aligned}
D_{1}\left(D_{1} D_{2}\right)= & D_{1}\left(n_{1} D_{1}+n_{2} D_{2}\right)=n_{1}\left(\left|D_{1}\right| C l(1)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+s_{1} D_{1}+M_{1}\right) \\
& +n_{2}\left(n_{1} D_{1}+n_{2} D_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
D_{1}^{2} D_{2}= & \left(\left|D_{1}\right| C l(1)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+s_{1} D_{1}+M_{1}\right) D_{2} \\
= & \left|D_{1}\right| D_{2}+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} D_{1}+s_{2} D_{2}+M_{2}\right) \\
& +s_{1}\left(n_{1} D_{1}+n_{2} D_{2}\right)+M_{1} D_{2} .
\end{aligned}
$$

Since $D_{1}\left(D_{1} D_{2}\right)=D_{1}^{2} D_{2}, \quad 0=\left(M_{1} D_{2}, C l(1)\right)$ and $\left(M_{1} D_{2}, D_{1}\right)=\left|M_{1}\right|\left|D_{1}\right|^{-1}\left(M_{1}, D_{1} D_{2}\right)=0$ then $n_{1} M_{1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} M_{2}+M_{1} D_{2}-\left(M_{1} D_{2}, D_{2}\right) D_{2}$. Similarly $n_{2} M_{2}=n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} M_{1}+$ $M_{2} D_{1}-\left(M_{2} D_{1}, D_{1}\right) D_{1}$.
b(v). Final contradiction.

Proof. By b(iv)

$$
\begin{aligned}
n_{1} n_{2} M_{2}= & n_{1} n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} M_{1}+n_{1}\left(M_{2} D_{1}-\left(M_{2} D_{1}, D_{1}\right) D_{1}\right) \\
= & n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} M_{2}+M_{1} D_{2}-\left(M_{1} D_{2}, D_{2}\right) D_{2}\right) \\
& +n_{1} M_{2} D_{1}-n_{1}\left(M_{2} D_{1}, D_{1}\right) D_{1}
\end{aligned}
$$

It follows that $n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} M_{1} D_{2}+n_{1} M_{2} D_{1}=l_{1} D_{1}+l_{2} D_{2}$ for $\left\{l_{1}, l_{2}\right\} \subset \mathbb{N}^{*}$. In particular, $M_{1} D_{2}=m_{1} D_{1}+m_{2} D_{2}$ for $\left\{m_{1}, m_{2}\right\} \subset \mathbb{N}^{*}$. Since $\left(M_{1} D_{2}, D_{1}\right)=0$ the $M_{1} D_{2}=m_{2} D_{2}$. Let $M_{1}=\sum_{i=1}^{k} d_{i} C l\left(g_{i}\right)$, choose $C l\left(g_{j}\right)$ for $d_{j}>0$ then $C l\left(g_{j}\right) D_{2}=m D_{2}$ which contradicts (a).

Proof of (c). Let $D_{1} D_{2}=n_{1} D_{1}^{-1}+n_{2} D_{2}$ be a counterexample. By (b) $D_{1} \neq D_{1}^{-1}$. We consider the following two cases:

$$
\text { case c(1) } D_{2}=D_{2}^{-1} \quad \text { and } \quad \text { case } \mathrm{c}(2) D_{2} \neq D_{2}^{-1}
$$

Case c(1)

$\mathbf{c}(1)(\mathrm{i}) . \quad\left(D_{1}^{-1}\right)^{2}+n_{2} D_{1}=D_{1}^{2}+n_{2} D_{1}^{-1}$.
Proof. Since $\left(D_{1} D_{2}, D_{i}\right)=\left(D_{1}^{-1} D_{2}, D_{i}^{-1}\right)$ then

$$
D_{1}^{-1}\left(D_{1} D_{2}\right)=D_{1}^{-1}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)=n_{1}\left(D_{1}^{-1}\right)^{2}+n_{2}\left(n_{1} D_{1}+n_{2} D_{2}\right)
$$

and

$$
D_{1}\left(D_{1}^{-1} D_{2}\right)=D_{1}\left(n_{1} D_{1}+n_{2} D_{2}\right)=n_{1} D_{1}^{2}+n_{2}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)
$$

It follows that $\left(D_{1}^{-1}\right)^{2}+n_{2} D_{1}=D_{1}^{2}+n_{2} D_{1}^{-1}$.
c(1)(ii). $\quad D_{1}^{2}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+n_{2} D_{1}+M$ with $M=M^{-1}, 0=(M, C)$ for $C \in\left\{C l(1), D_{1}\right.$, $\left.D_{1}^{-1}, D_{2}\right\}, n_{1} D_{1} D_{1}^{-1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{2}+M D_{2}$ and $\left(D_{2}^{2}, D_{2}\right)=0$.

Proof. Since $n_{1}=\left(D_{1} D_{2}, D_{1}^{-1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}^{2}, D_{2}\right)$ then $D_{1}^{2}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+l_{1} D_{1}+$ $l_{2} D_{1}^{-1}+M$ with $\left\{l_{1}, l_{2}\right\} \subset \mathbb{N}^{*}$. By c(1)(i)

$$
\begin{aligned}
n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+\left(l_{2}+n_{2}\right) D_{1}+l_{1} D_{1}^{-1}+M^{-1} & =\left(D_{1}^{-1}\right)^{2}+n_{2} D_{1}=D_{1}^{2}+n_{2} D_{1}^{-1} \\
& =n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+l_{1} D_{1}+\left(l_{2}+n_{2}\right) D_{1}^{-1}+M
\end{aligned}
$$

So $M=M^{-1}$ and $l_{1}=l_{2}+n_{2}$.
Now

$$
\begin{aligned}
\left(D_{1}^{2}\right) D_{2} & =\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+\left(l_{2}+n_{2}\right) D_{1}+l_{2} D_{1}^{-1}+M\right) D_{2} \\
& =n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{2}+\left(l_{2}+n_{2}\right)\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)+l_{2}\left(n_{1} D_{1}+n_{2} D_{2}\right)+M D_{2}
\end{aligned}
$$

and

$$
D_{1}\left(D_{1} D_{2}\right)=D_{1}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)=n_{1} D_{1} D_{1}^{-1}+n_{2}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right) .
$$

Since $D_{1}^{2} D_{2}=D_{1}\left(D_{1} D_{2}\right)$ then

$$
n_{1} D_{1} D_{1}^{-1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{2}+l_{2} n_{1}\left(D_{1}+D_{1}^{-1}\right)+2 l_{2} n_{2} D_{2}+M D_{2} .
$$

Since $0=\left(D_{1} D_{1}^{-1}, D_{2}\right)$ then $\left(D_{2}^{2}, D_{2}\right)=0$ and $l_{2}=0$ thus $l_{1}=n_{2}$.
c(1)(iii). $\quad D_{2}^{2}=\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}+D_{1}^{-1}\right)+L$ with $L=L^{-1}$ and $0=(L, C)$ for $C \in\left\{C l(1), D_{1}, D_{1}^{-1}, D_{2}\right\}$.

Proof. Since $\left(D_{2}^{2}, D_{1}^{-1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{2} D_{1}, D_{2}\right)=n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}$ and by c(1)(ii) $0=$ $\left(D_{2}^{2}, D_{2}\right)$ then $D_{2}^{2}=\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}+D_{1}^{-1}\right)+L$.
c(1)(iv). $\quad M=0,\left|D_{1}\right|=\left|D_{2}\right|$ and $D_{1} D_{1}^{-1}=D_{2}^{2}$.
Proof. By c(1)(ii) and c(1)(iii)

$$
\begin{aligned}
\left(n_{1} D_{1} D_{1}^{-1}\right) D_{2} & =\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{2}+M D_{2}\right) D_{2} \\
& =n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}\left(\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}+D_{1}^{-1}\right)+L\right)+M D_{2}^{2} \\
& =n_{1}\left|D_{1}\right| D_{2}+n_{1} n_{2}\left(n_{1} D_{1}+n_{1} D_{1}^{-1}+2 n_{2} D_{2}\right)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2} L+M D_{2}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
n_{1} D_{1}^{-1}\left(D_{1} D_{2}\right) & =n_{1} D_{1}^{-1}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)=n_{1}^{2}\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}+n_{2} D_{1}^{-1}+M\right) \\
& +n_{1} n_{2}\left(n_{1} D_{1}+n_{2} D_{2}\right) .
\end{aligned}
$$

So

$$
n_{1}^{2} n_{2}=\left(n_{1} D_{1}^{-1} D_{1} D_{2}, D_{1}\right)=n_{1}^{2} n_{2}+\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2} L+M D_{2}^{2}, D_{1}\right) .
$$

Hence $\left(D_{2} L, D_{1}\right)=0=\left(M D_{2}^{2}, D_{1}\right)$.
Since $M D_{2}^{2}=M\left[\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}+D_{1}^{-1}\right)+L\right]$ then $\left(M D_{2}^{2}, D_{1}\right)=0$ implies, in particular, that $0=\left(M D_{1}^{-1}, D_{1}\right)=|M|\left|D_{1}\right|^{-1}\left(D_{1}^{2}, M\right)=|M|\left|D_{1}\right|^{-1}(M, M)$. So $M=0$ and then by c(1)(ii) $D_{1} D_{1}^{-1}=\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{2}$. Hence $\left|D_{1}\right|^{2}=\left|D_{1}\right|\left|D_{1}^{-1}\right|=\left|D_{1}\right|\left|D_{2}\right|^{-1}\left|D_{2}\right|^{2}=$ $\left|D_{1}\right|\left|D_{2}\right|$. Thus $\left|D_{1}\right|=\left|D_{2}\right|$.
c(1)(iv). $\quad L=0$.

Proof.

$$
D_{2}^{2} D_{1}=\left(\left|D_{2}\right| C l(1)+n_{2}\left(D_{1}+D_{1}^{-1}\right)+L\right) D_{1}=\left|D_{2}\right| D_{1}+n_{2} D_{1}^{2}+n_{2} D_{2}^{2}+L D_{1}
$$

and

$$
D_{2}\left(D_{1} D_{2}\right)=D_{2}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)=n_{1}\left(n_{1} D_{1}+n_{2} D_{2}\right)+n_{2} D_{2}^{2} .
$$

So

$$
\left|D_{2}\right| D_{1}+n_{2}\left(n_{1} D_{2}+n_{2} D_{1}\right)+L D_{1}=n_{1}^{2} D_{1}+n_{1} n_{2} D_{2}
$$

Thus $\left(\left|D_{2}\right|+n_{2}^{2}\right) D_{1}+L D_{1}=n_{1}^{2} D_{1}$. Hence $L D_{1}=k D_{1}$ and by (a) $L=0$.

$$
c(1)(v) . \quad D_{2} \neq D_{2}^{-1} .
$$

Proof. Since $L=0=M$ then $D_{2}^{n}=\alpha(n) C l(1)+\beta(n) D_{1}+\delta(n) D_{1}^{-1}+\gamma(n) D_{2} \quad$ where $\{\alpha(n), \beta(n), \delta(n), \gamma(n)\} \subset \mathbb{N}^{*}$ for every $n \in \mathbb{N}$. By the lemma we get that $G=$ $1 \cup D_{1} \cup D_{1}^{-1} \cup D_{2}$. Since $\left|D_{1}^{-1}\right|=\left|D_{1}\right|=\left|D_{2}\right|$ then $|G|=1+3\left|D_{1}\right|$ which contradicts a consequence of Lagrange's theorem that $\left|D_{i}\right| /|G|$.

Case $\mathbf{c}(2)$. In this case we have

$$
\begin{gathered}
0=\left(D_{1} D_{2}, D_{1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1} D_{1}^{-1}, D_{2}^{-1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1} D_{1}^{-1}, D_{2}\right)=\left(D_{1} D_{2}^{-1}, D_{1}\right) \\
0=\left(D_{1} D_{2}, D_{2}^{-1}\right)=\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{2}^{2}, D_{1}^{-1}\right) \\
n_{1}=\left(D_{1} D_{2}, D_{1}^{-1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}^{2}, D_{2}^{-1}\right) \\
n_{2}=\left(D_{1} D_{2}, D_{2}\right)=\left(D_{1} D_{2}^{-1}, D_{2}^{-1}\right)=\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{2} D_{2}^{-1}, D_{1}^{-1}\right)
\end{gathered}
$$

We denote: $l_{1}=\left(D_{1} D_{2}^{-1}, D_{1}^{-1}\right)=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}^{2}, D_{2}\right), l_{2}=\left(D_{1} D_{2}^{-1}, D_{2}\right)=\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{2}^{2}, D_{1}\right)$, $j_{1}=\left(D_{1}^{2}, D_{1}\right)=\left(D_{1} D_{1}^{-1}, D_{1}\right), \quad j_{2}=\left(D_{2}^{2}, D_{2}\right)=\left(D_{2} D_{2}^{-1}, D_{2}^{-1}\right), \quad d_{1}=\left(D_{1}^{2}, D_{1}^{-1}\right) \quad$ and $\quad d_{2}=$ (D_{2}^{2}, D_{2}^{-1}). Therefore we have the following table:

	$C l(1)$	D_{1}	D_{1}^{-1}	D_{2}	D_{2}^{-1}	
$D_{1} D_{2}$	0	0	n_{1}	n_{2}	0	
$D_{1} D_{2}^{-1}$	0	0	l_{1}	l_{2}	n_{2}	M_{12}
D_{1}^{2}	0	j_{1}	d_{1}	$l_{1}\left\|D_{1}\right\|\left\|D_{2}\right\|^{-1}$	$n_{1}\left\|D_{1}\right\|\left\|D_{2}\right\|^{-1}$	M_{11}
D_{2}^{2}	0	$l_{2}\left\|D_{2}\right\|\left\|D_{1}\right\|^{-1}$	0	j_{2}	d_{2}	M_{22}
$D_{1} D_{1}^{-1}$	$\left\|D_{1}\right\|$	j_{1}	j_{1}	0	0	N_{1}
$D_{2} D_{2}^{-1}$	$\left\|D_{2}\right\|$	$n_{2}\left\|D_{2}\right\|\left\|D_{1}\right\|^{-1}$	$n_{2}\left\|D_{2}\right\|\left\|D_{1}\right\|^{-1}$	j_{2}	j_{2}	N_{2}

where $N_{i}=N_{i}^{-1}$ and $(L, C)=0$ for $C \in\left\{C l(1), D_{k}, D_{k}^{-1}\right\}, L \in\left\{M_{i j}, N_{i}\right\}$ for every k, i, $j \in\{1,2\}$.

We will show:

$$
c(2)(i) . \quad j_{2}=0 \text { and }\left(M_{11}, M_{22}^{-1}\right)=0
$$

Proof. Since $\left(D_{1} D_{2}, D_{1}^{-1} D_{2}^{-1}\right)=0$ then

$$
0=\left(D_{1}^{2},\left(D_{2}^{-1}\right)^{2}\right)=d_{1} l_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}+d_{2} l_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1}+j_{2} n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1}+\left(M_{11}, M_{22}^{-1}\right)
$$

then, in particular $j_{2}=0=\left(M_{11}, M_{22}^{-1}\right)$.
c(2)(ii). $\quad l_{1}=0$ and $\left(M_{12}, N_{2}\right)=0$.
Proof. By c(2)(i) $\left(D_{1} D_{2}, D_{2}^{2}\right)=0$ thus $0=\left(D_{1} D_{2}^{-1}, D_{2} D_{2}^{-1}\right)=l_{1} n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}+\left(M_{12}, N_{2}\right)$. It follows that $l_{1}=0=\left(M_{12}, N_{2}\right)$.
c(2)(iii). $\quad l_{2} M_{22}=0, \quad M_{12} D_{2}=\left(n_{1}^{2}-l_{2}^{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\right) D_{1}+\left(n_{1} n_{2}-l_{2} d_{2}\right) D_{2}^{-1} \quad$ and $\quad 0=$ (M_{12}, M_{11}).

Proof. We compute

$$
\begin{equation*}
\left(D_{1} D_{2}\right) D_{2}^{-1}=\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right) D_{2}^{-1} \tag{*}
\end{equation*}
$$

and $\quad\left(D_{1} D_{2}^{-1}\right) D_{2}=\left(l_{2} D_{2}+n_{2} D_{2}^{-1}+M_{12}\right) D_{2}$. Hence $n_{1} D_{1}^{-1} D_{2}^{-1}=l_{2} D_{2}^{2}+M_{12} D_{2}$. This means that

$$
n_{1}\left(n_{1} D_{1}+n_{2} D_{2}^{-1}\right)=l_{2}\left(l_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} D_{1}+d_{2} D_{2}^{-1}+M_{22}\right)+M_{12} D_{2}
$$

In particular $M_{12} D_{2}=\left(n_{1}^{2}-l_{2}^{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\right) D_{1}+\left(n_{1} n_{2}-l_{2} d_{2}\right) D_{2}^{-1}$ and $l_{2} M_{22}=0$. Moreover $\left(M_{12} D_{2}, D_{1} D_{2}\right)=0$ so $0=\left(M_{12} D_{1}^{-1}, D_{2} D_{2}^{-1}\right)$. Hence, in particular, $0=\left(M_{12} D_{1}^{-1}, D_{1}\right)$ which implies that $0=\left(M_{12}, D_{1}^{2}\right)=\left(M_{12}, M_{11}\right)$.
c(2)(iv). $j_{1}=n_{2}$ and $n_{1} D_{1} D_{1}^{-1}=d_{1} D_{1}^{-1} D_{2}+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2} D_{2}^{-1}+M_{11} D_{2}$.
Proof. Since

$$
D_{1}\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)=D_{1}\left(D_{1} D_{2}\right)=D_{1}^{2} D_{2}=D_{2}\left(j_{1} D_{1}+d_{1} D_{1}^{-1}+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} D_{2}^{-1}+M_{11}\right)
$$

and $\left(D_{1} D_{2}, D_{1}\right)=0=\left(D_{2} D_{1}^{-1}, D_{1}\right)$ then by $\mathrm{c}(2)(\mathrm{ii})$ and $\mathrm{c}(2)$ (iii) we get that

$$
n_{1} j_{1}=n_{1}\left(D_{1} D_{1}^{-1}, D_{1}\right)=\left(D_{1}^{2} D_{2}, D_{1}\right)=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{2} D_{2}^{-1}, D_{1}\right)+\left(M_{11} D_{2}, D_{1}\right)=n_{1} n_{2} .
$$

So $j_{1}=n_{2}$.
$\mathrm{c}(2)(\mathrm{v}) . \quad d_{1}=0$ and $\left(M_{11}, N_{2}\right)=0$.
Proof. Since ($D_{1}^{-1} D_{1}, D_{2}$) $=0$ then by $\mathrm{c}(2)(\mathrm{iv})$

$$
0=d_{1}\left(D_{1}^{-1} D_{2}, D_{2}\right)+n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1}\left(D_{2}^{-1} D_{2}, D_{2}\right)+\left(M_{11} D_{2}, D_{2}\right)=d_{1} n_{2}+\left(M_{11} D_{2}, D_{2}\right)
$$

We conclude that $d_{1}=0=\left(M_{11}, N_{2}\right)$.
$\mathbf{c}(2)(\mathbf{v i}) . \quad n_{1} N_{1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} N_{2}+M_{11} D_{2}$.
Proof. By $\mathrm{c}(2)(\mathrm{i}), \mathrm{c}(2)($ iii $)$ and $\mathrm{c}(2)(\mathrm{v}),\left(M_{11} D_{2}, D_{1}+D_{1}^{-1}+D_{2}+D_{2}^{-1}\right)=0$. It follows from c(2)(iv) that $n_{1} N_{1}=n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} N_{2}+M_{11} D_{2}$.
c(2)(vii). $\quad M_{11}=N_{2}=N_{1}=0$.
Proof. By the above

$$
\begin{align*}
\left(D_{2} D_{2}^{-1}\right) D_{1} & =\left[\left|D_{2}\right| C l(1)+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}+D_{1}^{-1}\right)+N_{2}\right] D_{1} \\
& =\left|D_{2}\right| D_{1}+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(D_{1}^{2}+D_{1}^{-1} D_{1}\right)+N_{2} D_{1} \tag{}
\end{align*}
$$

Since $\left(N_{2}, D_{1} D_{2}\right)=0,\left(N_{2}, M_{12}\right)=0$ by $c(2)(i i)$, and $\left(N_{2}, M_{11}\right)=0$ by $c(2)(v)$ then $\left(N_{2} D_{1}, D_{2}^{-1}+D_{2}+D_{1}^{-1}\right)=0$. So $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ yield that

$$
n_{2} N_{2}=n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(M_{11}+N_{1}\right)+N_{2} D_{1}-\left(N_{2} D_{1}, D_{1}\right) D_{1} .
$$

By c(2)(vi)

$$
\begin{aligned}
n_{1} n_{2} N_{2}= & n_{1} n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1} M_{11}+n_{2}\left|D_{2}\right|\left|D_{1}\right|^{-1}\left(n_{1}\left|D_{1}\right|\left|D_{2}\right|^{-1} N_{2}\right. \\
& \left.+M_{11} D_{2}\right)+n_{1} N_{2} D_{1}-n_{1}\left(N_{2} D_{1}, D_{1}\right) D_{1} .
\end{aligned}
$$

Therefore $M_{11}=0$ and $N_{2} D_{1}=\left(N_{2} D_{1}, D_{1}\right) D_{1}$. By (a) we conclude that $N_{2}=0$ and then by $\mathrm{c}(2)(\mathrm{vi}) N_{1}=0$.
c(2)(viii). $\quad\left|D_{1}\right|=\left|D_{2}\right|$ and $D_{1} D_{1}^{-1}=D_{2} D_{2}^{-1}$.
Proof. By c(2)(vii) $D_{2} D_{2}^{-1}=\left|D_{2}\right|\left|D_{1}\right|^{-1} D_{1} D_{1}^{-1}$. Then

$$
\left|D_{2}\right|^{2}=\left|D_{2}\right|\left|D_{2}^{-1}\right|=\left|D_{2}\right|\left|D_{1}\right|^{-1}\left|D_{1}\right|^{2}=\left|D_{1}\right|\left|D_{2}\right| .
$$

Thus $\left|D_{1}\right|=\left|D_{2}\right|$.
$\mathbf{c}(\mathbf{2})(\mathbf{i x}) . \quad n_{1}=1+n_{2}$ and $\left|M_{12}\right|=\left(1+n_{2}-l_{2}\right)\left|D_{1}\right|$.
Proof. Since $\left(n_{1}+n_{2}\right)\left|D_{1}\right|=\left|D_{1}\right|\left|D_{2}\right|=\left|D_{1}\right|\left|D_{1}^{-1}\right|=\left|D_{1}\right|\left(1+2 n_{2}\right)$, therefore $n_{1}=1+n_{2}$. Also $\left(n_{1}+n_{2}\right)\left|D_{1}\right|=\left|D_{1}\right|\left|D_{2}\right|=\left|D_{1}\right|\left|D_{2}^{-1}\right|=\left(l_{2}+n_{2}\right)\left|D_{1}\right|+\left|M_{12}\right|$. Hence $\left|M_{12}\right|=\left(n_{1}-l_{2}\right)\left|D_{1}\right|$.
c(2)(x). $\left|D_{1}\right|=1+2 n_{2}$.
Proof. We compute

$$
\begin{aligned}
\left(D_{1} D_{2}\right)\left(D_{1}^{-1} D_{2}^{-1}\right) & =\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right)\left(n_{1} D_{1}+n_{2} D_{2}^{-1}\right) \\
& =\left(n_{1}^{2}+n_{2}^{2}\right) D_{1} D_{1}^{-1}+n_{1} n_{2}\left(D_{1} D_{2}+D_{1}^{-1} D_{2}^{-1}\right)
\end{aligned}
$$

Since

$$
\begin{align*}
\left(D_{1} D_{2}\right)\left(D_{1}^{-1} D_{2}^{-1}\right) & =\left(D_{1} D_{1}^{-1}\right)\left(D_{2} D_{2}^{-1}\right)=\left[\left|D_{1}\right| C l(1)+n_{2}\left(D_{1}+D_{1}^{-1}\right)\right]^{2} \\
& =\left|D_{1}\right|^{2} C l(1)+n_{2}^{2}\left(D_{1}^{2}+\left(D_{1}^{-1}\right)^{2}+2 D_{1} D_{1}^{-1}\right)+2 n_{2}\left|D_{1}\right|\left(D_{1}+D_{1}^{-1}\right) \tag{***}
\end{align*}
$$

then $\left(n_{1}^{2}+n_{2}^{2}\right)\left|D_{1}\right|=\left(D_{1} D_{2} D_{1}^{-1} D_{2}^{-1}, C l(1)\right)=\left|D_{1}\right|^{2}+2 n_{2}^{2}\left|D_{1}\right|$. Thus $\left|D_{1}\right|=1+2 n_{2}$.
$\mathbf{c}(2)(\mathbf{x i}) . \quad l_{2}+d_{2}=1+2 n_{2}$ and $M_{22}=0$.
Proof. By c(2)(iii) and c(2)(ix), $\left(1+n_{2}-l_{2}\right)\left|D_{1}\right|^{2}=\left|M_{12}\right|\left|D_{2}\right|=\left(n_{1}^{2}-l_{2}^{2}+n_{1} n_{2}-l_{2} d_{2}\right)\left|D_{1}\right|$. Therefore, by $\mathrm{c}(2)(\mathrm{ix})$ and $\mathrm{c}(2)(\mathrm{x}),\left(1+n_{2}-l_{2}\right)\left(1+2 n_{2}\right)=\left(1+2 n_{2}+n_{2}^{2}-l_{2}^{2}+n_{2}+n_{2}^{2}-l_{2} d_{2}\right)$. Then $1+2 n_{2}=l_{2}+d_{2}$. Since $n_{1}+n_{2}=1+2 n_{2} \quad$ and $\quad\left(n_{1}+n_{2}\right)\left|D_{1}\right|=\left|D_{1}\right|\left|D_{2}\right|=\left|D_{2}^{2}\right|=$ $\left(l_{2}+d_{2}\right)\left|D_{2}\right|+\left|M_{22}\right|$ then $M_{22}=0$.
$\mathbf{c}(2)(\mathbf{x i i}) . \quad l_{2}=n_{2}, M_{12}=M_{12}^{-1}, D_{1}^{2}=D_{2}^{2}$ and $M_{12} D_{2}=\left|D_{1}\right| D_{1}$.
Proof. Since

$$
\left(D_{1} D_{2}\right) D_{1}^{-1}=\left(n_{1} D_{1}^{-1}+n_{2} D_{2}\right) D_{1}^{-1}=n_{1}\left(n_{2} D_{1}^{-1}+n_{1} D_{2}\right)+n_{2}\left(n_{2} D_{2}+l_{2} D_{2}^{-1}+M_{12}^{-1}\right)
$$

and

$$
\begin{gathered}
D_{1} D_{1}^{-1} D_{2}=D_{2} D_{2}^{-1} D_{2}=D_{2}^{2} D_{2}^{-1}=\left(l_{2} D_{1}+d_{2} D_{2}^{-1}\right) D_{2}^{-1} \\
=l_{2}\left(l_{2} D_{2}+n_{2} D_{2}^{-1}+M_{12}\right)+d_{2}\left(l_{2} D_{1}^{-1}+d_{2} D_{2}\right)
\end{gathered}
$$

then

$$
\left(n_{1} n_{2}-l_{2} d_{2}\right) D_{1}^{-1}+\left(n_{1}^{2}+n_{2}^{2}-l_{2}^{2}-d_{2}^{2}\right) D_{2}=l_{2} M_{12}-n_{2} M_{12}^{-1} .
$$

Since $\left(M_{12}, D_{i}\right)=0=\left(M_{12}, D_{i}^{-1}\right)$ for $1 \leqq i \leqq 2$ then $l_{2}=n_{2}, M_{12}=M_{12}^{-1}\left(M_{12} \neq 0\right.$ by the same arguments as in $\mathbf{c}(1)(\mathbf{v})$. Therefore $d_{2}=n_{1}$ and $D_{1}^{2}=D_{2}^{2}$ and by $\mathbf{c}(2)\left(\right.$ iii) $M_{12} D_{2}=$ $\left(n_{1}^{2}-l_{2}^{2}\right) D_{1}=\left|D_{1}\right| D_{1}$.
c(2)(xiii). Final contradiction.
Proof. Let us compute

$$
\begin{aligned}
\left(D_{1} D_{2}^{-1}\right)^{2} & =\left(n_{2} D_{2}+n_{2} D_{2}^{-1}+M_{12}\right)^{2}=n_{2}^{2}\left(D_{2}^{2}+\left(D_{2}^{-1}\right)^{2}+2 D_{2} D_{2}^{-1}\right) \\
& +2 n_{2}\left(M_{12} D_{2}+M_{12} D_{2}^{-1}\right)+M_{12}^{2} \\
& =n_{2}^{2}\left(D_{1}^{2}+\left(D_{1}^{-1}\right)^{2}+2 D_{1} D_{1}^{-1}\right)+2 n_{2}\left|D_{1}\right|\left(D_{1}+D_{1}^{-1}\right)+M_{12}^{2}
\end{aligned}
$$

Since $\left(D_{1} D_{2}^{-1}\right)^{2}=D_{1}^{2}\left(D_{2}^{-1}\right)^{2}=D_{1}^{2}\left(D_{1}^{-1}\right)^{2}=\left(D_{1} D_{1}^{-1}\right)^{2}$ then by $\left({ }^{* * *}\right) M_{12}^{2}=\left|D_{1}\right|^{2} C l(1)$, which contradicts the lemma.

REFERENCES

1. Z. Arad, D. Chillag and G. Moran, Groups with a small covering number, in Products of Conjugacy Classes in Groups (Z. Arad and M. Herzog, eds.), Lecture Notes in Mathematics, Springer-Verlag, 1112 (1985), 222-244.
2. Z. Arad and M. Herzog (eds.), Products of Conjugacy Classes in Groups (Lecture Notes in Mathematics, Springer-Verlag, 1112, 1985).
3. Z. Arad, M. Herzog and J. Stavi, Powers and products of conjugacy classes in groups, in Products of Conjugacy Classes in Groups (Z. Arad and M. Herzog, eds.), Lecture Notes in Mathematics, Springer-Verlag, 1112 (1985), 6-51.
4. Z. Arad, M. Herzog and D. Chillag, Powers of characters of finite groups, J. Algebra, 103 (1986), 241-255.

5. I. M. Isaacs, Character Theory of Finite Groups (Academic Press, 1976).

Department of Mathematics
Bar-Ilan University
Ramat Gan
Israel

[^0]: *This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

