AN ANALOGY BETWEEN PRODUCTS OF TWO CONJUGACY CLASSES AND PRODUCTS OF TWO IRREDUCIBLE CHARACTERS IN FINITE GROUPS

by ZVI ARAD and ELSA FISMAN*

(Received 10th August 1985)

Introduction

It is well-known that the number of irreducible characters of a finite group G is equal to the number of conjugate classes of G. The purpose of this article is to give some analogous properties between these basic concepts.

We present the following theorems:

Theorem A. If C and D are non-trivial conjugacy classes of a finite group G such that either CD = mC + nD or $CD = mC^{-1} + nD$, where m, n are non-negative integers, then G is not a non-abelian simple group.

Theorem B. If χ and ψ are non-trivial irreducible characters of a finite group G such that either $\chi \psi = m\chi + n\psi$ or $\chi \psi = m\bar{\chi} + n\psi$, where m, n are non-negative integers, then G is not a non-abelian simple group.

Analogous theorems between products of conjugacy classes and products of characters were studied in [1-4]. For example a finite group G is isomorphic to J_1 (the first Janko group) iff $C^2 = G$ for every non-trivial conjugacy class C of the finite group G [1]. The analogous theorem is that a finite group G is isomorphic to J_1 iff $Irr(\chi^2) = Irr(G)$ (i.e., all the irreducible characters of G are constituents of χ^2) for every non-trivial irreducible character χ of the finite group G [4].

The proofs of Theorems A and B are elementary; chapters 1-4 of [5] suffice for background.

Our notation is standard and is taken mainly from Isaacs [5].

Proofs of theorems

Let N be the set of all positive integers and set N* to be $\mathbb{N} \cup \{0\}$.

Let $Irr(G) = \{\chi_1, ..., \chi_k\}$ be the set of all irreducible characters of a finite group G. It is well known that χ is a character if and only if $0 \neq \chi = \sum_{i=1}^{k} n_i \chi_i$, where n_i are elements of

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

 \mathbb{N}^* for $1 \leq i \leq k$. If $\chi = \sum_{i=1}^k n_i \chi_i$ is a character then those χ_i with $n_i > 0$ are called the irreducible constituents of χ .

Let χ and ψ be characters of G. The fact that $\chi + \psi$ is a character is a triviality. We may define a new class function $\chi\psi$ on G by setting $(\chi\psi)(g) = \chi(g)\psi(g)$. It is true but somewhat less trivial that $\chi\psi$ is a character.

It is well known (see Theorem 4.1 of [5]) that if the $\mathbb{C}[G]$ -modules V and W afford characters χ and ψ , respectively, then the tensor product $V \otimes W$ affords the character $\chi\psi$ and is independent of the choice of bases of V and W.

Thus as a consequence of Theorem B we have that for irreducible $\mathbb{C}[G]$ -modules V and W of a finite non-abelian simple group

$$V \otimes W \not\cong \underbrace{V \oplus \cdots \oplus V}_{m \text{ times}} \oplus \underbrace{W \oplus \cdots \oplus W}_{n \text{ times}}, \text{ where } m, n \in \mathbb{N}^*.$$

We can state Theorem B as follows:

Theorem 1. Let G be a finite non-abelian simple group, $\{n_1, n_2\} \subset \mathbb{N}$ and $\{\psi_1, \psi_2\} \subseteq \operatorname{Irr}(G) - 1_G$. Then:

- (a) $\psi_1 \psi_2 \neq n_1 \psi_1$ and $\psi_1 \psi_2 \neq n_1 \bar{\psi}_1$,
- (b) $\psi_1 \psi_2 \neq n_1 \psi_1 + n_2 \psi_2$,
- (c) $\psi_1 \psi_2 \neq n_1 \overline{\psi}_1 + n_2 \psi_2$.

Proof of (a). By the First Orthogonality Relation there exists $g \in G - \{1\}$ such that $\psi_1(g) \neq 0$. The simplicity of G implies that $Z(\psi_2) = 1$. Therefore $|\psi_1(g)| |\psi_2(g)| \neq |\psi_1(g)| |\psi_2(1)|$ and the inequalities of (a) hold.

Proof of (b). Let G be a counterexample with $\psi_1\psi_2 = n_1\psi_1 + n_2\psi_2$ then clearly $\psi_1 \neq \psi_2 \neq \overline{\psi}_1$. We will show:

b(i). $\psi_1 \bar{\psi}_2 = n_1 \psi_1 + n_2 \bar{\psi}_2$.

Proof. Since $n_1 = [\psi_1 \psi_2, \psi_1] = [\psi_1, \psi_1 \overline{\psi}_2]$ and $n_2 = [\psi_1 \psi_2, \psi_2] = [\psi_1 \overline{\psi}_2, \overline{\psi}_2]$ then: $\psi_1 \overline{\psi}_2 = n_1 \psi_1 + n_2 \overline{\psi}_2 + \alpha$, with $[\alpha, \psi_i] = 0$ for $i \in \{1, 2\}$. Since $n_1 \psi_1(1) + n_2 \overline{\psi}_2(1) = n_1 \psi_1(1) + n_2 \overline{\psi}_2(1) = u_1(1) \overline{\psi}_2(1) = u_1(1) \overline{\psi}_2(1) = n_1 \psi_1(1) + n_2 \overline{\psi}_2(1) + \alpha(1)$ then $\alpha(1) = 0$. So $\alpha = 0$.

b(ii). $\psi_i = \overline{\psi}_i \text{ for } i \in \{1, 2\}.$

Proof. By b(i) we get that:

$$\bar{\psi}_2(\psi_1\psi_2) = \bar{\psi}_2(n_1\psi_1 + n_2\psi_2) = n_1(n_1\psi_1 + n_2\bar{\psi}_2) + n_2\psi_2\bar{\psi}_2$$

and

$$(\bar{\psi}_2\psi_1)\psi_2 = \psi_2(n_1\psi_1 + n_2\bar{\psi}_2) = n_1(n_1\psi_1 + n_2\psi_2) + n_2\psi_2\bar{\psi}_2.$$

Since $\overline{\psi}_2(\psi_1\psi_2) = (\overline{\psi}_2\psi_1)\psi_2$ then $\psi_2 = \overline{\psi}_2$ and similarly $\psi_1 = \overline{\psi}_1$.

b(iii). $\psi_1^2 = \mathbf{1}_G + n_1 \psi_2 + s_1 \psi_1 + \alpha_1$, $\psi_2^2 = \mathbf{1}_G + n_2 \psi_1 + s_2 \psi_2 + \alpha_2$, where $s_i \in \mathbb{N}^*$, $\alpha_i \neq 0$ and $(\alpha_i, \chi) = 0$ for $\chi \in \{\mathbf{1}_G, \psi_1, \psi_2\}$, $i \in \{1, 2\}$.

Proof. By b(ii) $1 = [\psi_i, \psi_i] = [\psi_i^2, 1_G]$ for $i \in \{1, 2\}$ and $n_1 = [\psi_1 \psi_2, \psi_1] = [\psi_1^2, \psi_2]$ then: $\psi_1^2 = 1_G + n_1 \psi_2 + s_1 \psi_1 + \alpha_1$. Since $\psi_1(1) > 1$ then by Burnside's theorem ([5] (3.15)) there exists $g \in G$ such that $\psi_1(g) = 0$. Hence $0 = \psi_1(g)\psi_2(g) = n_1\psi_1(g) + n_2\psi_2(g) = n_2\psi_2(g)$. So $\psi_2(g) = 0$. It follows that $0 = \psi_1(g)^2 = 1_G + n_1\psi_2(g) + s_1\psi_1(g) + \alpha_1(g) = 1 + \alpha_1(g)$ and then $\alpha_1 \neq 0$. Similarly $\psi_2^2 = 1_G + n_2\psi_1 + s_2\psi_2 + \alpha_2$ with $\alpha_2 \neq 0$.

b(iv). (1)
$$n_1 \alpha_1 = n_1 \alpha_2 + \alpha_1 \psi_2 - [\alpha_1, \alpha_2] \psi_2$$
 and
(2) $n_2 \alpha_2 = n_2 \alpha_1 + \alpha_2 \psi_1 - [\alpha_1, \alpha_2] \psi_1$.

Proof. By b(iii) we get that:

$$\begin{split} \psi_1^2 \psi_2 &= (\mathbf{1}_G + n_1 \psi_2 + s_1 \psi_1 + \alpha_1) \psi_2 = \psi_2 + n_1 (\mathbf{1}_G + n_2 \psi_1 + s_2 \psi_2 + \alpha_2) + s_1 (n_1 \psi_1 + n_2 \psi_2) + \alpha_1 \psi_2 \\ &= n_1 \mathbf{1}_G + (n_1 n_2 + s_1 n_1) \psi_1 + (\mathbf{1} + n_1 s_2 + s_1 n_2) \psi_2 + n_1 \alpha_2 + \alpha_1 \psi_2. \\ &\psi_1 (\psi_1 \psi_2) = \psi_1 (n_1 \psi_1 + n_2 \psi_2) = n_1 (\mathbf{1}_G + n_1 \psi_2 + s_1 \psi_1 + \alpha_1) + n_2 (n_1 \psi_1 + n_2 \psi_2) \\ &= n_1 \mathbf{1}_G + (n_1 s_1 + n_1 n_2) \psi_1 + (n_1^2 + n_2^2) \psi_2 + n_1 \alpha_1. \end{split}$$

Since $\psi_1^2 \psi_2 = \psi_1(\psi_1 \psi_2)$ then: $n_1 \alpha_1 = n_1 \alpha_2 + \alpha_1 \psi_2 - [\alpha_1 \psi_2, \psi_2] \psi_2$. Since $[\alpha_1 \psi_2, \psi_2] = [\alpha_1, \psi_2] = [\alpha_1, \alpha_2]$ then (1) holds and similarly also (2).

b(**v**). Final contradiction.

Proof. Let us multiply b(iv)(1) by n_2 and b(iv)(2) by n_1 . By adding these equations we get that

$$n_1 n_2 (\alpha_1 + \alpha_2) = n_1 n_2 (\alpha_1 + \alpha_2) + n_2 \alpha_1 \psi_2 + n_1 \alpha_2 \psi_1 - [\alpha_1, \alpha_2] (n_1 \psi_1 + n_2 \psi_2).$$

Hence $n_1 \alpha_2 \psi_1 + n_2 \alpha_1 \psi_2 = [\alpha_1, \alpha_2](n_1 \psi_1 + n_2 \psi_2)$. It follows that $[\alpha_2 \psi_1, \beta] = 0$ for every $\beta \in \operatorname{Irr}(G) - \{\psi_1, \psi_2\}$. Moreover, since $[\alpha_2 \psi_1, \psi_2] = [\alpha_2, \psi_1 \psi_2] = [\alpha_2, n_1 \psi_1 + n_2 \psi_2] = 0$ then $\alpha_2 \psi_1 = l \psi_1$ with $l \in \mathbb{N}$. Let χ be an irreducible constituent of α_2 then $\chi \psi_1 = k \psi_1$ with $k \in \mathbb{N}$ which contradicts (a).

Proof of (c). Let G be a counterexample with $\psi_1\psi_2 = n_1\overline{\psi}_1 + n_2\psi_2$. By (b) $\psi_1 \neq \overline{\psi}_1$. We consider the following two cases:

- $c(1) \psi_2 = \overline{\psi}_2$ and
- c(2) $\psi_2 \neq \overline{\psi}_2$.
- **Case c(1)(i).** $\bar{\psi}_1^2 + n_2 \psi_1 = \psi_1^2 + n_2 \bar{\psi}_1$.

Proof. Since $\bar{\psi}_1 \psi_2 = n_1 \psi_1 + n_2 \psi_2$ then

$$\bar{\psi}_1(\psi_1\psi_2) = \bar{\psi}_1(n_1\bar{\psi}_1 + n_2\psi_2) = n_1\bar{\psi}_1\bar{\psi}_1 + n_2(n_1\psi_1 + n_2\psi_2)$$

and

$$(\bar{\psi}_1\psi_2)\psi_1 = \psi_1(n_1\psi_1 + n_2\psi_2) = n_1\psi_1^2 + n_2(n_1\bar{\psi}_1 + n_2\psi_2)$$

then $\bar{\psi}_1^2 + n_2 \psi_1 = \psi_1^2 + n_2 \bar{\psi}_1$.

Case c(1)(ii). $\psi_1^2 = n_1 \psi_2 + n_2 \psi_1 + \alpha_1$, $\psi_2^2 = l_G + n_2 (\psi_1 + \psi_1) + \alpha_2$ with $\alpha_i = \bar{\alpha}_i$, $[\alpha_i, \chi] = 0$ for $\chi \in \{ l_G, \psi_1, \bar{\psi}_1, \bar{\psi}_2 \}$, $i \in \{ 1, 2 \}$, and $n_1 \psi_1 \bar{\psi}_1 = n_1 \psi_2^2 + \alpha_1 \psi_2$.

Proof. Since $n_1 = [\psi_1 \psi_2, \bar{\psi}_1] = [\psi_1^2, \psi_2]$ then $\psi_1^2 = n_1 \psi_2 + l_1 \psi_1 + l_2 \bar{\psi}_1 + \alpha_1$ with $\{l_1, l_2\} \subset \mathbb{N}^*$ and $[\alpha_1, \beta] = 0$ for $\beta \in \{1_G, \psi_1, \bar{\psi}_1, \psi_2\}$. By c(1)(i) $n_1 \psi_2 + (n_2 + l_2)\psi_1 + l_1 \bar{\psi}_1 + \bar{\alpha}_1 = \bar{\psi}_1^2 + n_2 \psi_1 = \psi_1^2 + n_2 \bar{\psi}_1 = n_1 \psi_2 + l_1 \psi_1 + (n_2 + l_2) \bar{\psi}_1 + \alpha_1$. So $\alpha_1 = \bar{\alpha}_1$ and $l_1 = l_2 + n_2$. Now

$$\psi_1^2 \psi_2 = \psi_2 [n_1 \psi_2 + (l_2 + n_2) \psi_1 + l_2 \overline{\psi}_1 + \alpha_1]$$

= $n_1 \psi_2^2 + (l_2 + n_2) (n_1 \overline{\psi}_1 + n_2 \psi_2) + l_2 (n_1 \psi_1 + n_2 \psi_2) + \alpha_1 \psi_2$

and

$$\psi_1(\psi_1\psi_2) = \psi_1(n_1\bar{\psi}_1 + n_2\psi_2) = n_1\psi_1\bar{\psi}_1 + n_2(n_1\bar{\psi}_1 + n_2\psi_2)$$

so

$$n_1\psi_1\bar{\psi}_1 = n_1\psi_2^2 + l_2n_1(\psi_1 + \bar{\psi}_1) + 2l_2n_2\psi_2 + \alpha_1\psi_2$$

Since $[\psi_1 \bar{\psi}_1, \psi_2] = [\psi_1 \psi_2, \psi_1] = 0$ then $n_2 l_2 = 0$. So $l_2 = 0$. Moreover $[\psi_1 \bar{\psi}_1, \psi_2] = 0$ implies that $[\psi_2^2, \psi_2] = 0 = [\alpha_1 \psi_2, \psi_2]$. Since $n_2 = [\psi_1 \psi_2, \psi_2] = [\psi_2^2, \psi_1]$ then $\psi_2^2 = l_G + n_2(\psi_1 + \bar{\psi}_1) + \alpha_2$.

Case c(1)(iii). $\alpha_1 = 0$.

Proof. By c(1)(ii)

$$(n_1\bar{\psi}_1\psi_1)\psi_2 = \psi_2(n_1\psi_2^2 + \alpha_1\psi_2) = n_1\psi_2[1_G + n_2(\psi_1 + \bar{\psi}_1) + \alpha_2] + \alpha_1\psi_2^2$$
$$= n_1\psi_2 + n_1n_2(n_1\psi_1 + n_1\bar{\psi}_1 + 2n_2\psi_2) + n_1\alpha_2\psi_2 + \alpha_1\psi_2^2$$

and

$$n_1 \overline{\psi}_1(\psi_1 \psi_2) = n_1 \overline{\psi}_1(n_1 \overline{\psi}_1 + n_2 \psi_2) = n_1^2(n_1 \psi_2 + n_2 \overline{\psi}_1 + \alpha_1) + n_1 n_2(n_1 \psi_1 + n_2 \psi_2).$$

We get that $n_1^2 n_2 \psi_1 = n_1^2 n_2 \psi_1 + [n_1 \alpha_2 \psi_2 + \alpha_1 \psi_2^2, \psi_1] \psi_1$ and then $[\alpha_1 \psi_2^2, \psi_1] = 0$. But $\alpha_1 \psi_2^2 = \alpha_1 (1_G + n_2 \psi_1 + n_2 \overline{\psi_1} + \alpha_2)$; so in particular $0 = [\alpha_1 \overline{\psi_1}, \psi_1] = [\alpha_1, \psi_1^2] = [\alpha_1, \alpha_1]$. Thus $\alpha_1 = 0$.

Case c(1)(iv). $\psi_2 \neq \overline{\psi}_2$.

Proof. By c(1)(ii) and c(1)(iii) $\psi_1 \overline{\psi}_1 = \psi_2^2$. So

$$\psi_2^2\psi_1 = (\mathbf{1}_G + n_2\psi_1 + n_2\overline{\psi}_1 + \alpha_2)\psi_1 = \psi_1 + n_2\psi_1^2 + n_2\psi_2^2 + \alpha_2\psi_1$$

and

$$\psi_2(\psi_2\psi_1) = \psi_2(n_1\overline{\psi}_1 + n_2\psi_2) = n_1(n_1\psi_1 + n_2\psi_2) + n_2\psi_2^2.$$

Hence

$$\psi_1 + n_2(n_1\psi_2 + n_2\psi_1) + \alpha_2\psi_1 = n_1^2\psi_1 + n_1n_2\psi_2$$

Then $n_1^2\psi_1 = (1+n_2^2)\psi_1 + \alpha_2\psi_1$ implies that $\alpha_2\psi_1 = l\psi_1$ which contradicts (a). Then $\alpha_2 = 0$ and $n_1^2 = 1 + n_2^2$. So ψ_2 is not a real character.

Case c(2). In this case $0 = [\psi_1 \psi_2, \psi_1] = [\psi_1 \overline{\psi}_1, \overline{\psi}_2] = [\psi_1, \psi_1 \overline{\psi}_2], \quad 0 = [\psi_1 \psi_2, \overline{\psi}_2] = [\psi_2, \overline{\psi}_1], \quad n_1 = [\psi_1 \psi_2, \overline{\psi}_1] = [\psi_1^2, \overline{\psi}_2] \text{ and } n_2 = [\psi_1 \psi_2, \psi_2] = [\psi_1, \psi_2 \overline{\psi}_2] = [\psi_1 \overline{\psi}_2, \overline{\psi}_2].$

Denote by $l_1 = [\psi_1 \overline{\psi}_2, \overline{\psi}_1] = [\psi_1^2, \psi_2]$, by $l_2 = [\psi_1 \overline{\psi}_2, \psi_2] = [\psi_1, \psi_2^2]$, by $j_1 = [\psi_1^2, \psi_1] = [\psi_1 \overline{\psi}_1, \psi_1]$, by $j_2 = [\psi_2^2, \psi_2] = [\psi_2 \overline{\psi}_2, \psi_2]$, by $d_1 = [\psi_1^2, \overline{\psi}_1]$ and by $d_2 = [\psi_2^2, \overline{\psi}_2]$. So we have the following table:

	1 _G	ψ_1	₹¥ 1	ψ_2	₹¥	
$\psi_1\psi_2$	0	0	n_1	n_2	0	
$\psi_1 \overline{\psi}_2$	0	0	l_1	l_2	n 2	α ₁₂
ψ_1^2	0	\dot{J}_1	<i>d</i> ₁	l_1	n_1	α11
ψ_2^2	0	l_2	0	j2	d_2	α22
$\psi_1 \overline{\psi}_1$	1	j ₁	j ₁	0	0	β_1
$\psi_2 \overline{\psi}_2$	1	n_2	n_2	j2	j2	β_2

where β_i is real and $[\gamma, \delta] = 0$ for $\gamma \in \{\alpha_{ij}, \beta_i/1 \le i \le 2, 1 \le j \le 2\}$ and $\delta \in \{1_G, \psi_1, \psi_1, \psi_2, \psi_2\}$.

Case c(2)(i). $n_1 \bar{\psi}_1 \bar{\psi}_2 = l_2 \psi_2^2 + \alpha_{12} \psi_2$, $l_1 = 0$ and $[\alpha_{12}, \beta_2] = 0$.

Proof. Since

$$(\psi_1\psi_2)\overline{\psi}_2 = \overline{\psi}_2(n_1\overline{\psi}_1 + n_2\psi_2) = n_1\overline{\psi}_1\overline{\psi}_2 + n_2\psi_2\overline{\psi}_2 \qquad (*)$$

and

$$(\psi_1\bar{\psi}_2)\psi_2 = \psi_2(l_1\bar{\psi}_1 + l_2\psi_2 + n_2\bar{\psi}_2 + \alpha_{12}) = l_1\bar{\psi}_1\psi_2 + l_2\psi_2^2 + n_2\bar{\psi}_2\psi_2 + \alpha_{12}\psi_2$$

then $n_1 \bar{\psi}_1 \bar{\psi}_2 = l_1 \bar{\psi}_1 \psi_2 + l_2 \psi_2^2 + \alpha_{12} \psi_2$. Since $[\bar{\psi}_1 \bar{\psi}_2, \psi_2] = 0$ then $0 = l_1 [\bar{\psi}_1 \psi_2, \psi_2] = l_1 n_2$, so $l_1 = 0$ and $0 = [\alpha_{12} \psi_2, \psi_2] = [\alpha_{12}, \beta_2]$.

Case c(2)(ii). $\alpha_{12}\psi_2 = [\alpha_{12}, \alpha_{12}]\psi_1 + [\alpha_{12}, \bar{\alpha}_{22}]\bar{\psi}_2.$

Proof. Since $[\alpha_{12}\psi_2, \psi_1] = [\alpha_{12}, \alpha_{12}], [\alpha_{12}\psi_2, \psi_1] = [\alpha_{12}, \psi_1\psi_2] = 0, [\alpha_{12}\psi_2, \psi_2] = [\alpha_{12}, \bar{\alpha}_{22}]$ and $0 = [\bar{\psi}_1\bar{\psi}_2, \chi]$ for $\chi \in Irr(G) - \{\psi_1, \bar{\psi}_2\}$ then by $c(2)(i) \ 0 = l_2\alpha_{22} + \alpha_{12}\psi_2 - [\alpha_{12}, \alpha_{12}]\psi_1 - [\alpha_{12}, \bar{\alpha}_{22}]\psi_2$.

Case c(2)(iii). $[\alpha_{12}, \alpha_{11}] = 0.$

Proof. By c(2)(ii) $0 = [\alpha_{12}\psi_2, \psi_1\psi_2] = [\alpha_{12}\bar{\psi}_1, \psi_2\bar{\psi}_2]$. Hence, in particular $0 = [\alpha_{12}\bar{\psi}_1, \psi_1] = [\alpha_{12}, \alpha_{11}]$.

Case c(2)(iv). $j_2 = 0$, $[\alpha_{11}, \bar{\alpha}_{22}] = 0$ and $\psi_2(j_1\psi_1 + d_1\bar{\psi}_1 + n_1\bar{\psi}_2 + \alpha_{11}) = \psi_1(n_1\bar{\psi}_1 + n_2\psi_2)$.

Proof. By c(2)(i) $\psi_1^2 \psi_2 = \psi_2(j_1 \psi_1 + d_1 \overline{\psi}_1 + n_1 \overline{\psi}_2 + \alpha_{11})$ and $(\psi_1 \psi_2) \psi_1 = \psi_1(n_1 \overline{\psi}_1 + n_2 \psi_2)$. Since $[\psi_1 \overline{\psi}_1, \overline{\psi}_2] = 0 = [\psi_1 \psi_2, \overline{\psi}_2]$ then we obtain that $0 = [\psi_2 \overline{\psi}_2, \psi_2] = j_2$ and $0 = [\alpha_{11} \psi_2, \overline{\psi}_2] = [\alpha_{11}, \overline{\alpha}_{22}]$.

Case c(2)(v). $j_1 = n_2$.

Proof. Since $[\psi_1\psi_2, \psi_1] = 0 = [\psi_1\overline{\psi}_2, \psi_1]$, $[\overline{\psi}_1\psi_2, \psi_1] = l_1 = 0$ then c(2)(iv) yields that $n_1j_1 = n_1[\overline{\psi}_1\psi_1, \psi_1] = n_1[\overline{\psi}_2\psi_2, \psi_1] + [\alpha_{11}\psi_2, \psi_1] = n_1n_2 + [\alpha_{11}, \alpha_{12}] = n_1n_2$ by c(2)(iii). So $j_1 = n_2$.

Case c(2)(vi). $d_1 = 0$ and $[\alpha_{11}, \beta_2] = 0$.

Proof. Since $[\bar{\psi}_1\psi_1,\psi_2]=0$, $j_1=n_2$ then c(2)(iv) yields that $n_2[\psi_1\psi_2,\psi_2]=n_2[\psi_1\psi_2,\psi_2]+d_1[\bar{\psi}_1\psi_2,\psi_2]+[\alpha_{11}\psi_2,\psi_2]$. Hence $0=d_1[\bar{\psi}_1\psi_2,\psi_2]=d_1n_2$ so $d_1=0$ and $0=[\alpha_{11}\psi_2,\psi_2]=[\alpha_{11},\beta_2]$.

Case c(2)(vii). $n_1\beta_1 = n_1\beta_2 + \alpha_{11}\psi_2$.

Proof. By c(2)(iii), c(2)(iv) and c(2)(vi) $[\alpha_{11}\psi_2, \psi_1 + \bar{\psi}_1 + \psi_2 + \bar{\psi}_2] = 0$. It follows from c(2)(iv) that $n_1\beta_1 = n_1\beta_2 + \alpha_{11}\psi_2$.

Case c(2)(viii). $\alpha_{11} = \beta_2 = 0.$

Proof. By c(2)(iv)

$$(\psi_2 \psi_2) \psi_1 = (\mathbf{1}_G + n_2 \psi_1 + n_2 \psi_1 + \beta_2) \psi_1. \tag{**}$$

Since $[\beta_2\psi_1, \overline{\psi}_2] = [\beta_2, \psi_1\psi_2] = 0$, $[\beta_2\psi_1, \overline{\psi}_1] = [\beta_2, \alpha_{11}] = 0$ by c(2)(vi), $[\beta_2\psi_1, \psi_2] = [\beta_2, \alpha_{12}] = 0$ by c(2)(i) then (*) and (**) yield that $n_2\beta_2 = n_2\alpha_{11} + n_2\beta_1 + \beta_2\psi_1 - [\beta_2\psi_1, \psi_1]\psi_1$. Multiplying this equation by n_1 and using c(2)(vi) we get:

$$n_1 n_2 \beta_2 = n_1 n_2 \alpha_{11} + n_2 (n_1 \beta_2 + \alpha_{11} \psi_2) + n_1 \beta_2 \psi_1 - n_1 [\beta_2 \psi_1, \psi_1] \psi_1.$$

So $\alpha_{11} = 0$ and $\beta_2 \psi_1 = [\beta_2 \psi_1, \psi_1] \psi_1$ so by (a) (as in b(v)) $\beta_2 = 0$.

Case c(2)(ix). Final contradiction.

Proof. By c(2)(vii) and c(2)(viii) $\beta_1 = 0$. It follows by c(2)(iv) and c(2)(v) that $\psi_1 \overline{\psi}_1 = \psi_2 \overline{\psi}_2 = 1_G + n_2(\psi_1 + \overline{\psi}_1)$. So

$$(\psi_1\bar{\psi}_1)(\psi_2\bar{\psi}_2) = (1_G + n_2\psi_1 + n_2\bar{\psi}_1)^2 = 1_G + 2n_2(\psi_1 + \bar{\psi}_1) + n_2^2(\psi_1^2 + \bar{\psi}_1^2 + 2\psi_1\bar{\psi}_1)$$

and

$$(\psi_1\psi_2)(\bar{\psi}_1\bar{\psi}_2) = (n_1\bar{\psi}_1 + n_2\psi_2)(n_1\psi_1 + n_2\bar{\psi}_2) = n_1^2\psi_1\bar{\psi}_1 + n_1n_2(\psi_1\psi_2 + \bar{\psi}_1\bar{\psi}_2) + n_2^2\psi_2\bar{\psi}_2.$$

So

$$1 + 2n_2^2 = [\psi_1 \overline{\psi}_1 \psi_2 \overline{\psi}_2, 1_G] = n_1^2 + n_2^2$$

and then $1 + n_2^2 = n_1^2$, a contradiction.

Proof of Theorem A. The proof of Theorem A is similar to the proof of Theorem B with a few changes.

Let g_1, \ldots, g_k be representatives of the conjugacy classes of a finite group G. Let $K = \sum_{i=1}^k n_i Cl(g_i)$ with $n_i \in N^*$ for $1 \le i \le k$. Define: $(K, Cl(g_i)) = n_i$. Clearly, $(Cl(g_i), Cl(g_j)) = \delta_{ij}$. So $n_i = (K, Cl(g_i)) = \sum_{j=1}^k n_j (Cl(g_j), Cl(g_j))$. Let $L = \sum_{i=1}^k m_i Cl(g_i)$ with $m_i \in \mathbb{N}^*$, we extend the above definition by:

$$(K, L) = \sum_{i=1}^{k} m_i(K, Cl(g_i)) = \sum_{i=1}^{k} n_i m_i = (L, K).$$

Let $j_i \in \{1, \dots, k\}$ for $1 \leq i \leq s$ and let

$$\prod_{i=j_{1}}^{j_{s}} Cl(g_{i}) = K = \sum_{i=1}^{k} n_{i} Cl(g_{i}).$$

Clearly, $n_i \in \mathbb{N}^*$ and it is known that

$$n_{l} = |G|^{-1} \prod_{i=j_{1}}^{j_{s}} |Cl(g_{i})| \sum_{\chi \in Irr(G)} \bar{\chi}(g_{l}) \chi(1)^{1-s} \prod_{i=j_{1}}^{j_{s}} \chi(g_{i}).$$

In particular, if D_1 , D_2 , D_3 are conjugacy classes then:

(i) $(D_1D_2, D_3) = (D_1^{-1}D_2^{-1}, D_3^{-1}).$

It is easy to compute that:

(ii)
$$(D_1D_2, D_3) = |D_2||D_3|^{-1}(D_1D_3^{-1}, D_2^{-1}).$$

For $D_1 = D_3$ we get that:

(iii)
$$(D_1D_2, D_1) = |D_2||D_1|^{-1}(D_1D_1^{-1}, D_2^{-1}) = (D_2D_1^{-1}, D_1^{-1}) = (D_2^{-1}D_1, D_1).$$

It is appropriate to introduce here the following:

Definition. The covering number, cn(G), of a group G is the smallest positive integer n, such that $C^n = G$ for all non-identity conjugacy classes, C, of G. If no such integer exists we say that the covering number is infinite. The notion of a covering number was mentioned in [3] where it is shown:

Lemma. A finite group has a finite covering number if and only if it is a nonabelian simple group.

(In [4] we proved the analogous lemma for character covering numbers.)

Now we can state Theorem A as follows:

Theorem 2. Let D_1, D_2 be conjugacy classes of a finite nonabelian simple group G with $D_1 \neq Cl(1) \neq D_2$ and $\{n_1, n_2\} \subset \mathbb{N}$. Then

- (a) $D_1 D_2 \neq n_1 D_1$ and $D_1 D_2 \neq n_1 D_1^{-1}$.
- (b) $D_1 D_2 \neq n_1 D_1 + n_2 D_2$.
- (c) $D_1 D_2 \neq n_1 D_1^{-1} + n_2 D_2$.

Proof of (a). Let $D_1D_2 = n_1D_1$ be a counterexample then $D_1D_2^2 = n_1D_1D_2 = n_1^2D_1$. By induction $D_1D_2^s = n_1^sD_1$ for every $s \in \mathbb{N}$ which contradicts the lemma. Similarly, if $D_1D_2 = n_1D_1^{-1}$ then $D_1D_2D_2^{-1} = n_1D_1^{-1}D_2^{-1} = n_1^2D_1$. By induction

Similarly, if $D_1 D_2 = n_1 D_1^{-1}$ then $D_1 D_2 D_2^{-1} = n_1 D_1^{-1} D_2^{-1} = n_1^2 D_1$. By induction $D_1 (D_2^{-1})^s D_2^s = n_1^{2s} D_1$, the same contradiction.

Proof of (b). Let $D_1D_2 = n_1D_1 + n_2D_2$ be a counterexample. We will show:

b(i).
$$D_1 D_2^{-1} = n_1 D_1 + n_2 D_2^{-1}$$
.

Proof. By (iii) $n_1 = (D_1 D_2, D_1) = (D_1 D_2^{-1}, D_1)$ and $n_2 = (D_1 D_2, D_2) = (D_1 D_2^{-1}, D_2^{-1})$. So $D_1 D_2^{-1} = n_1 D_1 + n_2 D_2^{-1} + T$ with (T, L) = 0 for $L \in \{D_1, D_2^{-1}\}$. Since

$$n_1|D_1| + n_2|D_2^{-1}| = n_1|D_1| + n_2|D_2| = |D_1||D_2| = |D_1||D_2^{-1}| = n_1|D_1| + n_2|D_2^{-1}| + |T|$$

then T=0.

b(ii). $D_i = D_i^{-1}$ for $1 \le i \le 2$.

Proof. By b(i)

$$(n_1D_1 + n_2D_2^{-1})D_2 = (D_1D_2^{-1})D_2 = (D_1D_2)D_2^{-1} = (n_1D_1 + n_2D_2)D_2^{-1}.$$

So $D_1 D_2^{-1} = D_1 D_2$ or equivalently $n_1 D_1 + n_2 D_2^{-1} = n_1 D_1 + n_2 D_2$ then $D_2 = D_2^{-1}$ and similarly $D_1 = D_1^{-1}$.

b(iii). $D_1^2 = |D_1|Cl(1) + n_1|D_1||D_2|^{-1}D_2 + s_1D_1 + M_1$

and

$$D_2^2 = |D_2|Cl(1) + n_2|D_2||D_1|^{-1}D_1 + s_2D_2 + M_2$$

where $s_i \in N^*$, $M_i \neq 0$ and $(M_i, C) = 0$ for $C \in \{Cl(1), D_i\}$, $i, j \in \{1, 2\}$.

Proof. Since

$$(D_1^2, Cl(1)) = |D_1| (D_1 Cl(1), D_1) = |D_1|$$

and by (ii)

$$(D_1^2, D_2) = |D_1| |D_2|^{-1} (D_1 D_2, D_1) = |D_1| |D_2|^{-1} n_1$$

then $D_1^2 = |D_1|Cl(1) + n_1|D_1||D_2|^{-1}D_2 + s_1D_1 + M_1$. If $M_1 = 0$, by the lemma $G = 1 \cup D_1 \cup D_2$ which contradicts the assumption that G is a nonabelian simple group. So $M_1 \neq 0$. Similarly for D_2^2 .

b(iv).

$$n_1 M_1 = n_1 |D_1| |D_2|^{-1} M_2 + M_1 D_2 - (M_1 D_2, D_2) D_2$$

and

$$n_2M_2 = n_2|D_2||D_1|^{-1}M_1 + M_2D_1 - (M_2D_1, D_1)D_1.$$

Proof. By b(iii)

$$D_1(D_1D_2) = D_1(n_1D_1 + n_2D_2) = n_1(|D_1|Cl(1) + n_1|D_1||D_2|^{-1}D_2 + s_1D_1 + M_1)$$
$$+ n_2(n_1D_1 + n_2D_2)$$

and

$$D_1^2 D_2 = (|D_1||Cl(1) + n_1||D_1|||D_2||^{-1} D_2 + s_1 D_1 + M_1) D_2$$

= $|D_1||D_2 + n_1||D_1|||D_2||^{-1} (|D_2||Cl(1) + n_2||D_2|||D_1||^{-1} D_1 + s_2 D_2 + M_2)$
+ $s_1(n_1 D_1 + n_2 D_2) + M_1 D_2.$

.

Since $D_1(D_1D_2) = D_1^2D_2$, $0 = (M_1D_2, Cl(1))$ and $(M_1D_2, D_1) = |M_1||D_1|^{-1}(M_1, D_1D_2) = 0$ then $n_1M_1 = n_1|D_1||D_2|^{-1}M_2 + M_1D_2 - (M_1D_2, D_2)D_2$. Similarly $n_2M_2 = n_2|D_2||D_1|^{-1}M_1 + M_2D_1 - (M_2D_1, D_1)D_1$.

b(v). Final contradiction.

Proof. By b(iv)

$$n_1 n_2 M_2 = n_1 n_2 |D_2| |D_1|^{-1} M_1 + n_1 (M_2 D_1 - (M_2 D_1, D_1) D_1)$$

= $n_2 |D_2| |D_1|^{-1} (n_1 |D_1| |D_2|^{-1} M_2 + M_1 D_2 - (M_1 D_2, D_2) D_2)$
+ $n_1 M_2 D_1 - n_1 (M_2 D_1, D_1) D_1.$

It follows that $n_2|D_2||D_1|^{-1}M_1D_2 + n_1M_2D_1 = l_1D_1 + l_2D_2$ for $\{l_1, l_2\} \subset \mathbb{N}^*$. In particular, $M_1D_2 = m_1D_1 + m_2D_2$ for $\{m_1, m_2\} \subset \mathbb{N}^*$. Since $(M_1D_2, D_1) = 0$ the $M_1D_2 = m_2D_2$. Let $M_1 = \sum_{i=1}^{k} d_i Cl(g_i)$, choose $Cl(g_j)$ for $d_j > 0$ then $Cl(g_j)D_2 = mD_2$ which contradicts (a).

Proof of (c). Let $D_1D_2 = n_1D_1^{-1} + n_2D_2$ be a counterexample. By (b) $D_1 \neq D_1^{-1}$. We consider the following two cases:

case c(1)
$$D_2 = D_2^{-1}$$
 and case c(2) $D_2 \neq D_2^{-1}$.

Case c(1)

c(1)(**i**). $(D_1^{-1})^2 + n_2 D_1 = D_1^2 + n_2 D_1^{-1}$.

Proof. Since $(D_1D_2, D_i) = (D_1^{-1}D_2, D_i^{-1})$ then

$$D_1^{-1}(D_1D_2) = D_1^{-1}(n_1D_1^{-1} + n_2D_2) = n_1(D_1^{-1})^2 + n_2(n_1D_1 + n_2D_2)$$

and

$$D_1(D_1^{-1}D_2) = D_1(n_1D_1 + n_2D_2) = n_1D_1^2 + n_2(n_1D_1^{-1} + n_2D_2).$$

It follows that $(D_1^{-1})^2 + n_2 D_1 = D_1^2 + n_2 D_1^{-1}$.

c(1)(ii). $D_1^2 = n_1 |D_1| |D_2|^{-1} D_2 + n_2 D_1 + M$ with $M = M^{-1}$, 0 = (M, C) for $C \in \{Cl(1), D_1, D_1^{-1}, D_2\}$, $n_1 D_1 D_1^{-1} = n_1 |D_1| |D_2|^{-1} D_2^2 + M D_2$ and $(D_2^2, D_2) = 0$.

Proof. Since $n_1 = (D_1 D_2, D_1^{-1}) = |D_2| |D_1|^{-1} (D_1^2, D_2)$ then $D_1^2 = n_1 |D_1| |D_2|^{-1} D_2 + l_1 D_1 + l_2 D_1^{-1} + M$ with $\{l_1, l_2\} \subset \mathbb{N}^*$. By c(1)(i)

$$n_1 |D_1| |D_2|^{-1} D_2 + (l_2 + n_2) D_1 + l_1 D_1^{-1} + M^{-1} = (D_1^{-1})^2 + n_2 D_1 = D_1^2 + n_2 D_1^{-1}$$
$$= n_1 |D_1| |D_2|^{-1} D_2 + l_1 D_1 + (l_2 + n_2) D_1^{-1} + M.$$

So $M = M^{-1}$ and $l_1 = l_2 + n_2$. Now $(D_1^2)D_2 = (n_1|D_1||D_2|^{-1}D_2 + (l_2 + n_2)D_1 + l_2D_1^{-1} + M)D_2$ $= n_1|D_1||D_2|^{-1}D_2^2 + (l_2 + n_2)(n_1D_1^{-1} + n_2D_2) + l_2(n_1D_1 + n_2D_2) + MD_2$

and

$$D_1(D_1D_2) = D_1(n_1D_1^{-1} + n_2D_2) = n_1D_1D_1^{-1} + n_2(n_1D_1^{-1} + n_2D_2).$$

Since $D_1^2 D_2 = D_1 (D_1 D_2)$ then

$$n_1 D_1 D_1^{-1} = n_1 |D_1| |D_2|^{-1} D_2^2 + l_2 n_1 (D_1 + D_1^{-1}) + 2l_2 n_2 D_2 + M D_2.$$

Since $0 = (D_1 D_1^{-1}, D_2)$ then $(D_2^2, D_2) = 0$ and $l_2 = 0$ thus $l_1 = n_2$.

c(1)(iii). $D_2^2 = |D_2|Cl(1) + n_2|D_2||D_1|^{-1}(D_1 + D_1^{-1}) + L$ with $L = L^{-1}$ and 0 = (L, C) for $C \in \{Cl(1), D_1, D_1^{-1}, D_2\}.$

Proof. Since $(D_2^2, D_1^{-1}) = |D_2| |D_1|^{-1} (D_2 D_1, D_2) = n_2 |D_2| |D_1|^{-1}$ and by $c(1)(ii) = (D_2^2, D_2)$ then $D_2^2 = |D_2| Cl(1) + n_2 |D_2| |D_1|^{-1} (D_1 + D_1^{-1}) + L.$

c(1)(iv). M = 0, $|D_1| = |D_2|$ and $D_1 D_1^{-1} = D_2^2$.

Proof. By c(1)(ii) and c(1)(iii)

$$(n_1 D_1 D_1^{-1}) D_2 = (n_1 ||D_1|||D_2|^{-1} D_2^2 + M D_2) D_2$$

= $n_1 ||D_1|||D_2|^{-1} D_2 (||D_2||Cl(1) + n_2||D_2|||D_1|^{-1} (D_1 + D_1^{-1}) + L) + M D_2^2$
= $n_1 ||D_1|||D_2 + n_1 n_2 (n_1 D_1^{-1} + n_1 D_1^{-1} + 2n_2 D_2) + n_1 ||D_1|||D_2|^{-1} D_2 L + M D_2^2$

and

$$n_1 D_1^{-1} (D_1 D_2) = n_1 D_1^{-1} (n_1 D_1^{-1} + n_2 D_2) = n_1^2 (n_1 |D_1| |D_2|^{-1} D_2 + n_2 D_1^{-1} + M)$$

+ $n_1 n_2 (n_1 D_1 + n_2 D_2).$

So

$$n_1^2 n_2 = (n_1 D_1^{-1} D_1 D_2, D_1) = n_1^2 n_2 + (n_1 |D_1| |D_2|^{-1} D_2 L + M D_2^2, D_1).$$

Hence $(D_2L, D_1) = 0 = (MD_2^2, D_1)$.

Since $MD_2^2 = M[|D_2|Cl(1) + n_2|D_2||D_1|^{-1}(D_1 + D_1^{-1}) + L]$ then $(MD_2^2, D_1) = 0$ implies, in particular, that $0 = (MD_1^{-1}, D_1) = |M||D_1|^{-1}(D_1^2, M) = |M||D_1|^{-1}(M, M)$. So M = 0 and then by $c(1)(ii) \quad D_1D_1^{-1} = |D_1||D_2|^{-1}D_2^2$. Hence $|D_1|^2 = |D_1||D_1^{-1}| = |D_1||D_2|^{-1}|D_2|^2 = |D_1||D_2|^{-1}|D_2|^2$.

c(1)(iv). L=0.

Proof.

$$D_2^2 D_1 = (|D_2|Cl(1) + n_2(D_1 + D_1^{-1}) + L)D_1 = |D_2|D_1 + n_2D_1^2 + n_2D_2^2 + LD_1$$

and

$$D_2(D_1D_2) = D_2(n_1D_1^{-1} + n_2D_2) = n_1(n_1D_1 + n_2D_2) + n_2D_2^2.$$

So

$$|D_2|D_1 + n_2(n_1D_2 + n_2D_1) + LD_1 = n_1^2D_1 + n_1n_2D_2$$

Thus $(|D_2| + n_2^2)D_1 + LD_1 = n_1^2D_1$. Hence $LD_1 = kD_1$ and by (a) L = 0.

c(1)(v). $D_2 \neq D_2^{-1}$.

Proof. Since L=0=M then $D_2^n = \alpha(n)Cl(1) + \beta(n)D_1 + \delta(n)D_1^{-1} + \gamma(n)D_2$ where $\{\alpha(n), \beta(n), \delta(n), \gamma(n)\} \subset \mathbb{N}^*$ for every $n \in \mathbb{N}$. By the lemma we get that $G = 1 \cup D_1 \cup D_1^{-1} \cup D_2$. Since $|D_1^{-1}| = |D_1| = |D_2|$ then $|G| = 1 + 3|D_1|$ which contradicts a consequence of Lagrange's theorem that $|D_i|/|G|$.

Case c(2). In this case we have

$$0 = (D_1 D_2, D_1) = |D_2| |D_1|^{-1} (D_1 D_1^{-1}, D_2^{-1}) = |D_2| |D_1|^{-1} (D_1 D_1^{-1}, D_2) = (D_1 D_2^{-1}, D_1),$$

$$0 = (D_1 D_2, D_2^{-1}) = |D_1| |D_2|^{-1} (D_2^2, D_1^{-1}),$$

$$n_1 = (D_1 D_2, D_1^{-1}) = |D_2| |D_1|^{-1} (D_1^2, D_2^{-1}),$$

$$n_2 = (D_1 D_2, D_2) = (D_1 D_2^{-1}, D_2^{-1}) = |D_1| |D_2|^{-1} (D_2 D_2^{-1}, D_1^{-1}).$$

We denote: $l_1 = (D_1 D_2^{-1}, D_1^{-1}) = |D_2| |D_1|^{-1} (D_1^2, D_2), \ l_2 = (D_1 D_2^{-1}, D_2) = |D_1| |D_2|^{-1} (D_2^2, D_1), \ j_1 = (D_1^2, D_1) = (D_1 D_1^{-1}, D_1), \ j_2 = (D_2^2, D_2) = (D_2 D_2^{-1}, D_2^{-1}), \ d_1 = (D_1^2, D_1^{-1}) \ \text{and} \ d_2 = (D_2^2, D_2^{-1}).$ Therefore we have the following table:

	<i>Cl</i> (1)	D_{1}	D_{1}^{-1}	D_2	D_{2}^{-1}	
D_1D_2	0	0	n_1	<i>n</i> ₂	0	
$D_1 D_2^{-1}$	0	0	l_1	l_2	<i>n</i> ₂	M_{12}
D_{1}^{2}	0	j ₁	d_1	$l_1 D_1 D_2 ^{-1}$	$n_1 D_1 D_2 ^{-1}$	M_{11}
D_2^2	0	$l_2 D_2 D_1 ^{-1}$	0	j2	<i>d</i> ₂	M_{22}
$D_1 D_1^{-1}$	$ D_1 $	j_1	j _i	0	0	N ₁
$D_2 D_2^{-1}$	$ D_2 $	$n_2 D_2 D_1 ^{-1}$	$n_2 D_2 D_1 ^{-1}$	j ₂	j ₂	N_2

where $N_i = N_i^{-1}$ and (L, C) = 0 for $C \in \{Cl(1), D_k, D_k^{-1}\}, L \in \{M_{ij}, N_i\}$ for every $k, i, j \in \{1, 2\}$.

We will show:

c(2)(i).
$$j_2 = 0$$
 and $(M_{11}, M_{22}^{-1}) = 0$.

Proof. Since $(D_1D_2, D_1^{-1}D_2^{-1}) = 0$ then

$$0 = (D_1^2, (D_2^{-1})^2) = d_1 l_2 |D_2| |D_1|^{-1} + d_2 l_1 |D_1| |D_2|^{-1} + j_2 n_1 |D_1| |D_2|^{-1} + (M_{11}, M_{22}^{-1})$$

then, in particular $j_2 = 0 = (M_{11}, M_{22}^{-1})$.

c(2)(ii). $l_1 = 0$ and $(M_{12}, N_2) = 0$.

Proof. By c(2)(i) $(D_1D_2, D_2^2) = 0$ thus $0 = (D_1D_2^{-1}, D_2D_2^{-1}) = l_1n_2|D_2||D_1|^{-1} + (M_{12}, N_2)$. It follows that $l_1 = 0 = (M_{12}, N_2)$.

c(2)(iii). $l_2 M_{22} = 0$, $M_{12} D_2 = (n_1^2 - l_2^2 |D_2| |D_1|^{-1}) D_1 + (n_1 n_2 - l_2 d_2) D_2^{-1}$ and $0 = (M_{12}, M_{11})$.

Proof. We compute

$$(D_1 D_2) D_2^{-1} = (n_1 D_1^{-1} + n_2 D_2) D_2^{-1}$$
^(*)

and $(D_1D_2^{-1})D_2 = (l_2D_2 + n_2D_2^{-1} + M_{12})D_2$. Hence $n_1D_1^{-1}D_2^{-1} = l_2D_2^2 + M_{12}D_2$. This means that

$$n_1(n_1D_1 + n_2D_2^{-1}) = l_2(l_2|D_2||D_1|^{-1}D_1 + d_2D_2^{-1} + M_{22}) + M_{12}D_2.$$

In particular $M_{12}D_2 = (n_1^2 - l_2^2 |D_2| |D_1|^{-1})D_1 + (n_1n_2 - l_2d_2)D_2^{-1}$ and $l_2M_{22} = 0$. Moreover $(M_{12}D_2, D_1D_2) = 0$ so $0 = (M_{12}D_1^{-1}, D_2D_2^{-1})$. Hence, in particular, $0 = (M_{12}D_1^{-1}, D_1)$ which implies that $0 = (M_{12}, D_1^2) = (M_{12}, M_{11})$.

c(2)(iv).
$$j_1 = n_2$$
 and $n_1 D_1 D_1^{-1} = d_1 D_1^{-1} D_2 + n_1 |D_1| |D_2|^{-1} D_2 D_2^{-1} + M_{11} D_2$.

Proof. Since

$$D_1(n_1D_1^{-1} + n_2D_2) = D_1(D_1D_2) = D_1^2D_2 = D_2(j_1D_1 + d_1D_1^{-1} + n_1|D_1||D_2|^{-1}D_2^{-1} + M_{11})$$

and $(D_1D_2, D_1) = 0 = (D_2D_1^{-1}, D_1)$ then by c(2)(ii) and c(2)(iii) we get that

$$n_1 j_1 = n_1 (D_1 D_1^{-1}, D_1) = (D_1^2 D_2, D_1) = n_1 |D_1| |D_2|^{-1} (D_2 D_2^{-1}, D_1) + (M_{11} D_2, D_1) = n_1 n_2.$$

So
$$j_1 = n_2$$
.

c(2)(v). $d_1 = 0$ and $(M_{11}, N_2) = 0$.

Proof. Since $(D_1^{-1}D_1, D_2) = 0$ then by c(2)(iv)

$$0 = d_1(D_1^{-1}D_2, D_2) + n_1|D_1||D_2|^{-1}(D_2^{-1}D_2, D_2) + (M_{11}D_2, D_2) = d_1n_2 + (M_{11}D_2, D_2).$$

We conclude that $d_1 = 0 = (M_{11}, N_2)$.

c(2)(vi). $n_1 N_1 = n_1 |D_1| |D_2|^{-1} N_2 + M_{11} D_2$.

Proof. By c(2)(i), c(2)(iii) and c(2)(v), $(M_{11}D_2, D_1 + D_1^{-1} + D_2 + D_2^{-1}) = 0$. It follows from c(2)(iv) that $n_1N_1 = n_1|D_1||D_2|^{-1}N_2 + M_{11}D_2$.

c(2)(vii). $M_{11} = N_2 = N_1 = 0$.

Proof. By the above

$$(D_2 D_2^{-1}) D_1 = [|D_2| Cl(1) + n_2 |D_2| |D_1|^{-1} (D_1 + D_1^{-1}) + N_2] D_1$$

= $|D_2| D_1 + n_2 |D_2| |D_1|^{-1} (D_1^2 + D_1^{-1} D_1) + N_2 D_1$ (**)

Since $(N_2, D_1D_2) = 0$, $(N_2, M_{12}) = 0$ by c(2)(ii), and $(N_2, M_{11}) = 0$ by c(2)(v) then $(N_2D_1, D_2^{-1} + D_2 + D_1^{-1}) = 0$. So (*) and (**) yield that

$$n_2 N_2 = n_2 |D_2| |D_1|^{-1} (M_{11} + N_1) + N_2 D_1 - (N_2 D_1, D_1) D_1.$$

By c(2)(vi)

$$n_1 n_2 N_2 = n_1 n_2 |D_2| |D_1|^{-1} M_{11} + n_2 |D_2| |D_1|^{-1} (n_1 |D_1| |D_2|^{-1} N_2 + M_{11} D_2) + n_1 N_2 D_1 - n_1 (N_2 D_1, D_1) D_1.$$

Therefore $M_{11} = 0$ and $N_2 D_1 = (N_2 D_1, D_1) D_1$. By (a) we conclude that $N_2 = 0$ and then by c(2)(vi) $N_1 = 0$.

c(2)(viii). $|D_1| = |D_2|$ and $D_1 D_1^{-1} = D_2 D_2^{-1}$.

Proof. By c(2)(vii) $D_2 D_2^{-1} = |D_2| |D_1|^{-1} D_1 D_1^{-1}$. Then

$$|D_2|^2 = |D_2||D_2^{-1}| = |D_2||D_1|^{-1}|D_1|^2 = |D_1||D_2|.$$

Thus $|D_1| = |D_2|$.

c(2)(ix). $n_1 = 1 + n_2$ and $|M_{12}| = (1 + n_2 - l_2)|D_1|$.

Proof. Since $(n_1 + n_2)|D_1| = |D_1||D_2| = |D_1||D_1^{-1}| = |D_1|(1 + 2n_2)$, therefore $n_1 = 1 + n_2$. Also $(n_1 + n_2)|D_1| = |D_1||D_2| = |D_1||D_2^{-1}| = (l_2 + n_2)|D_1| + |M_{12}|$. Hence $|M_{12}| = (n_1 - l_2)|D_1|$.

c(2)(x). $|D_1| = 1 + 2n_2$.

Proof. We compute

$$(D_1D_2)(D_1^{-1}D_2^{-1}) = (n_1D_1^{-1} + n_2D_2)(n_1D_1 + n_2D_2^{-1})$$

= $(n_1^2 + n_2^2)D_1D_1^{-1} + n_1n_2(D_1D_2 + D_1^{-1}D_2^{-1}).$

Since

$$(D_1 D_2)(D_1^{-1} D_2^{-1}) = (D_1 D_1^{-1})(D_2 D_2^{-1}) = [|D_1| Cl(1) + n_2(D_1 + D_1^{-1})]^2$$

= $|D_1|^2 Cl(1) + n_2^2(D_1^2 + (D_1^{-1})^2 + 2D_1 D_1^{-1}) + 2n_2|D_1|(D_1 + D_1^{-1})$ (***)

then $(n_1^2 + n_2^2)|D_1| = (D_1D_2D_1^{-1}D_2^{-1}, Cl(1)) = |D_1|^2 + 2n_2^2|D_1|$. Thus $|D_1| = 1 + 2n_2$.

c(2)(xi). $l_2 + d_2 = 1 + 2n_2$ and $M_{22} = 0$.

Proof. By c(2)(iii) and c(2)(ix), $(1 + n_2 - l_2)|D_1|^2 = |M_{12}||D_2| = (n_1^2 - l_2^2 + n_1n_2 - l_2d_2)|D_1|$. Therefore, by c(2)(ix) and c(2)(x), $(1 + n_2 - l_2)(1 + 2n_2) = (1 + 2n_2 + n_2^2 - l_2^2 + n_2 + n_2^2 - l_2d_2)$. Then $1 + 2n_2 = l_2 + d_2$. Since $n_1 + n_2 = 1 + 2n_2$ and $(n_1 + n_2)|D_1| = |D_1||D_2| = |D_2^2| = (l_2 + d_2)|D_2| + |M_{22}|$ then $M_{22} = 0$.

c(2)(xii). $l_2 = n_2, M_{12} = M_{12}^{-1}, D_1^2 = D_2^2 \text{ and } M_{12}D_2 = |D_1|D_1.$

Proof. Since

$$(D_1D_2)D_1^{-1} = (n_1D_1^{-1} + n_2D_2)D_1^{-1} = n_1(n_2D_1^{-1} + n_1D_2) + n_2(n_2D_2 + l_2D_2^{-1} + M_{12}^{-1})$$

and

$$D_1 D_1^{-1} D_2 = D_2 D_2^{-1} D_2 = D_2^2 D_2^{-1} = (l_2 D_1 + d_2 D_2^{-1}) D_2^{-1}$$
$$= l_2 (l_2 D_2 + n_2 D_2^{-1} + M_{12}) + d_2 (l_2 D_1^{-1} + d_2 D_2)$$

then

$$(n_1n_2 - l_2d_2)D_1^{-1} + (n_1^2 + n_2^2 - l_2^2 - d_2^2)D_2 = l_2M_{12} - n_2M_{12}^{-1}.$$

Since $(M_{12}, D_i) = 0 = (M_{12}, D_i^{-1})$ for $1 \le i \le 2$ then $l_2 = n_2$, $M_{12} = M_{12}^{-1}$ $(M_{12} \ne 0$ by the same arguments as in c(1)(v). Therefore $d_2 = n_1$ and $D_1^2 = D_2^2$ and by c(2)(iii) $M_{12}D_2 = (n_1^2 - l_2^2)D_1 = |D_1|D_1$.

c(2)(xiii). Final contradiction.

Proof. Let us compute

$$(D_1 D_2^{-1})^2 = (n_2 D_2 + n_2 D_2^{-1} + M_{12})^2 = n_2^2 (D_2^2 + (D_2^{-1})^2 + 2D_2 D_2^{-1}) + 2n_2 (M_{12} D_2 + M_{12} D_2^{-1}) + M_{12}^2 = n_2^2 (D_1^2 + (D_1^{-1})^2 + 2D_1 D_1^{-1}) + 2n_2 |D_1| (D_1 + D_1^{-1}) + M_{12}^2.$$

Since $(D_1 D_2^{-1})^2 = D_1^2 (D_2^{-1})^2 = D_1^2 (D_1^{-1})^2 = (D_1 D_1^{-1})^2$ then by (***) $M_{12}^2 = |D_1|^2 Cl(1)$, which contradicts the lemma.

REFERENCES

1. Z. ARAD, D. CHILLAG and G. MORAN, Groups with a small covering number, in *Products of Conjugacy Classes in Groups* (Z. Arad and M. Herzog, eds.), Lecture Notes in Mathematics, Springer-Verlag, 1112 (1985), 222-244.

2. Z. ARAD and M. HERZOG (eds.), Products of Conjugacy Classes in Groups (Lecture Notes in Mathematics, Springer-Verlag, 1112, 1985).

3. Z. ARAD, M. HERZOG and J. STAVI, Powers and products of conjugacy classes in groups, in *Products of Conjugacy Classes in Groups* (Z. Arad and M. Herzog, eds.), Lecture Notes in Mathematics, Springer-Verlag, 1112 (1985), 6-51.

4. Z. ARAD, M. HERZOG and D. CHILLAG, Powers of characters of finite groups, J. Algebra, 103 (1986), 241-255.

5. I. M. ISAACS, Character Theory of Finite Groups (Academic Press, 1976).

DEPARTMENT OF MATHEMATICS Bar-Ilan University Ramat Gan Israel