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SUMMARY

Historically, the highest incidence rates of invasive Haemophilus influenzae disease in the world
were found in North American and Australian Indigenous children. Although immunization
against H. influenzae type b (Hib) led to a marked decrease in invasive Hib disease in countries
where it was implemented, this disease has not been eliminated and its rates in Indigenous
communities remain higher than in the general North American population. In this literature
review, we examined the epidemiology of invasive H. influenzae disease in the pre-Hib vaccine
era, effect of carriage on disease epidemiology, immune response to H. influenzae infection and
Hib vaccination in Indigenous and Caucasian children, and the changing epidemiology after
Hib conjugate vaccine has been in use for more than two decades in North America. We also
explored reasons behind the continued high rates of invasive H. influenzae disease in Indigenous
populations in North America. H. influenzae type a (Hia) has emerged as a significant cause of
severe disease in North American Indigenous communities. More research is needed to define
the genotypic diversity of Hia and the disease burden that it causes in order to determine if
a Hia vaccine is required to protect the vulnerable populations.
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Introduction

Haemophilus influenzae is a Gram-negative coccoba-
cillus found mainly as a commensal in the human
respiratory tract, and occasionally also in the gastroin-
testinal and genitourinary tracts. From there, the

bacteria may disseminate and cause invasive diseases
or local infections (meningitis, sepsis, septic arthritis,
epiglottitis, pneumonia, otitis media, sinusitis, con-
junctivitis, cellulitis, pericarditis, urinary tract infec-
tion, peritonitis, etc.) [1]. Based on the antigenic
characteristics of their polysaccharide capsule, encap-
sulated strains are divided into six serotypes (a–f) [1].
Strains without a capsule (non-encapsulated) are
termed non-typable. Among all the capsular types,
H. influenzae serotype b (Hib) is the most significant
cause of invasive disease. Before the introduction
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of the Hib conjugate vaccine, Hib was a major cause
of childhood meningitis and other forms of invasive
H. influenzae disease [1]. Since Hib conjugate vaccine
was introduced more than two decades ago, the
epidemiology of invasive H. influenzae disease has
changed markedly [2, 3]. Recent reviews on invasive
H. influenzae disease have been published [4–6], but
none has dealt with the disease in Indigenous peoples
although it is known that some Indigenous popula-
tions in North America have higher rates of invasive
Hib disease compared to the general population. In
this review, we examine the current status of invasive
H. influenzae disease in Indigenous populations of
North America including epidemiology, risk factors
for invasive infection, prevention and control mea-
sures, and discuss the needs for future research.

Biology of H. influenzae

The capsule of H. influenzae is the most studied viru-
lence factor and protective antigen. Using isogenic
mutants which differ only in their capsule structures
(and hence their serotypes) to infect infant rats,
Zwahlen et al. demonstrated that a mutant with the
Hib capsule is the most virulent, followed by
H. influenzae serotype a (Hia), which in turn is more
virulent than serotypes c–f [7]. Currently licensed vac-
cines for protection against invasive H. influenzae dis-
ease are based on the capsule of Hib. Protein D from
non-typable H. influenzae has also been used as a car-
rier protein in one form of pneumococcal conjugate
vaccine (Synflorix™, GlaxoSmithKline Biologicals,
Belgium) [8]. However, the impact of this vaccine on
invasive H. influenzae disease has not been evaluated.
Other virulence factors that have been noted in
H. influenzae include lipo-oligosaccharide with its
endotoxic lipid A, pili as well as other adherence
factors, and IgA protease.

The population biology of encapsulated H. influen-
zae have been studied, and strains can be grouped into
two phylogenetic groups, clonal divisions I and II [9].
Most serotypes a–d H. influenzae isolates belong to
clonal division I, while small numbers of serotypes a
and b, as well as all serotype f isolates belong to clonal
division II. Serotype e isolates may belong to an inter-
mediate group between clonal divisions I and II. In
addition, each serotype of H. influenzae appears to
be clonal with its own unique set of sequence types
(STs) with minimal or no mixing between serotypes
and their unique sets of clones or STs [10]. In contrast
to encapsulated serotypable H. influenzae, non-typable

H. influenzae strains have been regarded as genetically
diverse and non-clonal [11].

Another interesting feature of H. influenzae is the
plasticity of its genome in part due to the high number
of DNA uptake sequences present [12, 13]. How this
genetic property of H. influenzae may affect its long-
term evolutionary response to vaccine pressure is not
known at this time. There are currently two schools
of thought: one suggests that strain replacement has
taken place and that replacement strains are now caus-
ing disease and altering the epidemiology of invasive
H. influenzae disease [14], and another suggests that
strain replacement has not occurred [15].

Epidemiology of invasive H. influenzae disease in the
pre-Hib vaccine era

Before the introduction of Hib conjugate vaccines
in the late 1980s–early 1990s, the highest incidence
rates of invasive H. influenzae disease in the world
were found in Indigenous children, i.e. in North
American Indians, Eskimo/Inuit in the Arctic, and
Australian Aboriginals [16–21] (Table 1). According
to population-based surveillance studies, the incidence
rates of invasive Hib disease in the USA varied
between 40 and 100 cases/100000 children aged
<5 years [22]. In White Mountain Apache children,
the annual incidence of H. influenzae meningitis was
eight times higher than in the general US population
[17]. In Alaska, the incidence of invasive Hib disease
was 5·5 times higher in Eskimo than in non-Native
children [18]. Although Hib was the dominant sero-
type of H. influenzae causing invasive disease world-
wide, Hia was responsible for a number of cases in
White Mountain Apache Indians, Australian Ab-
original and Papua New Guinea populations
[17, 19, 21, 23]. For example, in one White Mountain
Apache Indian community, during 1981–1983, Hia
strains accounted for 17% of invasive H. influenzae
disease cases [17].

In the pre-Hib vaccine era, invasive H. influenzae
disease was a paediatric infection affecting mostly
infants and young children. North American Indi-
genous children were affected at a younger age than
their non-Indigenous counterparts, e.g. the peak
occurrence of Hib meningitis in Navajo was age 4–8
months [16] and in White Mountain Apache children
age 4–7 months [17]. In comparison, in the general US
population, peak rates of invasive Hib disease oc-
curred at age 6–11 months [22]. A series of studies
performed in the 1980s in Alaska found the highest
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incidence of invasive Hib disease during the first 2
years of life suggesting that an early exposure to Hib
was responsible for the high rates of invasive disease
in this population [18, 24]. In Indigenous populations,
non-symptomatic healthy carriers of Hib served as the
major reservoir of infection and source of disease
transmission. Carriage of Hib typically started at a
very young age [25]. For example, a high frequency
of asymptomatic Hib carriage (18%) was found in
Navajo infants on at least one occasion before they
reached age 9 months [16].

Most cases of invasive Hib disease in North
American Indigenous children presented as menin-
gitis, often followed by severe neurological sequelae.
In Navajo children, meningitis accounted for 70%
of invasive Hib disease [16] while in Apache children
aged <1 year, all cases of invasive Hib disease pre-
sented as meningitis [17]. The case-fatality rates for
H. influenzae meningitis in Navajo Indians and
Alaskan Eskimos were found to be lower than in
the general US population, i.e. 4% and 3% vs. 5%, re-
spectively [16, 18, 26]. However, in Navajo children,
neurological sequelae occurred in 16% of meningitis
survivors [16].

Immune response to H. influenzae

Anti-capsular polysaccharide antibodies, which me-
diate complement-dependent killing and phagocytosis
of encapsulated bacteria, are the major immune mech-
anism against invasive H. influenzae disease [27]. The
immune response to Hib capsular polysaccharide anti-
gen, polyribosylribitol phosphate (PRP) has been well
studied. In response to either natural exposure to Hib
or vaccination with PRP, IgG, IgM and IgA anti-
bodies are produced; IgG is the dominant isotype
with prevalence of IgG2 followed by IgG1 [27, 28].

An anti-PRP antibody level of 50·15 μg/ml has
been considered as an indicator of short-term protec-
tion against invasive Hib disease; a level of 51 μg/ml
achieved 1 month after immunization correlates with
clinical protection for a minimum of 1 year and serves
as an indicator of long-term protection [29]. The role
of IgA in defence against invasive H. influenzae dis-
ease is uncertain, but secretory IgA may control
the spread of bacteria from the nasopharynx to the
normally sterile sites of the body.

In the pre-vaccine era, the development of protec-
tive immunity against Hib followed the natural history
of exposure to this microorganism. Newborn babies
and infants during the first months of life are pro-
tected by maternal IgG antibodies; infants become
susceptible to invasive Hib disease as maternal IgG
declines. The carriage of Hib in the nasopharynx
usually starts after age 2 months and contributes to
the development of natural immunity. Natural anti-
bodies against Hib are also induced by the exposure
to some non-pathogenic bacteria that are common
in the environment and carry antigens cross-reacting
with PRP. With age, an increase in levels of anti-
PRP antibodies in serum coincides with a decline in
the incidence of invasive Hib disease in the population
(summarized in [30]). Bacterial capsular polysacchar-
ides induce a T-cell independent antibody response,
which is characterized by a delay in the development
until age >2 years [31]. As a result, most unvaccinated
children have low anti-PRP antibody levels between
ages 6 months and 4 years [32].

Studies in some North American Indigenous popu-
lations found that neonates were protected against
invasive Hib disease by maternal IgG but that they
rapidly lost the antibody. Among Navajo neonates,
79% had protective anti-PRP levels (50·15 μg/ml);
however, by age 3–8 months, only 14–16% of infants

Table 1. Annual incidence rates of invasive Haemophilus influenzae disease in Indigenous populations before the
introduction of Hib conjugate vaccine

Region/population Period of study Incidence rate* Reference

Navajo Indians (USA) 1973–1980 214 (Hib) Coulehan et al. 1984 [16]
White Mountain Apache (USA) 1973–1983 254† (all H. influenzae) Losonsky et al. 1984 [17]
Alaskan Eskimos (USA) 1980–1982 705 (Hib) Ward et al. 1986 [18]
Inuit, Keewatin Region (Northern Canada) 1981–1984 530† (all H. influenzae) Hammond et al. 1988 [20]
Australian Aboriginal (Northern Territory) 1985–1988 991‡ (all H. influenzae) Hanna, 1990 [21]
Australian Aboriginal (Central Australia) 1986 1100 (all H. influenzae) Hansman et al. 1986 [19]

* Per 100000 for children aged <5 years.
†Meningitis only.
‡Estimated incidence.
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had protective antibody levels. The loss of maternal
antibody coincided with the peak occurrence of Hib
meningitis in this population at age 4–8 months [16].
Similarly, Eskimo neonates were protected against
invasive Hib disease by maternal IgG, but did not sus-
tain protective antibody levels between ages 2 and
23 months that corresponded to the highest incidence
of invasive Hib disease during the first 2 years of life
[24]. Markedly, both Eskimo newborns and children
aged >4 years had greater anti-Hib antibody titres
compared to children of similar ages in other US
populations [24]. Further, Alaska Native infants had
higher anti-PRP antibody levels at 2 months com-
pared to 2-month-old infants in California, potentially
due to acquisition of larger amounts of maternal anti-
body [33]. However, 18- and 24-month-old Apache
had significantly lower anti-PRP antibody levels
than age-matched Caucasian children [34]. These
findings suggested that North American Indigenous
children contracted Hib disease during the time
when maternal antibody declined, but their own pro-
duction of antibody was still insufficient. Young
Eskimo infants often failed to mount antibody in re-
sponse to invasive Hib disease explaining why they
developed recurrent episodes of the disease when
re-exposed to the pathogen [35]. In Eskimos of south-
western Alaska, pharyngeal carriage of Hib was as-
sociated with increases in anti-PRP antibody levels
both in carriers and their households [36]. In this
study, antibody levels in unvaccinated children signifi-
cantly increased with age from 6 months to 10 years.
Low Hib carriage rates occurring in some villages
were coincident with declining levels of anti-PRP anti-
bodies during the observation period, and also with
low incidence of invasive Hib disease [36].

Immune response to Hib vaccines in Indigenous
children

The first Hib vaccine, which used purified PRP
as an antigen, failed to induce protective immunity
in children aged <2 years [33, 37] and was subse-
quently replaced with Hib conjugate vaccines (PRP
covalently linked to a protein carrier). The protein-
polysaccharide conjugation results in T-cell dependent
response to PRP that is characterized by an early
development and the formation of immunological
memory [30]. Several formulations of Hib conjugate
vaccines have been developed that differ in carrier
proteins, polysaccharide size, type of linkage with
the protein, and exhibit certain differences in

immunogenicity and efficacy: PRP conjugates with
(1) tetanus toxoid (PRP-T), (2) diphtheria toxoid
(PRP-D), (3) non-toxic variant of diphtheria toxin
CRM197 (HbOC), and (4) Neisseria meningitidis
group B outer membrane protein (PRP-OMP).

Clinical trials of various Hib vaccines demonstrated
that some groups of Indigenous children had low anti-
body response to immunization, although certain vac-
cine formulations were highly immunogenic in all
the populations studied (Table 2) [33, 34, 37–43].
Anti-PRP response to a single dose of HbOC at age
18 months was lower in Navajo than in Caucasian
children. When two doses of HbOC were given
together with DTP vaccine to 2- and 4-month-old
Navajo infants, their anti-PRP response was lower
than in Caucasians, although anti-tetanus antibody
concentrations were similar in the two groups suggest-
ing a selective defect in antibody response to poly-
saccharide, but not protein, antigens [40]. However,
if such a defect existed, it could be overcome either
by repeated immunizations or by using PRP-OMP.
After a third dose of HbOC at age 7 months,
Navajo infants had anti-PRP concentrations similar
to those in Caucasians [40]. Moreover, 2-month-old
Navajo and Apache infants developed protective anti-
body response to a single dose of PRP-OMP [39, 43].
The use of HbOC instead of PRP-OMP for immuni-
zation of Alaska children resulted in the resurgence
of invasive Hib disease in 1996–1997 [44]. A combined
schedule in which PRP-OMP was used for the first
dose and HbOC for the second and third doses was
found to be optimal in protection against Hib of
American Indian and Alaska Native infants [42, 45].
Because this regimen was found to be difficult to
implement, the American Academy of Pediatrics
currently recommends using PRP-OMP for immuni-
zation of this population [46].

As immunization results in greatly reduced Hib car-
riage rates even in unvaccinated individuals, the herd
effect also indirectly contributes to the protective
mechanism of Hib conjugate vaccines at the popu-
lation level [30, 47]. However, the effects of Hib
conjugate vaccines on Hib carriage differ between
Indigenous and non-Indigenous populations. In chil-
dren aged 1–5 years in remote south-western Alaska,
Hib carriage remained high when HbOC was in rou-
tine use (9·3%) although it declined with routine use
of PRP-OMP vaccine (1%) [44]. In comparison, infant
immunization reduced the oropharyngeal carriage
of Hib in children aged 2–5 years in metropolitan
Atlanta to 0·17% [48]. Persistent carriage could have
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been responsible for the re-emergence of invasive
Hib disease in the Alaskan Native population after
switching to HbOC, which does not induce protective
antibody after the first dose, in contrast to PRP-OMP
[44]. Because higher anti-PRP IgG levels (55 μg/ml)
may be required to prevent pharyngeal colonization
compared to invasive disease [29, 49] in some
Indigenous populations, antibody induced by Hib
vaccines may be insufficient to prevent carriage.

Because the anti-PRP antibody repertoire utilizes
only a limited number of genes encoding the variable
immunoglobulin domains, it is possible that certain
genetic factors underlie a decreased response to Hib
vaccines in some North American Indigenous popula-
tions. Indeed, a polymorphism in the gene encoding
60% of total anti-PRP antibody repertoire was detected
in Navajos [50]. In Alaskan Eskimos, an interaction

of two genetic loci, Gm allotype and HLA-DR8, was
found to be associated with an increased susceptibility
to invasive Hib disease [51]. Although these associa-
tions were reported (in the late 1980s and mid-1990s),
no subsequent supporting data were published, and
the clinical or population level significance has not
been determined for either association. Moreover, the
past 20 years’ vaccination experience shows that low re-
sponsiveness to PRP can be successfully overcome by
repeated immunizations with conjugate vaccines or
using a vaccine with a potent adjuvant effect (PRP-
OMP). Insufficient antibody response to Hib is age-
dependent and does not seem to be present in adults,
presumably due to the maturation of the immune
system. Multiple environmental and socioeconomic
factors may contribute to enhanced carriage as well
as high transmission rates of Hib in these populations.

Table 2. Immune response to differentHaemophilus influenzae type b vaccines in American Aboriginal populations
(data are derived from clinical trials)

Siber et al. 1990 [34] Vaccine: PRP*
Subjects (18- and 24-month-old children) White Apache (n=112) Caucasian (n=32)
GMC (24-month-old children) 0·34 μg/ml 3·6 μg/ml
% with anti-PRP 50·15 μg/ml (age 18 months) 47% 100%
% with anti-PRP >1·0 μg/ml (age 24 months) 20% 74%

Ward et al. 1988 [33] Vaccine: PRP-D†

Subjects (infants) Alaska Native (n=56) Caucasian (n=32)
% with anti-PRP >0·15 μg/ml 26·8% 50·0% P=0·03
% with anti-PRP >1·0 μg/ml 15·4% 28·1% no significant difference

Bulkow et al. 1993 [41] Vaccine: HibOC‡ PRP-D§ PRP-T¶ PRP-OMP||
Subjects: Alaska Native infants n=53 n=40 n=55 n=43
GMC 13·72 μg/ml 0·55 μg/ml 2·46–4·38 μg/ml 2·71 μg/ml
% with anti-PRP 50·15 μg/ml 100% 78% 96–100% 100%
% with anti-PRP 51·0 μg/ml 94% 45% 75–78% 79%

Santosham et al. 1992 [43] Vaccine: PRP-OMP#
Subjects: Navajo and Apache infants n=92
2 months after 1st dose, GMC 1·69–2·53 μg/ml
% with anti-PRP >0·15 μg/ml 97–100%
% with anti-PRP >1·0 μg/ml 68–69%

1 month after 3rd booster dose, GMC 8·38 μg/ml
% with anti-PRP >0·15 μg/m 100%
% with anti-PRP >1·0 μg/ml 89%

GMC,Geometricmean antibody concentration;HibOC, non-toxic variant of diphtheria toxinCRM197; PRP, Polyribosylribitol
phosphate; PRP-D, PRP conjugate with diphtheria toxoid; PRP-T, PRP conjugate with tetanus toxoid; PRP-OMP, Neisseria
meningitidis group B outer membrane protein.
* Hib plain polysaccharide vaccine given to 18- to 24-month-old infants; response measured 1 month after immunization.
† PRP-D conjugate vaccine given at ages 2, 4, and 6 months; response measured 3 months after the 3rd dose.
‡Hib oligosaccharide conjugated to CRM197, given at ages 2, 4, and 6 months; response measured 1 month after the 3rd dose.
§ PRP-D conjugate vaccine given at ages 2, 4, and 6 months; response measured 1 month after the 3rd dose.
¶ PRP-T conjugate vaccine (liquid or lyophilized) given at ages 2, 4, and 6 months; response measured 1 month after the
3rd dose.
|| PRP-Neisseria meningitidis OMP conjugate vaccine, given at ages 2 and 4 months; response measured 2 months after the
2nd dose.
# PRP-Neisseria meningitidis OMP conjugate vaccine, given at ages 6–8 weeks, 4 months, and a booster dose at 12–15
months.
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Epidemiology of invasive H. influenzae disease after
the introduction of Hib conjugate vaccines

In the pre-Hib conjugate vaccine era, most cases of
invasive H. influenzae disease were due to Hib and
occurred in children aged <5 years [2, 3, 52]. In the
post-Hib conjugate vaccine era, the proportion of in-
vasive disease caused by different encapsulated or
non-encapsulated H. influenzae has changed signifi-
cantly. While the proportion of invasive Hib has
decreased markedly, the proportions caused by sero-
types a and f as well as non-typable strains have
increased. In one US study, the authors reported an
increase in the incidence of invasive H. influenzae
disease in the post-Hib vaccine era, rising from 0·4
to 1·0 cases/100000 population, and in those aged
565 years the increase was even bigger, i.e. from 1·1
to 3·9 cases/100000 [53]. Non-typable strains were re-
sponsible for the largest proportion of cases in almost
all age groups examined [53]. Most cases of invasive
H. influenzae disease in the US general population
are now due to non-typable strains (responsible for
68–70% of all cases) [54]. Non-Hib encapsulated
strains are responsible for about 26% of all cases
with over half due to serotype f, and only a small
percentage of cases due to Hib (3·6–3·7%) [54].
Moreover, most cases are now found in adults
(82·9%) and children account for 17·1% only [54]. In
Canada, similar trends are observed [14] but in regions

with high proportions of Indigenous populations,
serotype a (Hia) appears to be the most common
cause of invasiveH. influenzae disease [55–57]. The in-
cidence rates of invasive Hia disease in Indigenous
populations in different parts of North America are
summarized in Table 3 [54–60]. Although the cur-
rently published data show that incidence rates of in-
vasive Hia disease are fractions of what the rates for
invasive Hib disease were in the pre-Hib conjugate
vaccine era, it is unclear if there will be further
increases in Hia infections in the future. While in
one study the authors concluded that there was no
increase in the rate of invasive Hia disease after the
introduction of Hib conjugate vaccine [58], in another
study performed in Alaska, it was noted that no Hia
disease was identified prior to 2002 [59]. Interestingly,
small outbreaks or clusters of cases of invasive Hia dis-
ease have been reported [61, 62]. An increased incidence
of invasive Hia disease in the post-Hib vaccine era was
also documented in Brazil [63], although the published
studies do not provide ethnic background of the cases
and it is uncertain whether this infection preferentially
affects Indigenouspeople in this country.Recent studies
reported high rates of invasiveHia disease inAustralian
Indigenous children aged <5 years, i.e. an annual aver-
age of 11/100000 population, without evidence of
increasing rates over the last years (2001–2011) [64].

The clinical spectrum and severity of invasive Hia
disease resembling that of Hib has also been described

Table 3. Annual incidence rates of invasive Haemophilus influenzae serotype a (Hia) disease in Indigenous
populations of North America

Region/population Period of study Incidence rate* Reference

Navajo and White Mountain Apache (USA) 1998–2003 6–43·8 for children <5 years
(average 20·2)

Millar et al. 2005 [58]

Four western provinces in Canada 1996–2001 3·7 for children <5 years McConnell et al. 2007 [55]
Keewatin Region (northern Canada) 2001 418·8 for children <5 years McConnell et al. 2007 [55]

North American Arctic: Alaska 2000–2005 21 for children <2 years Bruce et al. 2008 [56]
Northern Canada 2000–2005 102 for children <2 years Bruce et al. 2008 [56]

American Indians and Alaska Natives (USA) 1989–2008 17·96† for children <1 year MacNeil et al. 2011 [54]
9·85† for children 1 year MacNeil et al. 2011 [54]
6·51† for children 2–4 years MacNeil et al. 2011 [54]

Northern Ontario, Canada 2004–2008 7 (all ages) Kelly et al. 2011 [57]

Alaska (USA) 2002–2011 18 for children <5 years Bruce et al. 2013 [59]
South-western Alaska (USA) 2009–2011 204 for children <5 years Bruce et al. 2013 [59]

Northern Canada 2000–2010 87·5‡ for children <2 years Rotondo et al. 2013 [60]

* Per 100000.
†Estimated incidence.
‡ 91% of the Hia cases in Aboriginal population.
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[62]. A virulence marker of invasive Hia strains has
been identified in the H. influenzae capsule synthesis
operon, involving a partial deletion of its IS1016-
bexA gene [65]. This mutation, involving deletion of
parts of the IS1016-bexA genes, appears to stabilize
the duplication of the genes involved in capsule syn-
thesis and allow the strains to increase synthesis of
capsule materials and hence enhance their virulence
[66]. Furthermore, a genotype identified by multilocus
ST4 containing the IS1016-bexA partial deletion, has
been found to cause a higher case-fatality rate com-
pared to another genotype of ST23 and without the
IS1016-bexA partial deletion [67]. Most Hia case iso-
lates from Alaska [59] and Canada [68] did not have
the genotype characterized by presence of the
IS1016-bexA partial deletion. The overall population
biology of invasive Hia strains in three Canadian pro-
vinces has been described and appears to resemble
that of Hib involving two genetic populations, each
with their own unique STs [68].

Besides Hia, communities with higher populations
of Indigenous people also continue to have higher
rates of invasive Hib disease compared to the general
population despite high Hib conjugate vaccine cover-
age [45]. In 1992–1999, the rate of invasive Hib disease
was 22/100000 Navajo and White Mountain Apache
children aged <2 years compared to 2/100000 in the
same age group in the US general population,
although 90% of Navajo and White Mountain
Apache children have received three doses of Hib vac-
cine by age 15 months [69]. One potential reason for
continued infectious burden is higher oropharyngeal
carriage of Hib in these communities despite vacci-
nation. The continuing circulation of Hib in a com-
munity may increase the risk of elderly individuals
with either waning immunity or certain medical condi-
tions causing secondary immunodeficiency to develop
invasive disease due to their inability to maintain a
robust immunity to Hib [70].

The role of socioeconomic risk factors in susceptibility
to invasive H. influenzae disease

Unfavourable socioeconomic factors have been con-
sidered as a reason for an increased susceptibility
of Indigenous children to invasive H. influenzae dis-
ease and for a higher burden of Hib infection in
Indigenous communities. Among young children,
greater exposure to the pathogen due to poor housing
conditions, such as overcrowding and lack of access to
adequate volume of water in the home may cause high

transmission rates of H. influenzae [71]. Several epi-
demiological studies have found an association of in-
vasive Hib disease with indicators of low socioeconom-
ic status (low income, single parents, low parental
education levels, household crowding, indoor wood
heating, rodents in the home), number of children in
a family, shared childcare facilities, parental smok-
ing and lack of breastfeeding in Navajo and Alaska
Native children [22, 72]. High burden of chronic con-
ditions, such as obesity, diabetes, chronic obstructive
pulmonary disease, tuberculosis as well as a preva-
lence of smoking, alcohol and substance abuse that
have been identified as important health issues in
Canadian Indigenous populations [73] may have a
negative effect on natural immunity againstH. influen-
zae in the population and hence contribute to an
enhanced circulation of the pathogen in Indigenous
communities. In Indigenous populations living in the
North American Arctic, multiple factors of socio-
economic deprivation along with high incidence of
alcohol and other substance abuse, poor hygiene,
overcrowding, and environmental degradation may
underlie an emergence of invasive disease caused by
serotype a of H. influenzae in the post-Hib vaccine
era [74].

Factors responsible for continuing burden of invas-
iveH. influenzae disease are strikingly similar in differ-
ent Indigenous populations of the world. Higher rates
of invasive Hib disease than in the general population
persist in Australian Aboriginal children [47] as in
Alaskan Native children [45, 75] despite successful
vaccination programme delivery. In the Northern
Territory (Australia) Hib carriage persists in
Indigenous children despite the high level of vacci-
nation coverage that is attributed to unfavourable
socioeconomic factors present in the population [25].
Because persistent carriage creates a reservoir for in-
vasive Hib and Hia disease transmission,H. influenzae
carriage monitoring in high-risk populations remains
a priority in the era of universal anti-Hib immuniza-
tion [25, 47, 75].

Treatment and post-exposure prophylaxis of invasive
H. influenzae disease

Empirical treatment of systemic infection due to
H. influenzae should be parenteral administration
of cefotaxime or ceftriazone, as recommended for
treatment of invasive Hib infections [46]. If anti-
biotic susceptibility results suggest an ampicillin-sensi-
tive strain, replacement of the third-generation
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cephalosporin with ampicillin can be implemented.
For invasive disease due to non-typable strains,
besides the third-generation cephalosporins, other
parenteral agents may include ampicillin-sulbactam,
fluoroquinolones, and macrolides such as azithromy-
cin or clarithromycin. When a case of invasive Hib
disease occurs in a household, childcare facility or
nursery, chemoprophylaxis with rifampicin is routi-
nely offered to contacts under the following circum-
stances. When a household member is aged <4 years
and not appropriately immunized or immunocompro-
mised, all household members, regardless of age and
Hib immunization status, are recommended to receive
chemoprophylaxis. In childcare and pre-school setting
with unimmunized or incompletely immunized chil-
dren, if two cases of invasive Hib disease have oc-
curred within a 60-day period, all children and staff
should be offered chemoprophylaxis regardless of
age and vaccine status [46, 76]. Chemoprophylaxis
of contacts will not only prevent secondary cases of
invasive disease, but will also eliminate pharyngeal
carriage and hence prevent any further transmission.
As Hia and Hib have very similar clinical presenta-
tions and share similar epidemiology [77], it is not un-
reasonable to suggest that chemoprophylaxis given to
household contacts of index Hia cases may also pre-
vent secondary cases as well as pharyngeal carriage
although no published data are available to support
this. Rifampin prophylaxis was given to ’close con-
tacts’ of invasive Hia cases in Alaska [78], but more
data on the choice of chemoprophylaxis agents, their
dosage, efficacy in elimination of pharyngeal carriage
and prevention of secondary cases of Hia are required
before any recommendation can be developed.

Research needs and future direction

Although several studies have indicated an increased
incidence of invasive Hia disease in Indigenous com-
munities, further population-based studies in more
regions are required to provide a true burden of the
disease as well as the characteristics of the infection
and carriage rate. The true genetic diversity of Hia
is also unknown as only limited data are available
from selected regions [59, 67]. The genetic relationship
of respiratory vs. invasive Hia isolates has not been
studied. Further, the clinical disease due to different
genetic types has not been studied in detail or using
standardized methods for clonal typing. The only
known virulence factor for Hia is the polysaccharide
capsule [7], and its chemical structure is defined [79].

However, little is known if there may be other import-
ant virulence factors or superantigens involved. Whole
genome sequencing and comparative genomic studies
coupled with studies of the proteomes of various
encapsulated H. influenzae strains may shed light on
how the capsular genes as well as other potential viru-
lence genes may contribute towards the emergence of
Hia as an important pathogen. Should the burden of
disease suggest a need for a new H. influenzae vaccine,
more information is required on the nature of protec-
tive immunity and serological correlates of clinical
protection.

Conclusion

This review summarized current knowledge of invas-
ive H. influenzae disease in Indigenous peoples of
North America. Despite vaccination against Hib and
significant reduction in Hib infections, invasive Hib
disease has not been eliminated and its rates in
Indigenous communities remain higher than in the
general North American population. In addition,
Hia has emerged as a significant cause of invasive dis-
ease in Indigenous populations in North America,
similar in severity to invasive Hib disease in the
pre-Hib vaccine era. In certain remote regions, the in-
cidence of invasive Hia disease may be approaching
levels of invasive Hib disease in the pre-vaccine era.
Important lessons learned from decades of research
on invasive H. influenzae disease include the follow-
ing. The epidemiology of invasive H. influenzae dis-
ease in the Indigenous population appears to be
different from that in the Caucasian population.
Indigenous patients with invasiveH. influenzae appear
to be younger than their Caucasian counterparts, and
most often affected by serotype a rather than serotype
f, which seems to affects the Caucasian population
more. The Indigenous population may respond differ-
ently than the Caucasian population to the same Hib
conjugate vaccine, and hence special consideration
may be required including the choice of the protein
carrier for the capsular polysaccharide as well as the
schedules of immunization (e.g. Hib-OMP in the
Indigenous population vs. Hib-T for the Caucasian
population). Finally, these lessons learned from the
Hib experience in North America may be applicable
to Indigenous populations in other parts of the
world such as Australia and South America; as well
as to the development of other capsular polysacchar-
ide vaccines for control of invasive encapsulated
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bacterial diseases, possibly including those caused
by Hia.

In view of the changing epidemiology of invasive
H. influenzae disease, groundwork to pave the way
for a new H. influenzae vaccine that targets both
Hia and Hib should be considered. As epidemiologi-
cal studies suggest that invasive H. influenzae disease
in Indigenous peoples is associated with certain un-
favourable socioeconomic factors more research is
needed to clarify the role of biological vs. environmen-
tal and socioeconomic risk factors.
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