
Canad. J. Math. Vol. 54 (2), 2002 pp. 303–323

Convergence Factors and Compactness
in Weighted Convolution Algebras
Fereidoun Ghahramani and Sandy Grabiner

Abstract. We study convergence in weighted convolution algebras L1(ω) on R+, with the weights cho-
sen such that the corresponding weighted space M(ω) of measures is also a Banach algebra and is the
dual space of a natural related space of continuous functions. We determine convergence factor η for
which weak∗-convergence of {λn} to λ in M(ω) implies norm convergence of λn∗ f to λ∗ f in L1(ωη).
We find necessary and sufficent conditions which depend on ω and f and also find necessary and suf-
ficent conditions for η to be a convergence factor for all L1(ω) and all f in L1(ω). We also give some
applications to the structure of weighted convolution algebras. As a preliminary result we observe that
η is a convergence factor for ω and f if and only if convolution by f is a compact operator from M(ω)
(or L1(ω)) to L1(ωη).

1 Introduction

Suppose that {λn} is a sequence of locally integrable functions on R+ = [0,∞) and
that f also belongs to L1

loc (R+). In this paper, we answer a form of the following
question: If λn ∗ f converges to f in some “very weak” manner, then in which norms
is limn→∞ λn ∗ f = f ? Such convergence questions occur frequently, for instance
in determining whether a sequence is a summability kernel or approximate identity.
For us these questions arose in our studies of the structure of weighted convolution
algebras. We will give some applications of our convergence results in Section 5. For
our applications, we need to allow the λn to be locally finite complex measures, that
is, complex linear combinations of sigma-finite regular Borel measures on R+, and
it is convenient to allow λn ∗ f to converge to λ ∗ f , where λ also belongs to the
space Mloc (R+) of locally finite measures. It is also sometimes convenient to extend
functions and measures to all of R by making them equal to 0 off R+, so that, for
instance, we can write

λ ∗ f (x) =
∫

R
f (x − t) dλ(t) for all x ≥ 0.

Also, we usually will identify the function f with the measure f (t) dt .
Since we are interested in convolutions, the most natural spaces to consider are

weighted L1 spaces and algebras. For us a weight will be a positive Borel function ω
which is locally bounded, and locally bounded away from 0 on R+. Then L1(ω) is the
Banach space of (equivalence classes of) locally integrable functions f for which fω
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is integrable. We give L1(ω) the inherited norm

‖ f ‖ = ‖ f ‖ω = ‖ fω‖1 =
∫ ∞

0
| f (t)|ω(t) dt.

In a similar way, we define the space M(ω) of measures for which the norm is

‖µ‖ = ‖µ‖ω =
∫

R+

ω(t) d|µ|(t) <∞.

We say that the weight ω is an algebra weight if ω is always positive, is submultiplica-
tive (that is, ω(x+ y) ≤ ω(x)ω(y)), is everywhere right continuous and has ω(0) = 1.
When ω is an algebra weight, it is easy to see that both L1(ω) and M(ω) are Banach
algebras under convolution, and L1(ω) is a closed ideal of M(ω). The most important
algebra weights are ω(t) ≡ 1, which gives the classical algebra L1(R+), and weights
with limt→∞ ω(t)1/t = 0, which give radical algebras.

Requiring that ω be an algebra weight in our sense is just a normalization; when-
ever ω is a weight for which L1(ω) is an algebra under convolution, we can always
replace the given weight by an algebra weight which gives rise to the same space with
an equivalent norm [Gr2, Theorem 2.1, p. 591]. The importance of this normaliza-
tion is that when ω is an algebra weight, we can then identify M(ω) as a dual space so
that it has a weak∗ topology. Explicitly, let L∞(1/ω) be the space of locally integrable
functions g for which g/ω is essentially bounded, and let C0(1/ω) be its subspace
of continuous functions with limt→∞ g(t)/ω(t) = 0. We give g the inherited norm
of g/ω in L∞(R+). Under the natural duality 〈µ, h〉 =

∫
R+ h(t) dµ(t), L∞(1/ω) is

the dual space of L1(ω). For algebra weights, M(ω) is also the dual space of C0(1/ω)
[Gr2, Theorem 2.2, p. 592]. Thus we can speak of the weak∗-topology on M(ω), and
on L1(ω) considered as a subspace of M(ω).

The natural convergence in L1
loc (R+) is convergence in the Fréchet topology given

by the L1 seminorms on finite intervals. So we say that { fn} converges to f in L1
loc (R+)

if

lim
n→∞

∫ b

0
| fn − f | dt = 0, for all b ≥ 0.

This is one of a number of types of “very weak convergence”. In previous papers,
particularly [GG1, Section 3], we have shown that all these types of very weak con-
vergence are equivalent.

The following result lists some of the equivalences that we will see in the paper.

Theorem 1.1 Suppose that {λn} is a sequence of locally finite measures on R+ and that
ω is any algebra weight for which {λn} is a norm-bounded sequence in M(ω). Then the
following are equivalent:

(a) For some (equivalently all) non-zero f in L1
loc (R+), {λn ∗ f } converges to λ ∗ f in

L1
loc (R+);

(b) λn → λ weak∗ in M(ω);
(c) for some (equivalently all) non-zero f in L1(ω), {λn ∗ f } converges to λ ∗ f weak∗

in M(ω).
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Proof The equivalence of (b) and (c) is [Gr2, Lemma 3.2, p. 595]. That (b) im-
plies (a) is [GG1, Corollary 3.3, p. 513]. For the convenience of the reader we prove
(a) ⇒ (b), which is proved in the same way as [Gr3, Theorem 4.1, p. 183]. Since
M(ω) is the dual space of a separable Banach space, every norm-bounded sequence
has a weak∗ convergent subsequence. Thus it is enough to show that if {λ ′n} is a sub-
sequence of {λn} and has a weak∗ limit µ, then λ = µ. But (b)⇒ (a) shows that for
all f in L1(ω), we have λ ′n ∗ f converges to µ ∗ f in L1

loc (R+). Hence λ ∗ f = µ ∗ f , so
that λ = µ, since Mloc is an integral domain by Titchmarsh’s convolution theorem.

There are several other conditions equivalent to weak∗ convergence. For instance
[GG1, Theorem 3.1(a), p. 511] if f is continuous with f (0) = 0, then λn ∗ f (x) con-
verges pointwise to λ ∗ f (x). The existence of some M(ω) in which {λn} is bounded
is equivalent to the sequence {|λn|[0, b)} being bounded for each fixed b.

The main purpose of this paper is to answer the following question. We also prove
related results and give some applications of our answer.

Question 1 Suppose that ω is an algebra weight and that f belongs to L1(ω). For
which bounded weights η does λn → λ weak∗ in M(ω) imply that λn ∗ f → λ ∗ f in
norm in L1(ωη)?

We give two different answers to Question 1. In Theorem 3.1, we give necessary
and sufficient conditions in terms of ω and f . In Theorem 4.1 we give necessary and
sufficient conditions for η to work for all ω and f . The condition of Theorem 3.1
(c) on η for an arbitrary fixed ω looks technical, but it can be applied effectively. It
shows, in particular, that η does not depend strongly on f , but only on

α( f ) = inf(support f ).

If η works for one f in L1(ω), then it will turn out (Theorem 3.1 (b)) that η works
for all g with α(g) ≥ α( f ), so we define:

Definition 1.2 Let ω be an algebra weight and η be a bounded weight. Then η
is a convergence factor for ω at a ≥ 0, provided that λn → λ weak∗ in M(ω) and
f ∈ L1(ω) with α( f ) ≥ a together imply that λn ∗ f → λ∗ f , in the norm of L1(ωη).
If this holds for all algebra weights ω and all f in L1(ω), we say that η is a universal
convergence factor.

Thus Question 1 is really asking for necessary and sufficient conditions for η to be
a convergence factor. The first step is to concentrate on a fixed f . For this purpose
it is convenient to reformulate the property in terms of compactness of convolution
operators. For f in L1

loc (R+), we let T f (µ) = f ∗ µ be the operator of convolution
by f on Mloc (R+), or any restriction of this operator to maps between subspaces of
M(ω). Then we obtain:

Theorem 1.3 For ω an algebra weight, η a bounded weight and f in L1(ω), the follow-
ing are equivalent:

(a) Whenever λn → λ weak ∗ in M(ω), then λn ∗ f → λ ∗ f in norm in L1(ωη);
(b) T f is a compact operator from M(ω) to L1(ωη);
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(c) T f is a compact operator from L1(ω) to L1(ωη);
(d) T f is a weakly compact operator from L1(ω) to L1(ωη).

Proof We first prove the equivalence of (a) and (b). Suppose that (a) holds and let
{λn} be a bounded sequence in M(ω). Then {λn} has a weak∗ convergent subse-
quence {λ ′n}. By (a) {T f (λ ′n)} is a convergent subsequence of {T f (λn)} in L1(ωη),
and so T f : M(ω) → L1(ωη) is compact. Conversely, suppose that T f is compact
and that λn → λ weak∗ in M(ω). Since T f is compact we need only show that if
{λn ∗ f } has a subsequence {λ ′n ∗ f } which converges in norm in L1(ωη) to some
g in L1(ωη), then λ ∗ f = g. Suppose that h is a continuous function with com-
pact support. Since λ ′n ∗ f converges weak∗ to λ ∗ f in M(ω), by Theorem 1.1 (c),
we have that 〈λ ′n ∗ f , h〉 → 〈λ ∗ f , h〉. Similarly, λ ′n ∗ f → g in norm in L1(ωη)
also implies 〈λ ′n ∗ f , h〉 → 〈g, h〉, since 1/(ωη) is bounded on compact sets. Hence
〈λ ∗ f , h〉 = 〈g, h〉, for all continuous functions h with compact support in R+. It
then follows from the uniqueness in the Riesz Representation Theorem that (λ∗ f ) dt
and gdt are the same measures on R+, so λ ∗ f = g almost everywhere, as required.

It is clear that (b)⇒ (c)⇒ (d).
The proofs that (c)⇒ (b) and (d)⇒ (c) are similar to the proofs we have given

for the special case that η ≡ 1 in [GGM, Lemma 3.1, p. 283] and [GG1, Theorem 4.1,
p. 515], respectively. For the convenience of the reader, we sketch the arguments.

Since compactness of an operator is defined in terms of the closure of the image
of the unit ball, to prove (c) ⇒ (b) it suffices to show that if µ belongs to the unit
ball of M(ω), then T f (µ) is a limit of a sequence {T f (gn)} with each gn in the unit
ball of L1(ω). Since ω is an algebra weight, there is an approximate identity {en} with
‖en‖ = 1 in L1(ω) [Gr.2, Theorem 2.2(A), p. 592]. Let gn = en ∗µ. Then ‖gn‖ ≤ ‖µ‖
and T f (gn) = (en ∗ f ) ∗ µ has limit f ∗ µ = T f (µ) in L1(ω) and hence in L1(ωη).

To prove (d) ⇒ (c) it will be enough to show that whenever λn → 0 weak∗ in
M(ω) and λn ∗ f → 0 weakly in L1(ωη), then λn ∗ f → 0 in norm in L1(ωη). We will
use a variant of the Dunford-Pettis Theorem for the measure ωηdt on R+. It follows
from [DS, Theorem IV.8.9, and Corollary IV.8.10, pp. 292–293] that λn ∗ f → 0
weakly implies that

lim
b→∞

∫ ∞
b
|λn ∗ f (t)|ω(t)η(t) dt = 0,

uniformly in n. On the other hand it follows from Theorem 1.1 and the fact that ωη
is locally bounded that

lim
n→∞

∫ b

0
|λn ∗ f (t)|ω(t)η(t) dt = 0,

for each fixed b. Thus λn ∗ f → 0 in norm in L1(ωη), as required.
The requirements that the bounded weight η be positive with 1/η locally bounded

is a technical convenience to simplify proofs, like the proof that (b)⇒ (a) in Theo-
rem 1.3. All our results can be extended to bounded η ≥ 0 in the following manner:
Let η ′(t) be a universal convergence factor which is also a continuous algebra weight.
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For instance η ′(t) = e−t will do (see Theorem 4.1 below, or the weaker result in
[GG1, Theorem 3.2, p. 512]). Let η1(t) = η(t) + η ′(t), which is bounded and locally
bounded away from 0. Since all our results work for η ′(t), a given condition will hold
for η if and only if it holds for η1. For an algebra weight ω, the assumption ω > 0
forces the weight ω to be locally bounded away from 0 [HP, Theorem 7.4.1, p. 241].

The assumption in most of our results that η is bounded is essential. It is equiv-
alent to saying that L1(ω) ⊆ L1(ωη), with the embedding continuous. Thus any
convergent net in L1(ω) also converges in L1(ωη) norm, and any continuous map
into L1(ω) can also be considered as a continuous map into L1(ωη).

The fundamental paper on compactness of convolution operators on L1(ω), that
is, the case η ≡ 1, is [BD1]. When η = 1, they prove the equivalence of Theo-
rem 1.3 (c) and (d), and show that if α( f ) = a, then T f is compact on L1(ω) if

and only if limt→∞
ω(t+b)
ω(t) = 0 for all b > a. Such weights are said to be regulated

at a. In [GGM] we prove Theorem 1.3 (a) and (b) for regulated weights, and use
1.3 (c) to prove that homomorphisms in L1(ω), when ω is regulated, have many nice
properties. We continue the study of various types of convergence of {λn ∗ f } in
[GG1]. In [GG1, Theorem 3.2, p. 512] we give sufficient conditions for η to be what
we now call a universal convergence factor. Another interesting study of compactness
is in Detre’s thesis [D], which unfortunately was never published. Although we do
not make direct use of Detre’s results, some of our arguments are influenced by his
techniques.

From the original paper of Bade and Dales [BD1] onwards, the study of com-
pactness, and later convergence, was done in the context of studying ideals and ho-
momorphisms of L1(ω), particularly in the radical case. For these purposes, the key
question about convergence, which we repeat from [GG1, Question 3, p. 507], seems
to be:

Question 2 Suppose that ω is an algebra weight and {λn} is a bounded sequence in
M(ω) for which the ideal I = { f ∈ L1(ω) : λn ∗ f → λ ∗ f in norm} contains some
g with α(g) = 0. Must I be all of L1(ω)?

In [GG1, Theorem 2.5, p. 511] we show that the answer to Question 2 above is
positive when ω is regulated. As we have pointed out in [GG1], a negative answer to
Question 2 for a radical L1(ω) would provide a long-sought example with α(g) = 0
but L1(ω) ∗ g not dense. A positive answer, even with the additional assumption that
the closed ideal J is weak∗-dense, would show that all homomorphisms into L1(ω)
have the nice properties we have listed in [GGM, Theorem 2.2. p. 280] and elsewhere.

In the next section we give an integral formula equivalent to T f being compact
from M(ω) to L1(ωη). In Section 3, we use this formula to characterize when η is a
convergence factor for a fixed ω. In Section 4 we give characterizations of universal
convergence factors. In Section 6 we apply our results to give conditions on when
a closed ideal in L1(ω) must be weak∗-closed, generalizing results in [BD2]. We
also give some applications of our characterizations of convergence factors, which
extend results we proved in [GG1]. In Section 5 we characterize compactness of
T f : L1(ω) → L1(ωη) in terms of properties of its adjoint, and we give Lp(ω) ana-
logues of our convergence factor results. These generalize and extend results for the
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case η ≡ 1 given in [BD1] and [GG2].

2 Compactness of Convolution by f

In this section we fix an algebra weight ω, a bounded weight η, and a function f in
L1(ω), and we describe when T f : M(ω)→ L1(ωη) is compact. Recall that for s ≥ 0,
δs is the point mass at s. When g is locally integrable, then δs ∗ g(t) = g(t − s) for
t ≥ s, so that δs ∗ g is the right translate of g by s. The compactness of T f will depend
on

(2.1) D(s) = D(s, f ) =
∥∥∥∥ 1

ω(s)
δs ∗ f

∥∥∥∥
ωη

=
∫ ∞

0
| f (t)|ω(t + s)

ω(s)
η(t + s) dt

in the following way.

Theorem 2.1 The map T f : µ 7→ µ ∗ f is compact from M(ω) into L1(ωη) if and only
if lims→∞ D(s) = 0.

This generalizes the result of Bade and Dales [BD1, Theorem 2.2 p. 85] for the case
η = 1, but the proof we give is closer in spirit to Detre’s [D, pp. 42–43].

For one direction of the proof, we will need to calculate the norms of certain
restrictions of T f . Recall that α(µ) = inf(support µ). For a subspace M of Mloc (R+)
and a ≥ 0, we define

(2.2) Ma = {µ ∈ M : α(µ) ≥ a}.

We then obtain:

Lemma 2.2 The restriction of T f : M(ω)→ L1(ωη) to the subspace M(ω)a has a norm
sup{D(s) : s ≥ a}.

Proof Since 1
ω(s)δs is a unit vector in M(ω)a, the restriction must have norm at least∥∥∥∥T f

(
1

ω(s)
δs

)∥∥∥∥ =
∥∥∥∥ 1

ω(s)
δs ∗ f

∥∥∥∥ = D(s),

for each s ≥ a. Probably the easiest way to get the reverse inequality is to use the
standard Bochner integral formula for convolution. For µ in M(ω)a, we have

T f (µ) = f ∗ µ =
∫

[a,∞)
δt ∗ f dµ(t),

where the integral is a Bochner integral in L1(ω), and hence in the larger space
L1(ωη). Hence we have that

‖T f (µ)‖ = ‖µ ∗ f ‖ωη ≤
∫

[a,∞)

∥∥∥∥ 1

ω(t)
δt ∗ f

∥∥∥∥
ωη

ω(t) d|µ|(t)

≤ sup{D(s) : s ≥ a}‖µ‖ω.
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This gives the reverse inequality, and completes the proof of the lemma.

Proof of Theorem 2.1 First suppose that T f is a compact operator. For each h in
C0(1/ω), we have 〈 1

ω(s)δs, h〉 = h(s)/ω(s), which has a limit 0 as s → ∞, by the

definition of C0(1/ω). Thus 1
ω(s)δs → 0 weak∗ in M(ω). Hence the compactness of

T f implies that D(s) = ‖T f ( 1
ω(s)δs)‖ → 0 as s→∞.

Conversely, suppose that lims→∞ D(s) = 0. For each a > 0, let Qa be the natural
projection from M(ω) onto M(ω)a given by (Qaλ)(E) = λ

(
E∩[a,∞)

)
. Let Pa be the

complementary projection, so that the range of Pa is the space of measures in M(ω)
which are concentrated on [0, a). Since Qa is a projection of norm 1, the norm of
T f Qa is the same as the norm of the restriction of T f to M(ω)a. Thus, by Lemma 2.2,
we have that

lim
a→∞

(T f − T f Pa) = lim
a→∞

T f Qa = 0.

Thus to prove the compactness of T f , it will be enough to show that all T f Pa are
compact. This can be done without any hypothesis on D(s), so we separate this out
as a lemma, which we will use elsewhere in this paper.

Lemma 2.3 Suppose that ω is an algebra weight and that Pa is the natural projection
from M(ω) onto the measures concentrated in [0, a). Then T f Pa is a compact operator
from M(ω) to L1(ω), for every f in L1(ω).

Proof Suppose that λn → 0 weak∗ in M(ω). The operator Pa is weak∗-continuous
since it is the adjoint of the analogous restriction operator on the pre-dual C0(1/ω).
Hence Paλn → 0 weak∗ as n→∞. We need to show that T f Pa(λn) = f ∗(Paλn) also
has limit 0 in norm as n → ∞. Since the functions with compact support are dense
in L1(ω), we may assume that f has bounded support, say support ( f ) ⊆ [0, b]. Then
the support of each f ∗ Paλn is contained in [0, a + b]. Thus

‖T f (Paλn)‖ =
∫ a+b

0
| f ∗ (Paλn)(t)|ω(t) dt.

Since ω(t) is locally bounded and Paλn → 0 weak∗ it follows from Theorem 1.1 that
limn→∞ ‖T f (Paλn)‖ = 0, as required. This completes the proof of the lemma, and
of Theorem 2.1.

In order to efficiently use limit statements like D(s) → 0, we will need to go back
and forth between limits of integrals and pointwise limits of functions. We collect
the needed results in the following lemma. The analogue for L1 limits is standard
measure theory. The extension to L1

loc (R+) limits is routine in (b) and uses a diago-
nalization argument in (a).

Lemma 2.4 Suppose that {gn}∞n=1 and g belong to L1
loc (R+).

(a) If gn → g in L1
loc (R+), then {gn} has a subsequence which converges almost every-

where on R+ to g.
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(b) If {gn} is dominated by a locally integrable function, then gn → g in L1
loc (R+) if

and only if every subsequence of {gn} has a subsequence which converges almost
everywhere to g. If the dominating function is integrable, then gn → g in L1

loc (R+)
as well.

In the above lemma, we can replace R+ by any [a,∞), in which case convergence
in L1

loc (R+) is replaced by convergence on L1
loc [a,∞). That is gn → g means

lim
n→∞

∫ b

a
|gn(t)− g(t)| dt = 0,

for all b ≥ a. We can also allow b =∞ if there is a dominating function in L1[a,∞).

3 Convergence Factors for a Fixed ω

In this section we determine when η is a convergence factor for ω at a (see Defini-
tion 2.2) and prove some related results. The following theorem is the basic result.

Theorem 3.1 Suppose that ω is an algebra weight, that a ≥ 0 and that η is a bounded
weight on R+. Then the following are equivalent:

(a) There is an f in L1(ω) with α( f ) = a for which T f is a compact operator from
M(ω) to L1(ωη);

(b) η is a convergence factor for ω at a;
(c) for every sequence {sn} of positive numbers increasing to∞, there is a subsequence
{s ′n} for which

lim
n→∞

ω(t + s ′n)

ω(s ′n)
η(t + s ′n) = 0,

for almost every t > a;
(d) for all b > a,

lim
s→∞

∫ b

a

ω(t + s)

ω(s)
η(t + s) dt = 0.

If ω(t) is integrable, we can also allow b =∞.

Proof The equivalence of (c) and (d) is just Lemma 2.4 and the remark following it.
Also (b) is a stronger statement than (a) since it asserts that T f is compact for all f in
L1(ω) with α( f ) ≥ a. So we need only prove (c)⇒ (b) and (a)⇒ (c).

Suppose that (c) holds and let f belong to L1(ω) with α( f ) ≥ a. The subsequence
limit condition in (c) also holds for | f (t)|

(
ω(t + s)/ω(s)

)
η(t + s), which is dominated

by the integrable function | f (t)|ω(t)‖η‖∞. Since α( f ) ≥ a, the integral defining
D(s) in formula (2.1) can be written with a in place of 0 as the lower limit. It therefore
follows from Lemma 2.4 that lims→∞ D(s) = 0, which by Theorem 2.1 implies that
T f is compact. This proves (b).

Suppose that (a) holds. Since the integral formula for D(s) involves | f (t)| and not
f (t), it follows that convolution by | f | is also compact from M(ω) to L1(ωη). Choose
some e−λt in L1(ω); then convolution by e−λx ∗ | f |(x) = e−λx

∫ x
a | f (t)|eλt dt is also
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compact. Since α( f ) = a, the function e−λx ∗ | f | is never 0 on (a,∞). Thus there
is no loss of generality in assuming that T f is compact for some f which vanishes on
[0, a] but is strictly positive on (a,∞). By Theorem 2.1 lims→∞ D(s, f ) = 0. Thus
by Lemma 2.4 again we have that for every unbounded increasing sequence, there is
a subsequence {s ′n} for which

lim
t→0

f (t)
(
ω(t + s ′n)/ω(s ′n)

)
η(t + s ′n) = 0,

for almost every t > a. Since f (t) is never 0 on (a,∞), this gives (c) and completes
the proof of the theorem.

The condition in (c) is complicated because for an arbitrary η we know nothing
about the structure of L1(ωη), except that it contains the algebra L1(ω) as a continu-
ously embedded subspace. This condition can be simplified when M(ωη) is an alge-
bra, or even when it is just translation invariant in the sense that δb∗M(ωη) ⊆ M(ωη)
for all b > 0. It would then follow from the closed graph theorem that convolution
with δb was a continous operator on M(ωη). Thus δb ∗M(ωη) ⊆ M(ωη) if and only
if
(
ω(t + b)/ω(t)

)(
η(t + b)/η(t)

)
is bounded on R+.

The case η ≡ 1 in the following theorem is the standard characterization of com-
pactness on L1(ω) in terms of regulated weights [BD1, Theorem 2.10, p. 91].

Theorem 3.2 Suppose that ω is an algebra weight and that M(ωη) is translation in-
variant. Then the following are equivalent:

(a) η is a convergence factor for ω at a;
(b) lims→∞

ω(t+s)
ω(s) η(t + s) = 0, for all t > a.

Proof Condition (b) is clearly stronger than Theorem 3.1 (c), so (b) ⇒ (a) holds
even if M(ωη) is not translation invariant. We complete the proof by assuming trans-
lation invariance and the condition in Theorem 3.1 (c), and proving condition (b).

Suppose therefore that (b) were not true. Then there would be a t0 > a for which
the limit were not 0. We could then find a sequence {sn} increasing to infinity for
which

(
ω(t0 + sn)/ω(sn)

)
η(t0 + sn) is bounded away from 0; so that no subsequence

has limit 0. We let {s ′n} be a subsequence given by Theorem 3.1 (c) and reach a
contradiction. Since 3.1 (c) guarantees convergence for almost every t > a, there is a
t1 between a and t0 for which

rn =
ω(t1 + s ′n)

ω(s ′n)
η(t1 + s ′n)

has limit 0. Also, since M(ωη) is translation invariant, the sequence

ω(t0 + s ′n)η(t0 + s ′n)

ω(t1 + s ′n)η(t1 + s ′n)

is bounded above by some number K. We now have

ω(t0 + s ′n)

ω(s ′n)
η(t0 + s ′n) ≤ ω(t0 + s ′n)η(t0 + s ′n)

ω(t1 + s ′n)η(t0 + s ′n)
rn ≤ Krn.
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Since limn→∞ Krn = 0, this contradicts our assumption on {sn} and proves the
theorem.

In the next result we show how to construct a convergence factor at 0 from a
convergence factor at a > 0. Following [Gr1, pp. 540–541], for any subspace L of
L1

loc (R+) we let

S−a(L) = { f ∈ L1
loc (R+) : δa ∗ f ∈ L},

and we notice that for any weight ω on R+, we have S−a
(

L1(ω)
)

= L1
(
ω(t + a)

)
.

Also the translation map Tag = δa ∗ g is an isometry from L1
(
ω(t + a)

)
onto L1(ω)a.

When M(ω) is translation invariant, then S−a
(

L1(ω)
)
⊇ L1(ω), and when ω is a

radical algebra weight the containment is proper [Gr1, p. 541].

Theorem 3.3 Suppose that ω is an algebra weight, a > 0, and η is a bounded weight.
Then the following are equivalent:

(a) η is a convergence factor for ω at a;
(b) there is an f in S−a

(
L1(ω)

)
, with α( f ) = 0, for which T f is a compact operator

from M(ω) to S−a
(

L1(ωη)
)

= L1
(
ω(t + a)η(t + a)

)
;

(c) for all f in S−a
(

L1(ω)
)

, T f is a compact operator from M(ω) to

L1
(
ω(t + a)η(t + a)

)
;

(d) ηa(t) = ω(t+a)
ω(t) η(t + a) is a convergence factor for ω at 0.

Proof Whenever f belongs to S−a
(

L1(ω)
)

, we have g = δa ∗ f in L1(ω). Hence

g ∗M(ω) = δa ∗ f ∗M(ω) ⊆ L1(ωη), so that T f maps M(ω) into S−a
(

L1(ωη)
)

. Also

if g = δa ∗ f belongs to L1(ω), then f belongs to S−a
(

L1(ω)
)

. Notice that ηa(t) is
defined so that ω(t)ηa(t) = ω(t + a)η(t + a). Thus applying Theorem 3.1 to both η
and ηa, we see that it is enough to prove that whenever f beongs to S−a

(
L1(ω)

)
and

g = δa ∗ f , then T f : M(ω) → S−a
(

L1(ωη)
)

is compact if and only if Tg : M(ω) →
L1(ωη) is compact. But the translation operator Ta : S−a

(
L1(ωη)

)
→ L1(ωη)a is an

isometry, and Tg = TaT f . Hence T f is compact if and only if Tg is compact. This
completes the proof.

4 Universal Convergence Factors

In this section we give several conditions for η to be a universal factor (see Defini-
tion 1.2).

The following is the basic result.

Theorem 4.1 For a bounded weight η on R+, the following are equivalent:

(a) η is a universal convergence factor;
(b) there is a non-zero f in L1(R+) for which T f is a compact operator from M(R+) =

M(1) to L1(η) = L1(1η);
(c) lims→∞

∫ s+1
s η(t) dt = 0;

(d) limk→∞
∫ 1

0 η(k + t) dt = 0.
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Proof Since η ≥ 0, it makes no difference whether the limit is taken for real numbers
s or integers k; so the equivalence of (c) and (d) is clear. Also, by definition, (a)⇒ (b).
We will prove (b)⇒ (c)⇒ (a).

Suppose that (b) holds and let α( f ) = a . If we write f = δa ∗ g = g ∗ δa, then
g also belongs to L1(R+) and α(g) = 0. The translation operator Ta(µ) = δa ∗ µ
is an isometry from M(R+) to M(R+)a. Let Sa : M(R+)a → M(R+) be the inverse
of this isometry and let T ′g be the restriction of Tg to a map from M(R+)a to L1(η).
As in the proofs of Theorem 2.1 and Lemma 2.3, let Qa be the natural projection of
M(R+) onto M(R+)a and let Pa be the complementary projection. Then T ′g Ta = T f ,
so that T ′g = T f Sa is compact. Hence TgQa is a compact operator from M(R+) to
L1(η). Since TgPa is always compact, by Lemma 2.3, we have that Tg = TgQa + TgPa

is compact. Since α(g) = 0, it follows from Theorem 3.1 that η is a convergence
factor for ω(t) ≡ 1 at 0.

Hence if we let h be the characteristic function of the unit interval [0, 1], the con-
volution operator Th : µ 7→ µ ∗ h is compact from M(R+) to L1(η). Hence, by Theo-
rem 2.1

D(s) = D(s, h) =
∫ 1

0
η(t + s) dt =

∫ s+1

s
η(t) dt

has limit 0 as s→∞. This proves (c).
Now we suppose that η satisfies (c) and we fix an algebra weight ω. We need to

show that η is a convergence factor at 0 for this ω. By Theorems 2.1 and 3.1, we need
only find some f in L1(ω) with α( f ) = 0, for which lims→∞ D(s, f ) = 0. Let f be
1/ω times the characteristic function of [0, 1]. Then

D(s, f ) =
∫ 1

0

ω(t + s)

ω(t)ω(s)
η(t + s) dt ≤

∫ 1

0
η(t + s) dt,

which has limit 0 by (c). This completes the proof of the theorem.
There are a variety of simple conditions equivalent to (c) and (d) above. We have

already remarked that we could let s → ∞ for real s, or for s restricted to a fixed
increasing unbounded sequence. Also one could replace 1 in these formulas by any
fixed b > 0. As in Lemma 2.4 one could rephrase (d) in terms of almost-everywhere
convergence of subsequences. Since the integrals in (c) and (d) are all bounded by
‖η‖∞, we can replace η by any ηp in (c) and (d). Hence we have:

Corollary 4.2 Let 0 < p < ∞ and let η be a non-negative bounded measurable
function. Then η is a universal convergence factor if and only if ηp is.

There are a variety of simple easily verified sufficent conditions for the bounded
weight η to be a universal convergence factor. In [GG2, Theorem 3.2, p. 512], we
showed that η belonging to L1(R+) was sufficient. This is strictly stronger than (c)
and (d) in Theorem 4.1; because η > 0 is integrable precisely when the infinite series∑∞

k=0

∫ k+1
k η(t) dt converges. Other useful conditions are in the next result.

Corollary 4.3 The bounded weight η is a universal convergence factor if either of the
following conditions holds:

(i) There is a 0 < p <∞ for which η belongs to Lp(R+);
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(ii) limt→∞ η(t) = 0.

Proof Suppose that (i) holds. We have already observed that the condition is suffi-
cient for p = 1. The general case then follows from Corollary 4.2. If (ii) holds, then
limk→∞ η(k+t) = 0, so that Theorem 3.1 (d) follows from the bounded convergence
theorem.

Neither (i) or (ii), or both together, is necessary for η to be a universal convergence
factor. But Theorem 3.1 (d) does imply that when η is a universal convergence factor,
then there is a sequence {kn} increasing to infinity for which limn→∞ η(kn + t) = 0,
for almost every t in [0, 1].

5 Applications to the Structure of L1(ω)

In this section we give applications of the techniques we have been developing to
studying closed ideals in L1(ω) and, using our results together with information
about the ideals, to other questions. The ideals L1(ω)a for 0 ≤ a < ∞ and {0} are
called standard ideals of the convolution algebra L1(ω)a. In [BD2, Proposition 1.9,
p. 72] Bade and Dales show that if the algebra weight ω is regulated at 0, that is,
η(t) ≡ 1 is a convergence factor for ω at 0, then every closed ideal whose weak∗-
closure is standard is already weak∗-closed. The following result extends the Bade-
Dales result in two ways; we obtain their conclusion when ω is regulated at any a, and
we obtain a stronger result when ω is regulated at 0.

Theorem 5.1 Suppose that ω is an algebra weight and that I is a closed ideal in L1(ω).

(a) If ω is regulated at 0, then I is weak∗-closed.
(b) If ω is regulated at any a > 0 and if the weak∗-closure of I is standard, then I is

weak∗-closed.

The conclusion in (a) is strictly stronger than that in (b), because there are exam-
ples of regulated weights for which L1(ω) has closed non-standard ideals [DM]. Our
results will be in terms of an arbitrary convergence factor η, so that Theorem 5.1 will
be the special case when η ≡ 1.

Recall [DS, Definition V.5.3, p. 427], [DY, Definition 2, p. 48] that the bw∗ topol-
ogy on a dual space, such as M(ω), is defined by saying that a set E is bw∗-closed if
and only if the intersection of E with every multiple of the closed unit ball in X is
weak∗-closed. Thus the bw∗ topology is the strongest topology in which every norm-
bounded weak∗-convergent net converges. Although we will not need an explicit
description of bw∗-convergent nets [DY, Lemma 2, p. 49], we should point out that
there are unbounded nets which converge in the bw∗-topology [DY, p. 48].

For a subspace Y , like L1(ω), which is weak∗-dense in a dual space X, like M(ω), we
will use the terms bw∗ and weak∗ topologies on Y for the relative topologies inherited
from X.

We will need the following lemma, which observes that the Krein-Smulian Theo-
rem [DS, Theorem V.5.7, p. 429], remains true for weak∗-dense subspaces.

Lemma 5.2 Suppose that Y is a weak∗-dense subspace of a dual space X. A convex
subset K of Y is weak∗-closed in Y if its intersection with each closed ball about the
origin in Y is weak∗-closed. That is, K is weak∗-closed if and only if K is bw∗-closed.
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Proof It follows from the usual Krein-Smulian Theorem [DS, Theorem V.5.7,
p. 429], that Y is bw∗-dense in X. Hence X and Y have the same weak∗-continuous
linear functionals and the same bw∗-continuous linear functionals. Hence we can
extend from the dual space X to its weak∗-dense subspace Y , the result [DS, Theo-
rem V, 5.6, p. 428] that a linear functional is weak∗-continuous if and only if it is
bw∗-continuous. The lemma follows immediately from this result for Y just as the
Krein-Smulian Theorem followed immediately [DS, p. 429] from the result for X.

We can now prove the a = 0 case of Theorem 5.1, for arbitrary convergence fac-
tors.

Theorem 5.3 Suppose that η is a convergence factor at 0 for the algebra weight ω. If I
is an ideal in L1(ω) which is closed in the (relative) L1(ωη) norm, then I is weak∗-closed
in L1(ω).

Proof By the extension of the Krein-Smulian Theorem given in Lemma 5.2 above,
we just need to show that I ∩ B is weak∗-closed when B is a closed ball in L1(ω).
Since M(ω) is the dual space of a separable space, the relative weak∗-topology on B is
metrizable. So we only need to show that if {gn} is a sequence in I∩B which converges
weak∗ to g, then g is in I. Since η is a convergence factor, it follows (see Definition 1.2)
that f ∗ gn → f ∗ g in the norm of L1(ωη) for all f in L1(ω). Since I is an L1(ωη)
closed ideal this implies that L1(ω) ∗ g ⊆ I. Since L1(ω) is continuously embedded
in L1(ωη), I is a closed ideal in L1(ω). But L1(ω) has a bounded approximate identity
so we have g ∈ c`

(
L1(ω) ∗ g

)
⊆ I, as required.

Combining the previous theorem with Theorem 3.3 gives the following corollary:

Corollary 5.4 Suppose that η is a convergence factor at a for the algebra weight ω.
If I is an ideal in L1(ω) which is closed in L1(ω) in the norm of S−a

(
L1(ωη)

)
=

L1
(
ω(t + a)η(t + a)

)
, then I is weak∗-closed in L1(ω).

The following result is the version of Theorem 5.1 (b) which applies to arbitrary
convergence factors.

Theorem 5.5 Suppose that η is a convergence factor at a for the algebra weight ω.
Suppose also that I is an ideal of L1(ω) which is closed in the L1(ωη) norm. If the
weak∗-closure of I is standard, then I is already weak∗-closed.

The above theorem will follow easily from the following result, which does not
assume that the weak∗-closure is standard.

Theorem 5.6 Suppose that η is a convergence factor at a ≥ 0 for ω and that I is an
ideal of L1(ω) which is closed in the L1(ωη) norm on L1(ω). If J is the weak∗-closure of
I, then δa ∗ J and M(ω)a ∗ J are both subsets of I.

For regulated weights, that is, for η = 1, the above result says:

Corollary 5.7 Suppose that ω is an algebra weight regulated at a ≥ 0, and that I is a
closed ideal of L1(ω). If J is the weak∗-closure of I, then δa ∗ J ⊆ I and M(ω)a ∗ J ⊆ I.
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Notice that Theorem 5.3 is just the case a = 0 of Theorem 5.6. It is also easy to
deduce Theorem 5.5 from Theorem 5.6.

Proof of Theorem 5.5 (Assuming Theorem 5.6) Let J = L1(ω)b. It follows from
Theorem 5.6 and the fact that I is closed in L1(ω) that c`

(
δa ∗ L1(ω)b

)
⊆ I. Since

δa∗L1(ω)b contains all locally integrable functions whose support is a bounded subset
of [a + b,∞) we have that c`

(
Ia ∗ L1(ω)b

)
= L1(ω)a+b. Thus I contains a standard

ideal and is therefore standard, by [Gr1, Lemma 6.2, p. 548].
In our proof of Theorem 5.6, we will need the following two relatively simple

results. The second of the results augments Theorem 1.3.

Lemma 5.8 Suppose that ω is an algebra weight. If I is a closed ideal in L1(ω), then I
is also a closed ideal in M(ω).

Proof Suppose that f ∈ I and µ ∈ M(ω). We must show that µ ∗ f belongs to I. Let
{en} be a bounded approximate identity for L1(ω). Then (µ ∗ en) ∗ g ∈ I, and hence
µ ∗ g = limn→∞ µ ∗ (en ∗ g) = limn→∞(µ ∗ en) ∗ g belongs to I, as required.

Theorem 5.9 For an algebra weight ω, a bounded weight η, and an element f of L1(ω),
the following are equivalent:

(a) The convolution operator T f is a compact operator from M(ω) to L1(ωη);
(b) T f is continuous from the bw∗-topology on M(ω) to the norm topology on L1(ωη);
(c) whenever the net {λn} in M(ω) converges in the bw∗-topology on M(ω) to λ, then

λn ∗ f → λ ∗ f in the norm of L1(ωη).

Proof The equivalence of (b) and (c) is just the standard characterization of con-
tinuity for any topology in terms of nets. Since any weak∗-convergent net which is
bounded is bw∗-convergent, it is clear that (c)⇒ (a), (cf. Theorem 1.3 (a)).

We complete the proof by assuming that T f is compact and proving (b). Let E be a
norm-closed subset of L1(ωη). We need to show that T−1

f (E) is bw∗-closed in M(ω).

That is, if B is a closed ball in M(ω), then we must show that F = T−1
f (E) ∩ B is

weak∗-closed in M(ω). Suppose that {λn} is a sequence in F which converges weak∗

in F to λ. It follows from Theorem 1.3 that λn ∗ f → λ ∗ f in the norm topology
of L1(ωη). Thus T f (λ) belongs to E, and hence λ belongs to F. Since the relative
weak∗-topology on bounded sets like B is metrizable, this proves that F is closed, as
required.

The following lemma is the heart of the proof of Theorem 5.6.

Lemma 5.10 Under the hypotheses of Theorem 5.6, we have f ∗ J ⊆ I, for all f in
L1(ω) with α( f ) ≥ a.

Proof Suppose that f belongs to L1(ω)a and that g belongs to J. We need to prove
that f ∗ g ∈ I. Since J is the weak∗-closure of I, it follows from Lemma 5.2 that J is
also the bw∗-closure of I. Hence there is a net {gn} in I whose bw∗-limit is g. Since
T f : M(ω)→ L1(ωη) is compact, it follows from Theorem 5.9 that

lim( f ∗ gn) = f ∗ g
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in L1(ωη) norm. Since I is an L1(ωη) norm-closed ideal this implies that f ∗g belongs
to I, as required.

Proof of Theorem 5.6 Suppose that g ∈ J and let {en} be a bounded approximate
identity in L1(ω). Since L1(ω) is continuously embedded in L1(ωη), I is a closed ideal
of L1(ω). Hence δa ∗ g = lim

(
(δa ∗ en) ∗ g

)
belongs to I. Thus δa ∗ J ⊆ I, as asserted.

Then Lemma 5.8 shows that(
δa ∗M(ω)

)
∗ J ⊆ M(ω) ∗ J ⊆ I.

The measures in Mloc (R+) with compact support in [a,∞) all belong to M(ω)a and
form a dense subspace of M(ω)a. Thus M(ω)a ∗ J is a subset of the closed ideal J,
as required. This completes the proof of Theorem 5.6 and therefore completes the
proofs of Theorems 5.5 and 5.1.

Our next two applications use the results in this paper to improve results in [GG1].
The following result extends [GG1, Theorem 2.5, p. 511] and answers a variant of
Question 2 in the introduction to this paper (which is the same as [GG1, Question 3,
p. 507]).

Theorem 5.11 Suppose that ω is an algebra weight, that η is a convergence factor for ω
at some a ≥ 0, and that L1(ωη) is translation invariant. If {λn} is a bounded sequence
in M(ω) for which there is some g in L1(ω) with α(g) = 0 and λn ∗g → λ∗g in L1(ωη)
norm, then limn→∞(λn ∗ f ) = λ ∗ f in the L1(ωη) norm for all f in L1(ω).

Proof Let
I = { f ∈ L1(ω) : λn ∗ f → λ ∗ f in L1(ωη) norm}.

Since {λn} is bounded in M(ω), the maps f 7→ λn ∗ f are uniformly bounded in the
operator norm from L1(ω) to L1(ωη). Hence I is closed in L1(ωη) and is therefore
a closed subspace of L1(ω). Since L1(ωη) is translation invariant, I is a translation
invariant closed subspace, and hence a closed ideal, in L1(ω). It follows from The-
orem 1.1 that λn → λ weak ∗ in M(ω). Hence our hypotheses on η imply that
I contains the standard ideal L1(ω)a and must therefore be a standard ideal [Gr1,
Lemma 6.2, p. 548]. Since I contains a function g with α(g) = 0, this forces I to be
all of L1(ω), and proves the theorem.

The next result is a small improvement of [GG1, Corollary 3.4, p. 514].

Theorem 5.12 Suppose that ω1 and ω2 are algebra weights and that φ : L1(ω1) →
L1(ω2) is a continuous non-zero homomorphism. If ω3 is an algebra weight for which
η = ω3/ω2 is a convergence factor for ω2 at some a ≥ 0, then as a map from L1(ω1) to
L1(ω3) ⊇ L1(ω2) the homomorphism is standard.

Proof Although stronger conditions on η are stated in [GG1, Corollary 3.4, p. 514],
the proof given works as long as η is a convergence factor at 0. If we use the fact noted
just before Question 3 in [GG1, p. 507] that for the semigroup µt = φ(δt ) in M(ω2)
there is a g in L1(ω2) for which α(g) = 0 and limt→0 µt ∗ g = g in L1(ω2), then the
proof of [GG1, p. 507] will still work if we use Theorem 5.11 above in place of the
weaker result [GG1, Theorem 3.2, p. 512] used in the original proof.
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6 Dual Spaces and Lp Results

In this section we characterize compactness in terms of properties of the adjoints
of the convolution operator T f , and we prove the Lp analogues of our L1 results on
compactness and convergence factors. The results on dual spaces are the natural
generalizations to arbitrary convergence factors, but with different proofs, of results
of Bade and Dales [BD2] for regulated weights. The results for Lp(ω) in a sense
extend our results for the regulated case, that is η ≡ 1, [GG2] to arbitrary η, though
some of the new results only apply for η different from 1.

We start by defining the adjoint of convolution, as we did in [GG1, p. 516], by

(6.1) f ∗̂h(x) =
∫ ∞

0
f (t)h(x + t) dt for x ≥ 0,

so that

(6.2) 〈 f ∗ g, h〉 = 〈g, f ∗̂h〉,

under hypotheses adequate to use the Fubini Theorem.
In particular, if ω is an algebra weight, the map h 7→ f ∗̂h is the adjoint on

L∞(1/ω) of the convolution operator T f : g 7→ f ∗ g on L1(ω). When T f : L1(ω) →
L1(ωη), then the adjoint is just the restriction of h 7→ f ∗̂h to L∞

(
1/(ωη)

)
⊆

L∞(1/ω).
It is easy to see that L1(ω)∗̂L∞(1/ω) is composed of continuous functions, and in

fact these functions satisfy a uniform continuity property with respect to 1/ω [GG2,
Lemma 4.3]. There are formulas for µ∗̂h analogous to formulas (6.1) and (6.4) [G2,
p. 595], but we will not need them here. We will only need

(6.3) 〈 f ∗ µ, h〉 = 〈µ, f ∗̂h〉

for f ∈ L1(ω), µ ∈ M(ω) and h ∈ L∞(1/ω).
It turns out that the compactness of T f is related to f ∗̂h belonging to the space

C0(1/ω). The next result extends to L1(ω)∗̂L∞
(

1/(ωη)
)

, the results of Bade and
Dales [BD2, Theorem 1.5, p. 71] for η = 1. Although they only consider the case
a = 0, their proof extends readily to a > 0.

Theorem 6.1 Suppose that ω is an algebra weight and that a ≥ 0. For a bounded
weight η, the following are equivalent:

(a) η is a convergence factor for ω at a;
(b) L1(ω)a∗̂L∞

(
1/(ωη)

)
⊆ C0(1/ω);

(c) there is an f in L1(ω) with α( f ) = a for which | f |∗̂(ωη) ∈ C0(1/ω);
(d) there is an f in L1(ω) with α( f ) = 0 for which f ∗̂L∞

(
1/(ωη)

)
⊆ C0(1/ω).

Proof Fix an f in L1(ω) with α( f ) = a. We know from Theorem 3.1 that η is a
convergence factor at a if and only if T f is a compact map from M(ω) to L1(ωη) (or
equivalently by Theorem 1.3, from L1(ω) to L1(ωη)). Thus we need to show, for this
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fixed f , that (c), (d), and the compactness of T f are equivalent. Formula (2.1) can be
expressed as

D(s) =

(
| f |∗̂(ωη)

)
(s)

ω(s)
,

so it follows from Theorem 2.1 that T f is compact if and only if | f |∗(ωη) ∈ C0(1/ω).
If h in L∞(1/ωη) has norm no more than one, it is clear that

| f ∗̂h(s)| ≤ | f |∗̂(ωη)(s).

Thus, for each fixed f , we have (c)⇒ (d).
Hence we just need to assume (d) for a fixed f and use this assumption to show

that lims→∞ D(s) = 0. By formula (2.1), this means that we need to show that
1
ω(s)δs ∗ f → 0 in the norm of L1(ωη). Since 1

ω(s)δs → 0 weak∗ in M(ω), it follows,
exactly as in the proof of (d)⇒ (c) in Theorem 1.3, that it is enough to show that
δs
ω(s) ∗ f → 0 weakly in L1(ωη). Suppose therefore that h belongs to L∞(1/ωη). Then
by our asumption, f ∗̂h belongs to C0(1/ω). Hence

lim
s→∞

〈
1

ω(s)
δs ∗ f , h

〉
= lim

s→∞

〈
1

ω(s)
δs, f ∗̂h

〉
= 0,

as required. This completes the proof of the theorem.
We can use the above theorem to give an alternate proof of Lemma 5.10, which

would then give an alternate proof to all our applications to weak∗-closed ideals in
the previous section. Since the ideal I is closed in the L1(ωη) norm on L1(ω), to prove
that f ∗ J ⊆ I, we need only show that if h is in L1(ωη)∗ = L∞

(
1/(ωη)

)
and satisfies

〈 J, h〉 = 0, then we also have 〈 f ∗ J, h〉 = 0. But

〈 f ∗ I, h〉 = 〈I, f ∗̂h〉 = 0.

By Theorem 6.1, f ∗̂h ∈ C0(1/ω) and therefore it defines a weak∗-continuous linear
functional on L1(ω). Since J is the weak∗-closure of I, the fact that 〈I, f ∗̂h〉 = 0
implies that 〈 J, f ∗̂h〉 = 0 as well. But

〈 J, f ∗̂h〉 = 〈 f ∗ J, h〉,

from which Lemma 5.10 follows as noted above.
We now give the p-analogues of our main results on compactness and convergence

factors, and relate the results for general 1 < p <∞, with those for p = 1.
For a weight ω, the Banach space Lp(ω) is composed of all f in L1

loc (R+) for which
fω belongs to Lp(R+). We give Lp(ω) the inherited norm

‖ f ‖ = ‖ f ‖ω,p =
[∫ ∞

0
| f (t)|pω(t)p dt

] 1/p

.

All f in Lp(ω) belong to Lp
loc (R+) which is a proper subspace continuously embedded

in L1
loc (R+) when given the usual Fréchet topology determined by the seminorms
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[
∫ b

0 | f (t)|p dt]1/p for b > 0. When ω is an algebra weight, we have M(ω) ∗ Lp(ω) ⊆
Lp(ω), so that for each f in Lp(ω) the convolution map T f : µ 7→ f ∗ µ maps M(ω)
and L1(ω) into Lp(ω) and therefore into Lp(ωη) for any bounded weight η. We define
p-convergence factors analogously to the case p = 1 given in Definition 1.2.

Definition 6.2 If ω is an algebra weight and η is a bounded weight, then η is a p-
convergence factor for ω at a ≥ 0 if λn → λ weak∗ in M(ω) and f ∈ Lp(ω) with
α( f ) ≥ a together imply that λn ∗ f → λ ∗ f in norm in Lp(ωη). If this holds for all
ω and all f in Lp(ω), then η is a universal p-convergence factor.

Our goal is to give p-analogues of each of our major results on compactness and
convergence factors and to relate the properties for p > 1 to those for p = 1.

In those cases where the proofs are very similar to the p = 1 case, we give only
quick sketches of the proofs.

In Lemma 6.3 we add p-characterization to the characterizations of “very weak
convergence” given in Theorem 1.1. In Theorem 6.4, we relate compactness and
convergence factors giving a p-analogue of Theorem 1.3. In Theorem 6.5, we prove
the analogue of Theorem 2.1, giving a formula characterizing the compactness of T f

for a fixed f and we also show that T f : M(ω) → Lp(ωη) is compact if and only if
T| f |p : M(ωp) → L1(ωpηp) is compact. From this it is easy for us to characterize in
Theorem 6.6, p-convergence factors in terms of convergence factors, and to show, in
Theorem 6.7, that η is a universal p-convergence factor if and only if η is a universal
convergence factor.

We start with the extension of Theorem 1.1.

Lemma 6.3 Suppose that ω is an algebra weight and that {λn} is a bounded seqence in
M(ω). Then the following are equivalent:

(a) λn → λ weak∗ in M(ω);
(b) for some (equivalently all) 1 < p < ∞, and some (equivalently all) non-zero f in

L1(ω), we have λn ∗ f → λ ∗ f weakly in Lp(ω),
(c) for some (equivalently all) 1 ≤ p < ∞ and some (equivalently all) non-zero f in

Lp
loc (R+), we have λn ∗ f → λ ∗ f in the usual Fréchet topology on Lp

loc (R+).

Proof The equivalence of (a) and (b) is [GG2, Lemma 2.1, p. 51]. Since all the
Lp

loc (R+) are continuously embedded in L1
loc (R+) it follows, from Theorem 1.1 (a),

that (a)⇒ (c) for all p and f . The proof that (c) implies (a) is exactly the same as the
proof (a)⇒ (b) in Thoerem 1.1.

We now relate compactness and convergence factors when p > 1. The main
difference from Theorem 1.3 is that Lp(ω) is reflexive when 1 < p < ∞, so that
weak-compactness is equivalent to continuity and not to compactness.

Theorem 6.4 Suppose that ω is an algebra weight, that η is a bounded weight, and that
1 < p <∞. For f in Lp(ω), the following are equivalent:

(a) Whenever λn → λ weak∗ in M(ω), then λn ∗ f → λ ∗ f in norm in Lp(ωη);
(b) T f is a compact operator from M(ω) to Lp(ωη);
(c) T f is a compact operator from L1(ω) to Lp(ωη).
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Proof We will only prove (b)⇒ (a), since the rest of the proof is essentially the same
as the proof of Theorem 1.3. Suppose therefore that λn → λ weak∗ in M(ω) and that
T f : M(ω) → Lp(ωη) is compact. Since {λη ∗ f } belongs to a sequentially compact
subset of Lp(ωη), we need only show that whenever a subsequence {λ ′n∗ f } converges
to some g in Lp(ωη), then g = λ ∗ f . From Lemma 6.3 we have that λ ′n ∗ f converges
weakly to λ ∗ f in Lp(ω), and therefore in the larger space Lp(ωη). Hence λ ∗ f = g
as required, and the proof is complete.

To characterize the compactness of T f for a fixed f , we need the p-analogue of
D(s) defined in formula (2.1). Fix an algebra weight ω and a bounded weight η. For
f in Lp(ω) we consider the maps T f : M(ω)→ Lp(ωη) and T f : M(ω)→ L1(ωpηp).
We then define

(6.4) Dp(s) = Dp(s, f ) =
∥∥∥∥ 1

ω(s)
δs ∗ f

∥∥∥∥
ωη,p

= D(s, | f |p),

where D(s, | f |p) is defined with respect to the weights ωp and ηp. For an integral
formula for Dp(s) = D(s, | f |p) see formula (2.1). We then obtain the following
characterization of compactness.

Theorem 6.5 For a fixed f in Lp(ω), the following are equivalent:

(a) T f : µ 7→ f ∗ µ is a compact operator from M(ω) to Lp(ωη);
(b) T| f |p is a compact operator from M(ωp) to L1(ωpηp);
(c) lims→∞ Dp(s) = 0.

Proof Since Dp(s) = D(s, | f |p), the equivalence of (b) and (c) is just Theorem 2.1
for the map T| f |p . As noted in the proof of Theorem 2.1, we have 1

ω(s)δs → 0 weak∗

in M(ω). Hence if T f is compact, it follows from Lemma 6.3 that 1
ω(s)δs ∗ f → 0 in

the norm of Lp(ωη). This proves that (a) implies (c).

The proof that (c) implies (a) is very similar to the proof of Theorem 2.1. Using the
same integral formula as in the proof of Lemma 2.2, but with the integrand having
values in Lp(ωη), we obtain, as in Lemma 2.2, that sup{Dp(s) : s ≥ a} is the norm of
the restriction of T f to M(ω)a. As in the proof of Theorem 2.1, we let Pa and Qa be
the natural projections of M(ω) onto the measures concentrated on [0, a] and onto
M(ω)a, respectively. As before T f Qa has the same norm as the restriction of T f to
M(ω)a. Thus we need only show that T f Pa is compact. This follows as in the proof
of Lemma 2.3 by using Lemma 6.3 (c) in place of Theorem 1.1 (a). This completes
the proof of the theorem.

The following characterization of p-convergence factors follows immediately from
Theorems 3.1 and 6.5.

Theorem 6.6 Suppose that ω is an algebra weight and that η is a bounded weight. For
each a ≥ 0, the following are equivalent:
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(a) There is an f in Lp(ω) with α( f ) = a for which T f is a compact operator from
M(ω) to Lp(ωη);

(b) η is a p-convergence factor for ω at a;
(c) ηp is a convergence factor ωp at a.

For the formulas that characterize p-convergence factors, we can just use Theo-
rem 3.1 (c) and (d) for ωp and ηp. When M(ωη) is translation invariant, we can
use the simpler formula of Theorem 3.2 (b), again for ωp and ηp. It is now easy to
characterize universal p-convergence factors.

Theorem 6.7 For a bounded weight η on R+, the following are equivalent:

(a) η is a universal p-convergence factor for all 1 ≤ p <∞;
(b) η is a universal convergence factor;
(c) η is a universal convergence factor for some 1 ≤ p <∞;
(d) there is some 1 ≤ p <∞ and some non-zero f in Lp(R+) for which T f : L1(R+)→

Lp(η) is compact.

Proof We know from Corollary 4.2 that η is a universal convergence factor if and
only if ηp is. The equivalence of (a), (b), and (c) now follows from Theorem 6.6.
Since (a)⇒ (d) follows by definition, we need only prove that (d) implies (b). Since
Lp(R+) = Lp(1) and 1p = 1, it follows from Theorem 6.6 that T| f |p is a compact
operator from L1(R+) to L1(ηp). It then follows from Theorem 4.1 that ηp is a uni-
versal convergence factor. Corollary 4.2 then gives us that η is a universal convergence
factor, as required.

For formulas that characterize universal convergence factors, see Theorem 4.1 (c)
and (d) and the discussion after Theorem 4.1. For sufficient conditions, see Corol-
lary 4.3.
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