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The discrete version of the Aharonov–Bohm potential corresponding to the
magnetic flux � is defined as

A�(k) = −i (A1(k),A2(k)) = −i
(

1 − e2π i�φ1(k), 1 − e2π i�φ2(k)
)

.

Let e1 = (1, 0) and e2 = (0, 1). The main result is Theorem 1.1 of [91]:

Theorem 5.19 For all functions u : Z2 → C decaying sufficiently fast,
∑

k∈Z2

∑

j=1,2

∣
∣u(k + ej)− u(k)+ iAj(k)u(k)

∣
∣
2

≥ 4 sin2
(

π
dist(�,Z

8

)
∑

k∈Z2\{0}

|u(k)|2
|k|2∞

. (5.6.6)

Since dist(�,Z) ≤ 1/2, we have

4 sin2
(

π
dist(�,Z)

8

)

≥ 4
[

π
dist(�,Z)

8

]2 sin2( π16 )
(
π
16

)2

= 16 sin2
( π

16

)

min
l∈Z

|l −�|2,
and (5.6.6) implies

Corollary 5.20 For all functions u : Z2 → C decaying sufficiently fast,
∑

k∈Z2

∑

j=1,2

∣
∣u(k + ej)− u(k)+ iAj(k)u(k)

∣
∣
2

≥ 16 sin2
( π

16

)

min
k∈Z2

|l −�|2
∑

k∈Z2\{0}

|u(k)|2
|k|2∞

. (5.6.7)

Note that 16 sin2 ( π
16

) = 4
(

2 −
√

2 + √
2
)

∼ 0.50896....

https://doi.org/10.1017/9781009254625.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009254625.008


6

Fractional Analogues

6.1 Special Cases and Consequences

6.1.1 Fractional Hardy Inequalities on Rn and Rn+
The fractional Hardy inequality on a domain� ⊂ R

n with non-empty boundary
∂� has the form

∫

�×�
|u(x)− u(y)|p
|x − y|n+sp dx dx ≥ C(s, p,�)

∫

�

|u(x)|p
δ(x)s

dx, u ∈ C∞
0 (�), (6.1.1)

where 1 < p < ∞, 0 < s < 1, δ(x) := inf{|x − y| : y ∈ R
n \ �} and

C(s, p,�) is a positive constant which is independent of u. The expression on
the left-hand side of (6.1.1) is [u]p

s,p,�, where [u]s,p,� is the Gagliardo seminorm
of u defined in Section 3.1.

We begin our investigation of these inequalities with important special cases
on the half-space Rn+ = {x : x = (x1, x2, ..., xn) ∈ Rn, xn > 0} and Rn, and
examine significant implications in the latter case for results on the limiting
behaviour of fractional inequalities from [23] and [134] discussed in Section 3.2.
The first theorem was proved by Bogdan and Dyda in [22] in the case p = 2 and

extended to all other values of p in [83]. We denote by
0

Ws
p(R

n+) the completion
of C∞

0 (Rn+) with respect to the Ws
p(R

n+) norm; for ps < 1 this coincides with
the completion of C∞

0 (Rn+).

Theorem 6.1 Let n ≥ 1, 1 ≤ p < ∞ and 0 < s < 1 with ps �= 1. Then, for

all u ∈ 0
Ws

p(R
n+),

∫

R
n+×R

n+

|u(x)− u(y)|p
|x − y|n+sp dx dx ≥ Dn,s,p

∫

R
n+

|u(x)|p
|x|ps

dx, (6.1.2)
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6.1 Special Cases and Consequences 105

with sharp constant

Dn,p,s := 2π(n−1)/2� ((1 + ps)/2)
� ((n + ps)/2)

∫ 1

0
|1 − r(ps−1)/2|p dr

(1 − r)1+ps
. (6.1.3)

If p = 1 and n = 1, equality holds if and only if u is proportional to a non-
increasing function. If p > 1 or if p = 1 and n ≥ 2, the inequality is strict for

any non-trivial function u ∈ 0
Ws

p(R
n+).

The theorem follows from the special case � = R
n+ of an abstract Hardy

inequality in [83], Proposition 2.2,

E[u] :=
∫

�

∫

�

|u(x)− u(y)|pk(x, y) dx dy ≥
∫

�

V(x)|u(x)|p dx, (6.1.4)

on compactly supported functions u on � ⊂ R
n, under the following assump-

tions. There exists a family of measurable functions kε (ε > 0) on �×� satis-
fying kε(x, y) = kε(y, x), 0 ≤ kε(x, y) ≤ k(x, y) and limε→0 kε(x, y) = k(x, y)
for a.e. x, y ∈ �. Moreover, with w a positive, measurable function on �, the
integrals

Vε(x) := 2w(x)−p+1
∫

�

(w(x)− w(y)) |w(x)− w(y)|p−2kε(x, y) dy

are absolutely convergent for a.e. x, belong to L1,loc(�), and
∫

Vεφ dx →∫

Vφ dx
for any bounded φ with compact support in �. For the proof of Theorem 6.1,
� = R

n+ and setting α := (1 − ps)/p, the following choices are made:

w(x) = x−α
n , k(x, y) = |x − y|−n−ps, kε(x, y) = |x − y|−n−psχ|xn−yn|.

Then [82], Lemma 3.1 gives that V(x) = Dn,p,sx−ps
n and hence

2 lim
ε→0

∫

||x|−|y||>ε
(w(x)− w(y)) |w(x)− w(y)|p−2k(x, y) dy = Dn,p,s

|x|ps
w(x)p−1.

(6.1.5)
Therefore (6.1.2) is established. We refer to the proof of Theorem 1.1 in [83] for
showing that the constant Dn,p,s in (6.1.3) is optimal and also for details on the
remainder of Theorem 6.1.

The approach sketched above for establishing Theorem 6.1 in [83], based on
(6.1.4) with � = R

n+, is used for � = R
n in [82], and, in fact, will be used for

a general domain � in Section 6.2. The choices

w(x) = |x|−α, k(x, y) = |x − y|−n−ps, V(x) = C(n, s, p)|x|−ps

yield the following modification in [82]:
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106 Fractional Analogues

Theorem 6.2 Let n ≥ 1 and 0 < s < 1. Then for all u ∈ 0
Ws

p(R
n) = Ws

p(R
n)

(see (3.2.2)) if 1 ≤ p < n/s, and for all u ∈ 0
Ws

p(R
n \ {0}) if p > n/s,

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dx ≥ C(n, s, p)

∫

Rn

|u(x)|p
|x|ps

dx, (6.1.6)

where

Cn,s,p := 2
∫ 1

0
rps−1|1 − r(n−ps)/p|pn,s,p(r) dr, (6.1.7)

and

n,s,p(r) := ωn−2

∫ 1

−1

(1 − t2)(n−3)/2

(1 − 2rt + r2)(n+ps)/2 dt, n ≥ 2,

1,s,p(r) :=
(

1
(1 − r)1+ps

+ 1
(1 + r)1+ps

)

, n − 1.

The constant Cn,s,p is optimal. If p = 1, equality holds if and only if u is pro-
portional to a symmetric decreasing function. If p > 1, the inequality is strict

for any non-trivial function u ∈ Ws
p(R

n) or
0

Ws
p(R

n \ {0}), respectively.

6.1.2 The Limiting Cases of s → 0+ and s → 1−
It is proved in [134], Theorem 2, that for n ≥ 1, 0 < s < 1, 1 ≤ p < n/s and
u ∈ Ws

p(R
n),

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy ≥ c(n, p)

(n − sp)p

s(1 − s)

∫

Rn

|u(x)|p
|x|ps

dx (6.1.8)

for some constant c(n, p) which depends only on n and p. Since C(n, s, p) in
Theorem 6.2 is optimal, it follows that

c(n, p)
(n − sp)p

s(1 − s)
≤ C(n, s, p). (6.1.9)

There are related consequences of Corollary 3.2.19, where we saw that for
p ∈ (1,∞) and u ∈ Ws

p(R
n), there exists a positive constant K(p, n) such that

lim
s→1−

(1 − s)
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy = K(p, n)
p

∫

Rn
|∇u(x)|p dx

and hence by Hardy’s inequality,

lim
s→1−

(1 − s)
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy ≥ K(p, n)
p

(
p − 1

p

)p ∫

Rn

|u(x)|p
|x|p dx.

(6.1.10)
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Also, for u ∈ ⋃0<s<1 Ws
p(R

n), there exists a positive constant C′(n, p) ≈ p−1n
such that

lim
s→0+

s
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy = C′(n, p)
∫

Rn
|u(x)|pdx; (6.1.11)

see Remark 3.2.20.
It is fitting to recall here that for ps < 1, the Sobolev embedding theorem

asserts that Ws
p(R

n) ↪→ Lp∗(Rn), where p∗ = np/(n − ps), and
(∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy
)1/p

≥ Sn,s,p

∫

Rn
|u(x)|p∗dx. (6.1.12)

The optimal values of the constants Sn,s,p are not known. Estimates are given
in [23] which reflect the correct behaviour as s tends to 1; in [134], Theorem 1,
the sharp constant is shown to satisfy

Sn,s,p ≥ c(n, p)
(n − ps)p−1

s(1 − s)
(6.1.13)

for some positive constant c(n, p), and for u ∈ ⋃0<s<1 Ws
p(R

n), the asymptotic
result

lim
s→0+

s
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy = 2p−1ωn−1

∫

Rn
|u(x)|p dx (6.1.14)

is proved in [134] Theorem 3. The following asymptotic result when s → 1−
is established in [150] and [30] for all u ∈ C∞

0 (�) and � ⊂ R
n convex:

lim
s→1−

(1 − s)
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp dx dy = αn,p

∫

�

|∇u(x)|p dx, (6.1.15)

where, with e1 = (1, 0, 0, ..., 0),

αn,p = 1
p

∫

Sn−1
|〈σ · e1〉|pdσ =

�
( n

2

)

�
(

p+1
2

)

π1/2�
( n+p

2

) .

Thus an extension of Corollary 3.20 is achieved which allows for the inequality
on a convex subset � of Rn.

In [145], Peetre proved that the standard Sobolev embedding Ws
p(R

n) ↪→
Lp∗(Rn) can be refined to Ws

p(R
n) ↪→ Lp∗,p(Rn). The following sharp inequality

associated with this embedding is given in [82], Theorem 4.1:

Theorem 6.3 Let n ∈ N, 0 < s < 1, 1 ≤ p < n/s and p∗ = np/(n − ps).
Then Ws

p(R
n) ↪→ Lp∗,p(Rn) and

‖u‖p∗,p ≤
(

n
ωn−1

)s/n

C−1/p
n,p,s

(∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy
)1/p

(6.1.16)
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108 Fractional Analogues

for any u ∈ Ws
p(R

n) with Cn,p,s from (6.1.7). The constant is sharp. For p = 1,
equality holds if u is proportional to a non-negative function v such that the
level sets {v > τ } are balls for a.e. τ . For p > 1 the inequality is strict for any
non-trivial u.

In [21], Proposition 4.2, it is shown that if 1 ≤ p < r and 0 < q ≤ r ≤ ∞,
then

‖u‖q,r ≤
(

q
p

) (r−p)
rp

‖u‖q,p.

It follows that we have

Corollary 6.4 Let n ≥ 1, 0 < s < 1, 1 ≤ p < n/s, p∗ = np/(n − ps) ≤ r ≤
∞ and p < r. Then Ws

p(R
n) ↪→ Lp∗,r(Rn) and

‖u‖p∗,r ≤
(

p∗
p

) r−p
rp
(

n
ωn−1

)s/n

C−1/p
n,p,s

(∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy
)1/p

.

(6.1.17)

The choice r = p∗ gives the Sobolev inequality
∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy ≥ Sn,s,p‖u‖p
p∗

where

Sn,s,p =
(

p
p∗

)ps/n (ωn−1

n

)ps/n
Cn,s,p. (6.1.18)

The asymptotic inequality (6.1.11) is then recovered from (6.1.9).
It is proved in [82], Lemma 4.3, that for 0 < s ≤ 1 and 1 ≤ p < n/s, any

non-negative symmetric decreasing function u on Rn satisfies

‖u‖p∗,p =
(

n
ωn−1

)s/n (∫

Rn

u(x)p

|x|ps
dx
)1/p

. (6.1.19)

This establishes the link between Theorem 6.3 and the sharp inequality (6.1.6).
The ‘local’ analogue of (6.1.16) with s = 1 is

‖u‖p∗,p ≤
(

n
ωn−1

)1/n p
n − p

(∫

Rn
|∇u(x)|pdx

)1/p

(6.1.20)

for n ≥ 2, 1 ≤ p < n and p∗ = np/(n − p). This is the inequality (5.1.4) with
the optimal constant proved by Alvino in [10].

A fractional Hardy inequality which focuses on the dependence of the con-
stant on s is featured in the following theorem in [25] in which the correct
asymptotic behaviour with respect to s as s → 0+ and s → 1− is exhibited in
accordance with (6.1.14) and (6.1.15). Note that the inequality (6.1.21) is not of
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6.1 Special Cases and Consequences 109

the type (6.1.1) since the integration on the left-hand side of (6.1.21) is over the
whole of Rn × Rn rather than � × �, as in (6.1.1). The result should be com-
pared with Theorem 6.8, which has the same domain of integration on both
sides, gives the right asymptotic behaviour as s → 1− and s → 0+, and has
the best constant, but at the expense of requiring the condition 1/p < s < 1.

Theorem 6.5 Let 1 < p < ∞ and 0 < s < 1, and let � be a proper
open convex subset of Rn, n ≥ 1. Then for all u ∈ C∞

0 (�) and with δ(x) :=
inf{|x − y| : y /∈ �}, there exists a positive constant C(n, p) such that

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x − y|n+sp

dx dy ≥ C(n, p)
1

s(1 − s)

∫

�

|u(x)|p
δ(x)ps

dx. (6.1.21)

This is a nonlocal analogue of the inequality in Section 5.3 for the local
Hardy inequality on convex domains. The proof is based on the property that
for 0 < s < 1 and 1 < p < ∞, δs is (s, p)-locally weakly superharmonic in the
following weak sense:
∫

Rn

∫

Rn

|δ(x)s − δ(y)s|p−2 (δ(x)s − δ(y)s) (φ(x)− φ(y))
|x − y|n+sp

dx dy ≥ 0 (6.1.22)

for all non-negative φ ∈ Wp
s (�) with compact support in �. This property is

written as (−�p)
sδs ≥ 0, where (−�p)

s is the fractional p-Laplacian of order
s; see (3.4.8) for more details on the significance of this property. The pivotal
result in [25], Proposition 3.2, is that if � is an open, bounded, convex subset of
R

n, then δs is locally weakly (s, p)-superharmonic. An interesting preliminary
result from [102] (and from [38] when p = 2) is that for � := R

n+, δs is
locally weakly (s, p)-harmonic, i.e., δs and −δs are both locally weakly (s, p)-
superharmonic.

The proof of Theorem 5.1.5 uses a Moser-type argument which is similar to
that in Section 5.3, this time choosing

φ = |u|p
(δs + ε)p−1

where u ∈ C∞
0 (�) and ε > 0; in [25], Lemma 2.4, this choice is proved to be

admissible, i.e., φ ∈ Wp
s (�). Another important role in the proof is played by

the following fractional counterpart from [25], Proposition 2.5, of the property
that |∇δ| = 1 a.e. in �.

Proposition 6.6 Let 1 < p < ∞, 0 < s < 1, and let � be an open, bounded,
convex subset of Rn. Then

∫

y∈� : δ(y)≤δ(x)
|δ(x)− δ(y)|p
|x − y|n+sp

dy ≥ C1

1 − s
δ(x)p(1−s)
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110 Fractional Analogues

for a.e. x ∈ �, where

C1 = C1(n, p) = 1
p

sup
0<σ<1〉

[

σ pHn−1 ({ω ∈ Sn−1 : 〈ω, e1〉 > σ })] ;

n − 1 is the Hausdorff dimension of the exhibited set and Hn−1(·) is its (n − 1)-
dimensional Hausdorff measure.

An analysis of the dependence of (6.1.1) on �, and the permissible values of
p and s, is given in the following theorem from [55]:

Theorem 6.7 The inequality (6.1.1) holds in each of the following cases:

1. � is a bounded Lipschitz domain and ps > 1;
2. � = R

n \ K, where K is a bounded Lipschitz domain, ps �= 1, ps �= n;
3. � is a domain above the graph of a Lipschitz function Rn−1 → R

n and
ps �= 1;

4. � is the complement of a point and ps �= n.

Furthermore, (6.1.1) does not hold if

1. � is a bounded Lipschitz domain and ps ≤ 1, s < 1;
2. � is the complement of a compact set and n = ps, s < p.

A consequence is that in the integral on the left-hand side of (6.1.21),Rn×Rn

cannot be replaced by � × � whenever � is bounded if ps ≤ 1. It is observed
in [55] (see also [44]) that if � is a bounded Lipschitz domain and ps ≤ 1,

∫

�

|u(x)|p
δ(x)ps

dx ≤ C
(∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+ps

dx +
∫

�

|u(x)|p dx
)

(6.1.23)

for all u ∈ C∞
0 (�), the inequality being false without the final term even for

domains � with a C∞ boundary.
In [23], Theorem 1, it is proved for � a cube in Rn (n > 1), 0 < s < 1, p >

1, ps < n, 1
q = 1

p − s
n and u ∈ Wp

s (�), that

∫

�

∫

�

|u(x)− u(y)|p
|x − y|n+ps

dx ≥ C(n)(n/q)p(1 − s)−1
∫

�

|u(x)− u�|q dx, (6.1.24)

where u� := (1/|�|) ∫
�

u(x) dx and C(n) depends only on n. Related work on
inequalities of fractional Hardy and Poincaré type may be found in [58], [62],
[99], [100] and [101].
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6.2 General Domains 111

6.2 General Domains

This section is mainly devoted to the fractional analogue of the local Hardy-
type inequality in Theorem 5.10 on a general domain � in Rn(n ≥ 2) with
non-empty boundary, involving a mean distance function Mp,�. The appropriate
mean distance function now depends on s ∈ (0, 1) and is defined by

1
Ms,p(x)ps

:= π1/2�
( n+ps

2

)

�
(

1+ps
2

)

�
( n

2

)

∫

Sn−1

1
δ

ps
ν (x)

dω(ν), (6.2.1)

where 1/p < s < 1,

τν(x) = min{t > 0 : x + tν /∈ �}, δν(x) = min{τν(x), τ−ν(x)}
and the surface measure ω on Sn−1 is normalised, i.e.,

∫

Sn−1 dω(ν) = 1. If � is
convex, then, as in Theorem 5.12, Ms,p(x) ≤ δ(x).

Loss and Sloane show in [130] that Theorem 6.1 continues to hold with the
same sharp constant for any convex domain�. Their proof makes use of a mean
distance function and it is this which is the basis of this section.

Theorem 6.8 Let � be an open subset of Rn with non-empty boundary, let
p ∈ (1,∞) and s ∈ (1/p, 1). Then for all f ∈ C∞

0 (�),
∫

�

∫

�

|f (x)− f (y)|p
|x − y|n+ps

dx dy ≥ Dn,p,ps

∫

�

|f (x)|p
Ms,p(x)ps

dx, (6.2.2)

where

Dn,p,ps :=
π(n−1)/2�

(
1+ps

2

)

�
( n+ps

2

) D1,p,ps (6.2.3)

and

D1,p,ps := 2
∫ 1

0

|1 − r(ps−1)/p|
(1 − r)1+ps

dr. (6.2.4)

For � convex,
∫

�

∫

�

|f (x)− f (y)|p
|x − y|n+ps

dx dy ≥ Dn,p,ps

∫

�

|f (x)|p
δ(x)ps

dx. (6.2.5)

The inequality (6.2.5) with some constant C(n, p) continues to hold for
0 < p ≤ 1, but the optimal value of the constant is not known, see [55].

The proof depends on the following one-dimensional inequality.

Lemma 6.9 Let 1 < p < ∞, 1 < p < s < 1 and f ∈ C∞
0 (a, b). Then

∫ b

a

∫ b

a

|f (x)− f (y)|p
|x − y|1+ps

dx dy ≥ D1,p,ps

∫ b

a

|f (x)|p
min{(x − a), (b − x)}ps

dx. (6.2.6)
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Moreover, if J ⊂ (a, b) is an open set and f ∈ C∞
0 (J), then for all f ∈ C∞

0 (J),
∫

J

∫

J

|f (x)− f (y)|p
|x − y|1+ps

dx dy ≥ D1,p,ps

∫

J

|f (x)|p
δJ(x)ps

dx; (6.2.7)

J is a countable union of disjoint intervals Ik, and so for x ∈ J there is a unique
interval Ik containing x and then δJ(x) = δIk(x) := inf{|t| : x + t /∈ Ik}.
Proof From [83], Proposition 2.2 and Lemma 2.4,

∫ b

a

∫ b

a

|f (x)− f (y)|p
|x − y|1+α dx dy ≥

∫ b

a
V(x)|f (x)|pdx,

where, with w(x) = δ(a,b)(x)−(1−α)/p, α = ps,

V(x) = 2
w(x)p−1

∫ ∞

a
(w(x)− w(y)) |w(x)− w(y)|p−2 dy

|x − y|1+α . (6.2.8)

It is necessary to prove that V(x) ≥ 1
δ(x)αD1,p,α .

Let

I(x) := 2
∫∞

0 (w(x)− w(y)) |w(x)− w(y)|p−2 dy
|x−y|1+α

= 2
(∫ x

0 + ∫∞
x

)

(w(x)− w(y)) |w(x)− w(y)|p−2 dy
|x−y|1+α

=: 2 (I1(x)+ I2(x)) ,

(6.2.9)

where

w(x) = x−(1−α)/p, 1 < p < ∞, 1 < α < 2.

Note that, to be precise, the integrals in (6.2.8), like the integral in (6.2.7), are
principal values, being over (0, ε) and (ε,∞) and the limit as ε → 0+ taken.
Then, on putting y = tx,

I1(x) = x
(α−1)

p (p−1)−α
∫ 1

0

(

1 − t
α−1

p
) ∣
∣
∣

(

1 − t
α−1

p
)∣
∣
∣

p−2 dt
|1 − t|1+α

= x
(α−1)

p (p−1)−α
∫ 1

0

∣
∣
∣

(

1 − t
α−1

p
)∣
∣
∣

p−1 dt
|1 − t|1+α .

On putting y = x/t,

I2(x) = −x
(α−1)

p (p−1)−α
∫ 0

1

(

1 − t−(α−1)/p)
∣
∣1 − t−(α−1)/p

∣
∣
p−2 dt

t2 |1 − 1/t|1+α

= −x
(α−1)

p (p−1)−α
∫ 0

1

(

t(α−1)/p − 1
) ∣
∣t(α−1)/p − 1

∣
∣
p−2 t(α−1)/pdt

|1 − t|1+α

= −x
(α−1)

p (p−1)−α
∫ 1

0

∣
∣
∣1 − t

α−1
p

∣
∣
∣

p−1 t(α−1)/pdt
|1 − t|1+α .
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Thus

I(x) = 2x
(α−1)

p (p−1)−α
∫ 1

0

∣
∣1 − t(α−1)/p

∣
∣
p−1 (

1 − t(α−1)/p) dt
|1 − t|1+α

= 2x
(α−1)

p (p−1)−α
∫ 1

0

∣
∣1 − t(α−1)/p

∣
∣
p dt

|1 − t|1+α

= x
(α−1)

p (p−1)−αD1,p,α; (6.2.10)

also

I1(x) ≥ x
(α−1)

p (p−1)−αD1,p,α. (6.2.11)

From (6.2.7) with w(x) = δ(a,b)(x)(α−1)/p and c = (1/2)(a + b),

w(x)p−1V(x) = 2
∫ c

a
(w(x)− w(y)) |w(x)− w(y)|p−2 dy

|x − y|(1+α) (6.2.12)

for a < x < c and

w(x)p−1V(x) = 2
∫ b

c
(w(x)− w(y)) |w(x)− w(y)|p−2 dy

|x − y|(1+α) (6.2.13)

for c < x < b. Similar calculations to those which yield (6.2.9) and (6.2.10)
now give the following: for a < x < c,

2
w(x)p−1

∫ ∞

a
(w(x)− w(y)) |w(x)− w(y)|p−2 dy

|x − y|(1+α)

= 1
(x − a)α

D1,p,α (6.2.14)

and

V(x) ≥ 1
(x − a)α

D1,p,α, (6.2.15)

while for c < x < b,

2
w(x)p−1

∫ b

−∞
(w(x)− w(y)) |w(x)− w(y)|p−2 dy

|x − y|(1+α)

= 1
(b − x)α

D1,p,α (6.2.16)

and

V(x) ≥ 1
(b − x)α

D1,p,α. (6.2.17)

Therefore, V(x) ≥ 1
δ(x)αD1,p,α and (6.2.5) is proved.
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Since an open subset J is the countable union of disjoint intervals Ik, we have
from (6.2.5)

∫

J

∫

J

|f (x)− f (y)|p
|x − y|1+ps

dx dy ≥
∞
∑

k=1

∫

Ik

∫

Ik

|f (x)− f (y)|p
|x − y|1+ps

dx dy

≥
∞
∑

k=1

D1,p,ps

∫

Ik

|f (x)|p
δIk(x)ps

dx

≥ D1,p,ps

∫

J

|f (x)|p
δJ(x)ps

dx.

We now quote Lemma 2.4 in [130] which leads to the application of Lemma
6.9 and proof of Theorem 6.8.

Lemma 6.10 Let � be a domain in Rn. Then for all f ∈ C∞
0 (�),

∫

�

∫

�

|f (x)− f (y)|p
|x − y|1+ps

dx dy

= ωn−1

2

∫

Sn−1
dω
∫

x : x·ω=0
dLω(x)

∫

x+sω∈�
ds
∫

x+tω∈�
|f (x + sω)−f (x + tω)|p

|s − t|1+ps
dt

(6.2.18)

where Lω denotes the (n − 1)-dimensional Lebesgue measure on the plane
x · ω = 0; recall that the measure dω on Sn−1 is normalised.

Proof Let

I�(f ) :=
∫

�

∫

�

|f (x)− f (y)|p
|x − y|1+ps

dx dy =
∫

�

dx
∫

x+z∈�
|f (x)− f (x + z)|p

|z|n+ps
dz.

On using polar co-ordinates z = rω, we obtain

I�(f ) = ωn−1

∫

�

dx
∫

Sn−1
dω
∫

x+rω∈�,r>0

|f (x)− f (x + rω)|p
r1+ps

dr

= 1
2
ωn−1

∫

Sn−1
dω
∫

�

dx
∫

x+hω∈�
|f (x)− f (x + hω)|p

|h|1+ps
dh.

The domain of integration {x + hω ∈ �} in the innermost integral is the line
x + hω intersected with �. On splitting the variable x into components perpen-
dicular to ω and parallel to ω, i.e., replacing x by x + lω, where x · ω = 0, we
derive

ωn−1

2

∫

Sn−1
dω
∫

x : x·ω=0
dLω(x)

∫

x+lω∈�
dl
∫

x+(l+h)ω∈�
|f (x+lω)−f (x+(l+h)ω)|p

|h|1+ps
dh.
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The lemma follows by the variable change t = l + h.

Proof of Theorem 6.8 By Lemma 6.10 and (6.2.6),
∫

�

∫

�

|f (x)− f (y)|p
|x − y|1+ps

dx dy

= 1
2
ωn−1

∫

Sn−1
dω
∫

x : x·ω=0
dLω(x)

∫

x+lω∈�
ds
∫

x+tω∈�
|f (x + sω)−f (x+tω)|p

|s−t|1+ps
dt

≥ 1
2
ωn−1D1,p,ps

∫

Sn−1
dω
∫

x : x·ω=0
dLω(x)

∫

x+lω∈�
|f (x + lω)|p
δω(x + lω)ps

dl

= 1
2
ωn−1D1,p,ps

∫

Sn−1
dω
∫

�

|f (x)|p
δω(x)ps

dx

= Dn,p,ps

∫

�

|f (x)|p
Ms,p(x)ps

dx,

since

ωn−1

2
�( n

2 )�(
1+ps

2 )√
π�(

n+ps
2 )

D1,p,ps = Dn,p,ps.

In the case � = R
n+, the constant Dn,p,ps was proved to be best possible in [22]

for p = 2 and in [83] for the other values of p, by constructing a sequence of
trial functions. For a general convex �, these trial functions are transplanted to
� near a tangent hyperplane, following the proof of Theorem 5 in [132].

The theorem is therefore proved.

Remark 6.11

In the case p = 2, it is proved in the appendix of [22] that

D1,2,2s = 1
s

{
2−2s

√
π
�

(
1 + 2s

2

)

�(1 − s)− 1
}

. (6.2.19)

Also, for p = 2 an improvement of (6.2.2) is established in [130], Theorem 1.1,
namely,

∫

�

∫

�

|f (x)− f (y)|2
|x − y|n+2s

dx dy ≥ 2κn,2s

∫

�

|f (x)|2
Ms,2(x)2s

dx, (6.2.20)

where κn,2s is the sharp constant

κn,2s :=
π(n−1)/2�

(
1+ps

2

)

�
( n+ps

2

)
1
s

{
2−2s

√
π
�

(
1 + 2s

2

)

�(1 − s)− 1
2

}

. (6.2.21)
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This refinement is achieved through the use of the one-dimensional inequality
in [130], Theorem 2.1, to replace Lemma 6.9 above, that for 1/2 < s < 1 and
f ∈ C∞

0 (a, b),

∫ b

a

∫ b

a

|f (x)− f (y)|2
|x − y|1+2s

dx dy ≥ 2κ1,2s

∫ b

a
|f (x)|2

(
1

x − a
+ 1

b − x

)2s

dx,

(6.2.22)

which has the corollary that for any open set J ⊂ R, 1/2 < s < 1 and f ∈
C∞

0 (J),

∫

J

∫

J

|f (x)− f (y)|2
|x − y|1+2s

dx dy ≥ 2κ1,2s

∫

J
|f (x)|2

(
1

δJ(x)
+ 1

dJ(x)

)2s

dx, (6.2.23)

where J is a countable union of disjoint intervals Ik and for x ∈ J, dJ(x) =
dIk(x) = sup{|t| : x + t /∈ Ik}, where Ik is the unique interval containing x.

By the Sobolev inequality, the left-hand side of (6.2.2) dominates the Lq

norm of f for q = np/(n − ps). Dyda and Frank prove in [57] that this remains
true even if the right-hand side of (6.2.2) is subtracted from the left; their result
is the fractional Hardy–Sobolev–Maz’ya inequality in

Theorem 6.12 Let n ≥ 2, 2 ≤ p < ∞, 0 < s < 1 and 1 < ps < n. Then
there exists a constant kn,p,s > 0 such that for q = np/(n − ps),

∫

�

∫

�

|f (x)− f (y)|p
|x − y|n+ps

dx dy − Dn,p,ps

∫

�

|f (x)|p
Ms,p(x)ps

dx ≥ kn,p,s

(∫

�

|f (x)|qdx
)p/q

(6.2.24)

for all open � � Rn and all f ∈ 0
Ws

p(�).

This is the fractional analogue of (5.5.6). In the case of p = 2 and � =
R

n+, a proof of (6.2.24) was given in [160]. A variant of (6.2.24) for a half-
space, and more general John domains, is given in [59]; for Rn+ = {x : x =
(x1, x2, ..., xn) ∈ Rn, xn > 0}, the integral on the right-hand side has a weight
x−bq

n , where b = n(1/q − 1/p)+ s.

6.3 Fractional Hardy Inequality with a Remainder Term

Dyda [56] proved the following refinement of (6.2.20):

Theorem 6.13 Let 1/2 < s < 1 and � a bounded domain in Rn. Then for all
u ∈ C∞

0 (�),
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1
2

∫

�

∫

�

|f (x)− f (y)|2
|x − y|n+2s

dx dy ≥ κn,2s

∫

�

|f (x)|2
Ms,2(x)2s

dx

+ λn,ps

diam (�)

∫

�

|u(x)|2
Ms−1/2(x)2s−1 dx,

(6.3.1)

where

λn,ps = π(n−1)/2�

(
2s
2

)
4 − 23−2s

2s�
( n+2s−1

2

) . (6.3.2)

The constant κn,2s cannot be replaced by a larger constant in (6.13).

The proof in [56] is based on the method developed in [130] to prove (6.2.20),
but with the inequality in the following proposition used instead of (6.2.22).

Proposition 6.14 Let 1 < α < 2 and −∞ < a < b < ∞. Then for all
u ∈ C∞

0 (a, b),

1
2

∫ b

a

∫ b

a

(u(x)−u(y))2

|x − y|1+α dx dy ≥ κ1,α

∫ b

a
u(x)2

(
1

x − a
+ 1

b − x

)2s

dx

+ 4−23−α

α(b−a)

∫ b

a
u(x)2

(
1

x−a
+ 1

b−x

)α−1

dx.

(6.3.3)

The constant κ1,α cannot be replaced by a larger one.

Proof An important first step is the calculation of

Lu(x) := lim
ε→0+

∫

(−1,1)∩{y : |x−y|>ε}
u(y)− u(x)
|x − y|1+α dy.

Let q > −1, 0 < α < 2 and uq(x) = (1 − x2)q. Then on setting t = y2 and
integration by parts

Luq(0) = 2 lim
ε→0+

∫ 1

ε

(1 − y2)q − 1
y1+α dy

= 2
(

1
2

∫ 1

ε2
(1 − t)qt−1−α/2[(1 − t)+ t] dt −

∫ 1

ε

y−1−α dy
)

= 2 lim
ε→0+

(
1
α
(1 − ε2)q+1ε−α − q + 1

α

∫

ε2
(1 − t)qt−α/2 dt

)

+ 2 lim
ε→0+

(
1
2

∫

ε2
(1 − t)qt−α/2 dt + 1

α
− ε−α

α

)

= 2
α

[1 − (q + 1 − α/2)B(q + 1, 1 − α/2)]
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since

lim
ε→0+

(
1
α
(1 − ε2)q+1ε−α − ε−α

α

)

= lim
ε→0+

ε2−α

α

(
(1 − ε2)q+1 − 1

ε2

)

= 0;

B denotes the Euler beta function: B(a, b) = �(a)�(b)
�(1/2) .

For x0 ∈ (−1, 1),

Luq(x0) = pv
∫ 1

−1

(1 − y2)q − (1 − x2
0)

q

|y − x0|1+α dy

where pv denotes the principal value. The variable change

t = ϕ(y) = x0 − y
1 − x0y

transforms Lup into

Luq(x0) = (1 − x2
0)

q−α
∫ 1

−1

(1 − t2)q − (1 − tx0)
2q

|t|1+α (1 − tx0)
α−1−2q dt

= (1 − x2
0)

q−α
[

Luq(0)− pv
∫ 1

−1

(1 − tx0)
α−1 − 1

|t|1+α dt
]

+ (1 − x2
0)

q−α
[

pv
∫ 1

−1

(1 − tx0)
α−1−2q − 1

|t|1+α (1 − t2)q dt
]

.

Let

I := pv
∫ 1

−1

(1 − tx0)
α−1 − 1

|t|1+α dt = lim
ε→0+ (

Jε(x0)+ Jε(−x0)) ,

where

Jε(x0) =
∫ 1

ε

(1 − tx0)
α−1 − 1

|t|1+α dt =
∫ 1

ε

(
1
t

− x0

)α−1 dt
t2 = ε−α − 1

α

= 1
α

(
1
ε

− x0

)α

− 1
α
(1 − x0)

α − ε−α − 1
α

= 1
α

− 1
α
(1 − x0)

α + (1 − εx0)
α − 1

αεα
.

By l’Hôpital’s rule

I = 2
α

− 1
α
(1 − x0)

α − 1
α
(1 + x0)

α

and so

Luq(x) = (1 − x2)q−α

α
{(1 − x)α + (1 + xα)}

− (1 − x2)q−α

α
{(2q + 2 − α)B(q + 1, 1 − α/2)+ αI(q)} , (6.3.4)
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where

I(q) := pv
∫ 1

−1

(1 − tx0)
α−1−2q − 1

|t|1+α (1 − t2)qdt.

We also have

I(α/2) = pv
∫ 1

−1

(1 − tx)−1 − 1
|t|1+α (1 − t2)α/2dt

=
∫ 1

−1

∑∞
k=2(tx)

k

|t|1+α (1 − t2)α/2dt

= 2
∫ 1

−1

∑∞
k=2(tx)

k

|t|1+α (1 − t2)α/2dt

=
∞
∑

k=1

B(k − α/2, 1 + α/2)x2k

= �(1 + α/2)�(−α/2)

( ∞
∑

k=0

x2k�(k − α/2)
�(−α/2)k! − 1

)

= 2B(1 + α/2, 1 − α/2)
α

(1 − (1 − x2)α/2).

It can also be shown that I( α−1
2 ) = I( α−2

2 ) = 0 and, if 1 < α < 2, that
I( α−3

2 ) = x2B( α−1
2 , 1 − α

2 ).
The next step in the proof of the proposition is the application of a result

which is analogous to the ground state representation for half-spaces and Rn \
{0} in [82] and [83], and may be considered as a special case of Proposition
2.3 in [82]. The result is that with 0 < α < 2, w(x) = (1 − x2)(α−1)/2 and
u ∈ C0 ((−1, 1)),

1
2

∫ 1

−1

∫ 1

−1

(u(x) − u(y))2

|x − y|1+α dx dy

= 1
2

∫ 1

−1

∫ 1

−1

(
u(x)
w(x)

− u(y)
w(y)

)2 w(x)w(y)
|x − y|1+α dx dy

+ 2ακ1,α

∫ 1

−1
u(x)2(1 − x2)−α dx

+ 1
α

∫ 1

−1
u(x)2 [2α − (1 + x)α − (1 − x)α

]

(1 − x2)−α dx. (6.3.5)

We are now equipped to complete the proof of Proposition 6.14. By scaling
we may and shall assume that a = −1, b = 1. By (6.3.5), we require that

2α − (1 + x)α − (1 − x)α ≥ (2α − 2)(1 − x2), 1 ≤ α ≤ 2, 0 ≤ x ≤ 1. (6.3.6)
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On substituting u = x2, it suffices to prove that

g(u) := (2α − 2)u − (1 − √
u)α − (1 + √

u)α + 2

is concave, or

g′(u) = 2α − 2 + α

2
√

u

(

(1 − √
u)α−1 − (1 + √

u)α−1)

is decreasing. Setting u = t2, h(t) = (1 − t)α−1 − (1 + t)α−1, we have that

(1 − t)α−1 − (1 + t)α−1

t
= h(t)− h(0)

t
.

Since h is concave, the function t �→ h(t)−h(0)
t is decreasing and hence so is g′.

Therefore (6.3.6) is proved and the proposition follows. The sharpness of κ1,α

is already established in [130].

Proof of Theorem 6.13 This follows by using Proposition 6.14 with α = 2s
instead of (6.2.22) in the proof of the case p = 2 of Theorem 6.8.
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