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The discrete version of the Aharonov—Bohm potential corresponding to the
magnetic flux W is defined as

Ay (k) = =i (A (K), Ay (k) = —i (1 — 20O ] — 2702 0),
Lete; = (1,0) and e; = (0, 1). The main result is Theorem 1.1 of [91]:

Theorem 5.19  For all functions u: 7> — C decaying sufficiently fast,
3 [uk + €) — uk) + iAoy

kez? j=1.2

. 2
> 4 sin2 (”W) 3 utol” (5.6.6)

2
keZ2\{0} K5y

Since dist(¥, Z) < 1/2, we have
. . 220w
A sin? ndlst(\ll, 7) -4 nd1st(\IJ, Z)7"sin” ()
8 8 (1)2
16

= 16sin’ (%) min |l — WP,
€

and (5.6.6) implies
Corollary 5.20 For all functions u: 7> — C decaying sufficiently fast,
SN Jutk + e — uk) + iAj(kuk)|

kez2j=1,2

k 2
> 16 sin2 (1)min|z—\y|2 3 u®I7 (5.6.7)
16/ kez2 v k|3

Note that 16sin® () = 4 (2 = V2 +v/2) ~ 0.50896....
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Fractional Analogues

6.1 Special Cases and Consequences

6.1.1 Fractional Hardy Inequalities on R” and R’j_

The fractional Hardy inequality on a domain £ C R” with non-empty boundary
02 has the form

l4x) — s ueor
/ngmdxdx> CGs.p Q)/ S0 6 uE @, 6L

where | < p <00, 0 <5 < 1, §(x) ;== inf{lx—yl:y € R"\ Q} and
C(s, p, 2) is a positive constant which is independent of u. The expression on
the left-hand side of (6.1.1) is [u]”
of u defined in Section 3.1.

We begin our investigation of these inequalities with important special cases
on the half-space R, = {x: x = (x1,x2,...,x,) € R", x, > 0} and R", and
examine significant implications in the latter case for results on the limiting
behaviour of fractional inequalities from [23] and [134] discussed in Section 3.2.
The first theorem was proved by Bogdan and Dyda in [22] in the case p = 2 and

p.Q where [u]; . is the Gagliardo seminorm

extended to all other values of p in [§3]. We denote by WA »(R%) the completion
of C3°(R’}) with respect to the W,(RR",) norm; for ps < 1 this coincides with

the completion of C§° (]R ).

Theorem 6.1 Letn>1, 1 <p <ocoand0 < s < 1 with ps # 1. Then, for
0
allu € W‘;(R’i),

—uP i
/ @) = WO ) g > Dy, / WIE g (6.1.2)
R" xR" R"L

e — "+ |x[P*
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6.1 Special Cases and Consequences 105

with sharp constant
D, s =21 (n— l)/ZF (1 +pS)/2)/ I (p.& l)/2|p dr (613)
" I ((n+ps)/2) (1=t
If p = 1 and n = 1, equality holds if and only if u is proportional to a non-
increasing function. If p > 1 or ifp = 1 and n > 2, the inequality is strict for
any non-trivial function u € WY (R2).

The theorem follows from the special case 2 = R, of an abstract Hardy
inequality in [83], Proposition 2.2,

Elu] :=//|u(x)—u(y)|"’k(x,y)dxdy2/ V(x)|u(x)|? dx, (6.1.4)
eJo Q

on compactly supported functions «# on 2 C R”, under the following assump-
tions. There exists a family of measurable functions k. (¢ > 0) on € x 2 satis-
fying ke (x,y) = ks (v, x), 0 < ke (x,y) < k(x,y) and lime_, ke (x, y) = k(x, y)
for a.e. x,y € Q. Moreover, with w a positive, measurable function on €2, the
integrals

Ve(x) := 2w(x) P! fg W) — w») W) — wO)IP?k:(x, y) dy

are absolutely convergent for a.e. x, belong to L ;,(), and [ Ve¢p dx — [V dx
for any bounded ¢ with compact support in 2. For the proof of Theorem 6.1,
Q = R and setting & := (1 — ps)/p, the following choices are made:

wx) = x,% k(x,y) =[x —yI7"7 ke(x,3) = 10 = 7 Xjgu—yal-
Then [82], Lemma 3.1 gives that V(x) = D, , ;x,”* and hence
. -2 D p.s —1
2lim (wx) —w®) wx) —w) P "kCx, ) dy = ——w(x)’ .
20 Jix—lyli>e |x[P*
(6.1.5)

Therefore (6.1.2) is established. We refer to the proof of Theorem 1.1 in [83] for
showing that the constant D,, ,, ; in (6.1.3) is optimal and also for details on the
remainder of Theorem 6.1.

The approach sketched above for establishing Theorem 6.1 in [83], based on
(6.1.4) with Q@ = R”" , is used for 2 = R" in [82], and, in fact, will be used for
a general domain €2 in Section 6.2. The choices

W(.X') = |x|_av k(-xv )’) = |-x - y|—11—[73" V(X) = C(nv S, P)|x|_m

yield the following modification in [82]:
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106 Fractional Analogues
0
Theorem 6.2 Letn > 1and0 < s < 1. Then for all u € W;(R”) = W;(R”)
0
(see (3.2.2))if 1 <p < n/s, and forallu € W;(R” \ {0} if p > n/s,

_ 4 4
/ / ) ”iy” dvdx > Cons.py | O 4o (6.1.6)
n Jrn |x—y|" TP rr |x[P
where
1
Crsp =2 / PN — e, () dr, (6.1.7)
0
and

1 (1 — 232
Pusp(r) 1= @n-2 /_1 (1 — 21t + 12)(tps)/2 dt, n =2,

1 1
ch,s,p(r) = ((1 — r)l-‘r[” + (a+ r)l+ps> ,n—1.

The constant Cy, s, is optimal. If p = 1, equality holds if and only if u is pro-
portional to a symmetric decreasing function. If p > 1, the inequality is strict

0
for any non-trivial function u € W, (R") or Wi (R" \ {0}), respectively.

6.1.2 The Limiting Cases of s —> 0+ and s — 1—

It is proved in [134], Theorem 2, thatforn > 1, 0 <s < 1, 1 <p < n/s and
ue W;,(]R”),
/ / lu(x) — u(y)|” (n—sp)f [u(x)[?
R JRn

dxdy > c(n, d 6.1.8
Ty HOEEOPIG f e O

for some constant c(n, p) which depends only on n and p. Since C(n, s, p) in
Theorem 6.2 is optimal, it follows that

c(n, p)(( P )) < Cn, s, p). (6.1.9)

There are related consequences of Corollary 3.2.19, where we saw that for
pe(l,o0)andu € W;(R"), there exists a positive constant K (p, n) such that

fip (1 - s)f f i vy = K(I; : / Va0l dv
s—>1— n n R

| X — y|n+sp
and hence by Hardy’s inequality,

— _ P n
lim (1 — S)// |u(x) u(y)l"dxdyZK(p,n) (p 1)/ u@p
s 1= n e X — y[rre p P n Xl
(6.1.10)
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6.1 Special Cases and Consequences 107

Also, for u € U0<S<1 W;(R”), there exists a positive constant C'(n, p) ~ p~'n

such that
— P
lim sf / ) = u ey = c’(n,p)/ o Pdy; (6111
s—0+ n n |)C — |n+sp Rn

see Remark 3.2.20.
It is fitting to recall here that for ps < 1, the Sobolev embedding theorem
asserts that W), (R") = L,«(R"), where p* = np/(n — ps), and

. P 1/p
(/ / |u|(;)_y|zgi| dxdy> > S /R u@)"de. (6.112)

The optimal values of the constants S, , are not known. Estimates are given
in [23] which reflect the correct behaviour as s tends to 1; in [134], Theorem 1,
the sharp constant is shown to satisfy

(n—ps)”!
Snsp = c(n, 6.1.13
Pz p) = s (6.1.13)
for some positive constant c(n, p), and for u € (J,_,_; W;(R"), the asymptotic

result

— 4
L s/ / |M|(X) ﬁgi' dedy=2p o,y [ Pdx  (6.114)
n n x—y Rn

is proved in [134] Theorem 3. The following asymptotic result when s — 1—
is established in [150] and [30] for all u € C5°(€2) and 2 C R” convex:

_ P
hm(l—s)/ / ) ”%' dx dy:a,,,p/ \Vu@)P dx,  (6.1.15)
R JRo -l Q
where, withe; = (1,0, 0, ..., 0),

rEr(s)

1
= - -e)Pdo = ————=.
Un.p p Ln—l |<U 1)| o 7_[1/21_, (#)

Thus an extension of Corollary 3.20 is achieved which allows for the inequality
on a convex subset €2 of R”.

In [145], Peetre proved that the standard Sobolev embedding W (R") —
L, (R") can be refined to Wy (R") < L, p(R"). The following sharp inequality
associated with this embedding is given in [82], Theorem 4.1:

Theorem 6.3 Letne N, 0 <s < 1, 1 <p < n/sandp* = np/(n — ps).
Then W[S)(R”) < Ly ,(R") and

n 1 lu@) —u)p w
IIullp*ﬁ,,f(wn > o (// e dxdy (6.1.16)
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108 Fractional Analogues

for any u € W, (R") with C,, s from (6.1.7). The constant is sharp. For p = 1,
equality holds if u is proportional to a non-negative function v such that the
level sets {v > t} are balls for a.e. T. For p > 1 the inequality is strict for any
non-trivial u.

In [21], Proposition 4.2, it is shown thatif | <p <rand0 < g <r < o0,

then
(r=p)

q T
lullg.r < <I;) llullg,p-

Corollary 6.4 Letn>1,0<s< 1, 1<p<mn/s, p"=np/(n—ps) <r <
oo andp < r. Then W;(R") < Ly (R") and

=p 1/p
k n — P

lluell . < (p_) < ! ) C,,_Il,/f (/ / lut) = uOII dxdy) .
P Wyp—1 R” n |x — y|n+sp

(6.1.17)

It follows that we have

The choice r = p* gives the Sobolev inequality

[u(x) — u(y)P ,
fﬂ /n X — dxdy = Spspllull,.

p ps/n Wy \Ps/n
Susp = (= (—) Cosp. (6.1.18)
P n

The asymptotic inequality (6.1.11) is then recovered from (6.1.9).
It is proved in [82], Lemma 4.3, that for 0 < s < l and 1 < p < n/s, any
non-negative symmetric decreasing function # on R" satisfies

s/n 1/p
n u(x)?
"””p*””:(w_l) (/R bl dx) ' e

This establishes the link between Theorem 6.3 and the sharp inequality (6.1.6).
The ‘local” analogue of (6.1.16) with s = 1 is

n \'/n p 1/p
luell s p < (w ) ( |Vu(x)|”dx> (6.1.20)
Rﬂ

n—1 n—p

where

forn>2, 1 <p <mnandp* = np/(n — p). This is the inequality (5.1.4) with
the optimal constant proved by Alvino in [10].

A fractional Hardy inequality which focuses on the dependence of the con-
stant on s is featured in the following theorem in [25] in which the correct
asymptotic behaviour with respect to s as s — 0+ and s — 1— is exhibited in
accordance with (6.1.14) and (6.1.15). Note that the inequality (6.1.21) is not of
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6.1 Special Cases and Consequences 109

the type (6.1.1) since the integration on the left-hand side of (6.1.21) is over the
whole of R" x R” rather than Q x €2, as in (6.1.1). The result should be com-
pared with Theorem 6.8, which has the same domain of integration on both
sides, gives the right asymptotic behaviour as s — 1— and s — 0+, and has
the best constant, but at the expense of requiring the condition 1 /p < s < 1.

Theorem 6.5 Let 1 < p < coand 0 < s < 1, and let 2 be a proper
open convex subset of R", n > 1. Then for all u € C5°(2) and with §(x) :=
inf{|x — y|: y ¢ Q}, there exists a positive constant C(n, p) such that

/' / lu(x) — u()’)l” dxdy > C(n, p) 1 / @I dx.  (6.1.21)
- s(1 —5)

=yt o 8P

This is a nonlocal analogue of the inequality in Section 5.3 for the local
Hardy inequality on convex domains. The proof is based on the property that
forO <s<land1 < p < o0, 8% is (s, p)-locally weakly superharmonic in the
following weak sense:

/' / 8(x)° = 8()* P> (B —8(1°) (P () — ¢(»)

|x _ y|n+sp

dxdy >0 (6.122)

for all non-negative ¢ € W?(2) with compact support in 2. This property is
written as (—A,)*6° > 0, where (—A,)” is the fractional p-Laplacian of order
s; see (3.4.8) for more details on the significance of this property. The pivotal
result in [25], Proposition 3.2, is that if €2 is an open, bounded, convex subset of
R”, then §° is locally weakly (s, p)-superharmonic. An interesting preliminary
result from [102] (and from [38] when p = 2) is that for Q := RZ, §° is
locally weakly (s, p)-harmonic, i.e., §° and —§* are both locally weakly (s, p)-
superharmonic.

The proof of Theorem 5.1.5 uses a Moser-type argument which is similar to
that in Section 5.3, this time choosing

|l

d) = (53 +8)p—1

where u € C;°(2) and ¢ > 0; in [25], Lemma 2.4, this choice is proved to be
admissible, i.e., ¢ € WZ(2). Another important role in the proof is played by
the following fractional counterpart from [25], Proposition 2.5, of the property
that |[V§| = 1 a.e. in Q.

Proposition 6.6 Letrl <p < o0, 0 <s < 1, and let Q2 be an open, bounded,
convex subset of R". Then

_ p
/ [8(x) — )] dy > Ci 8y
ye: §(y)<s(x)

oy O T T
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110 Fractional Analogues

fora.e. x € Q, where

Ci=Ci(np) = 1 sup [o"H" ({w € S (w, e1) > 0})]:

O<o<l)

n— 1 is the Hausdorff dimension of the exhibited set and H"~' () is its (n — 1)-
dimensional Hausdorff measure.

An analysis of the dependence of (6.1.1) on €2, and the permissible values of
p and s, is given in the following theorem from [55]:

Theorem 6.7 The inequality (6.1.1) holds in each of the following cases:

1. Qis a bounded Lipschitz domain and ps > 1;
2. Q =R"\ K, where K is a bounded Lipschitz domain, ps # 1, ps # n;
3. Q is a domain above the graph of a Lipschitz function R"™' — R" and

ps #1;
4. Q is the complement of a point and ps # n.

Furthermore, (6.1.1) does not hold if

1. 2 is a bounded Lipschitz domain andps < 1, s < 1;
2. Q2 is the complement of a compact set and n = ps, s < p.

A consequence is that in the integral on the left-hand side of (6.1.21), R” x R”
cannot be replaced by ©2 x © whenever €2 is bounded if ps < 1. It is observed
in [55] (see also [44]) that if Q2 is a bounded Lipschitz domain and ps < 1,

|u(x) |f’ dv < C </ lu@) —u®P / (o) dx) (6.1.23)
QJQ

o 3CO” Ty

for all u € C°(£2), the inequality being false without the final term even for
domains 2 with a C* boundary.
In [23], Theorem 1, it is proved for Q acube in R* (n > 1),0 <s < 1, p >

I, ps<n, ;=1 —2andu e W(RQ), that

/ W) = U > st — ™! / lu() — ugl” dx, (6.1.24)
QJQ &

ey

where ug = (1/|2]) fQ u(x) dx and C(n) depends only on n. Related work on
inequalities of fractional Hardy and Poincaré type may be found in [58], [62],
[99], [100] and [101].
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6.2 General Domains

This section is mainly devoted to the fractional analogue of the local Hardy-
type inequality in Theorem 5.10 on a general domain 2 in R"(n > 2) with
non-empty boundary, involving a mean distance function M,, ;. The appropriate
mean distance function now depends on s € (0, 1) and is defined by
1 1 /2F (n+pv)
2

1
o dw(v), 6.2.1
Mo () e o E e 62

where 1/p < s < 1,
7,(x) = min{r > 0: x4+ v ¢ 2}, §,(x) = min{r,(x), T, (x)}

and the surface measure @ on S*~! is normalised, i.e., fsn—l do(w) =1.1f Qis
convex, then, as in Theorem 5.12, M, ,(x) < §(x).

Loss and Sloane show in [130] that Theorem 6.1 continues to hold with the
same sharp constant for any convex domain €2. Their proof makes use of a mean
distance function and it is this which is the basis of this section.

Theorem 6.8 Let Q2 be an open subset of R" with non-empty boundary, let
pe(l,00)ands € (1/p, 1). Then for all f € C5°(2),

_ P P
/ VO =TV gy s Doy [ L g 62.2)
oJa lx—ylmtes o M; ,(x)P
where
7 =D/2 (l+_2ps>
Dopps = ——7pey— Pipps (6.2.3)
r (=)
and
1 11— r(ps—l)/p|
Dl,p,ps = 2/0 W dr. (624)

For Q convex,

./ / lf(X) —JWF dxdy > Dn,mﬂ/ lf(x)k’ dx. (6.2.5)

x — y|tes o 8(x)P

The inequality (6.2.5) with some constant C(n, p) continues to hold for
0 < p < 1, but the optimal value of the constant is not known, see [55].
The proof depends on the following one-dimensional inequality.

Lemma 6.9 Letl <p<oo,1<p<s<landfe Ci(a,b). Then

b
[f ()1”
dxdy Z Dl,p,ps -/a min{(x — a)’ (b — _x)}[” dx. (626)

/b YU = foIP

|X _y|l+ps
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112 Fractional Analogues
Moreover, if J C (a, b) is an open set and f € C5°(J), then for all f € C5°(J),
/ [f (x) —f I IF o1

77

dxdy > D
=yt =T | s

dx; (6.2.7)
J is a countable union of disjoint intervals Iy, and so for x € J there is a unique
interval Iy containing x and then §;(x) = 8,y ;= inf{|t]: x + 1 ¢ I;}.

Proof From [83], Proposition 2.2 and Lemma 2.4,
/” "I —fOr

|x_y|1+ut

b
dxdyi/ V) |f (x)Pdx,

where, with w(x) = 8,4 ()" 179" « = ps,

dy

V) = [
(x) |x_y|1+a

/ W) — w@) Iw) —wy) P> (6.2.8)

()t

It is necessary to prove that V(x) >
Let

1) = 2 f5 000 = wi) ) — w2

= 2([{ 4+ L) 0@ = wOo) ) —weP T =S (62.9)
= 2(L() + L),

8(x)"‘ Dl Do

where

wx) =x P | <p<oo, 1 <a<?2.

Note that, to be precise, the integrals in (6.2.8), like the integral in (6.2.7), are
principal values, being over (0, ¢) and (e, co) and the limit as ¢ — 04 taken.
Then, on putting y = tx,

1
@=1) 0 1y_ a-1 a1\ |P—2 dt
hw =T [ ()T
|1—I| +a
(a=1) 71 p 1 dt
—xzi("”“/‘ -7 T

On putting y = x/t,

dt
211 — 1/t

o 0 (a=1)/p
— 50D a/ (@=Dip _ 1) |fe=Dip _ g |P 2 1977t
1

| |1+a
(a 1>(p 1 a/1
= ‘1—t1’
0

0
) 5
L(x) = —x < (p=1) oz/ _ = 1)/p)|1_t7(0171)/p|17
1

p—1 l(a 1)/Pdt
| _t|1+a'
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Thus
@, . ! B 4 B dt
1) = 207" D /0 e (e e
_ 05D /l |1 — b7 di
0 |1 _ t|1+a
—x G rVep, (6.2.10)
also
I (x) > xmr%”@‘”‘“pl,,,,o,. 6.2.11)

From (6.2.7) with w(x) = (4.5 ()@ D/P and ¢ = (1/2)(a + b),

w@)P ' V(x) =2 ) W) —w®) W) — wy) P2 v (6.2.12)
. |X _ y|(1+ot)
fora < x < ¢ and
p—1 ’ p—2 dy
wx)P 'V (x) =2 / W) —w®) W) — w)l P (6.2.13)

for ¢ < x < b. Similar calculations to those which yield (6.2.9) and (6.2.10)
now give the following: fora < x < ¢,

27 ) = wo) w —wopp? — 2
=} w(x) —w w(x) —w oy
= =D (6.2.14)
and
1
Vx) > mpl,p,av (6.2.15)

while forc < x < b,

2 b d
/ W) — w) W) — w2 —=

W()C)p71 |x_y|(l+a)
1

T Dipa (6.2.16)
and

1
V(x) > WIDL]),O{- (6.2.17)

Therefore, V(x) > @Dlﬁp,a and (6.2.5) is proved.
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Since an open subset J is the countable union of disjoint intervals I, we have

from (6.2.5)
/ f lfx) —f (y)l” / IFex) —fmr dvd
x =yt Wi =y Y
- FP
> ;Dl,pps I 51 ()C)p dx
—p [rr

O

We now quote Lemma 2.4 in [130] which leads to the application of Lemma
6.9 and proof of Theorem 6.8.

Lemma 6.10 Let Q be a domain in R". Then for all f € C°(2),
— p
f IF &) —fOI drd
eJa

x — y| e

n— — 1 i
= Ot / do f AL, (%) ds / fx & s) fl(x+ LI
2 sn—1 x: x-0=0 x+sweR X+HIweR |S - t| trs

(6.2.18)

where L, denotes the (n — 1)-dimensional Lebesgue measure on the plane
x - w = 0; recall that the measure dw on S"™" is normalised.

Proof Let

Io(f) :/ f (x) f(Y)Ipd o _/ /‘ F® —fe+2P i
aJa eq

|x _ |1+ps |Z|n+ps

On using polar co-ordinates z = rw, we obtain

Io(f) = wn_1 f dx dow f [f (x) f(x+rw)|1’
2 st X+roe,r>0

rl+ps

1 - he)|?
= —wn71/ da)/ dx/ ) f(1x+ @)l dh.
2 -1 @ Jrthoeo || HPs

The domain of integration {x + hw € 2} in the innermost integral is the line
X + hw intersected with €2. On splitting the variable x into components perpen-
dicular to w and parallel to w, i.e., replacing x by x + lw, where x - v = 0, we
derive

n— l [+h I3
sl wf e af | Seemor,
2 Jo-1 Jiixo=0 HoeQ  Jrt(+hwes || FPs
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The lemma follows by the variable change r = [ 4+ h.

Proof of Theorem 6.8 By Lemma 6.10 and (6.2.6),
/ Fe —fmpe
eJa

e — y| e

1 e
= _wn—l/ da)/ de(x)/ ds/ [f (x + sw) 1f+(x+ )| 0
2 gn—1 x: x-w=0 x+Hwe XHtwe |S—l| ps

1 lw)|P
> _wn—lDl,p,ps/ da)/ dﬁw(x) Mdl
2 sn—1 x: x-w=0 x+lwe2 86() (x + lw)ps
1 [f ()17
= —wy—1D1 pps d dx
PR /g,H ? Jo 8,00
P
[F &)l d

. X
e Q Ms,p(x)Ps '

dx dy

=D

since

o, TT () -
T 1,p.ps — Yn,p,ps-
NG

In the case 2 = R}, the constant D,, , ,, was proved to be best possible in [22]
for p = 2 and in [83] for the other values of p, by constructing a sequence of
trial functions. For a general convex €2, these trial functions are transplanted to
2 near a tangent hyperplane, following the proof of Theorem 5 in [132].

The theorem is therefore proved. O

Remark 6.11

In the case p = 2, it is proved in the appendix of [22] that
D —1 2sl ! i (1 )—1 (6.2.19)
g = — —5) — . 2.
b2 N fn 2

Also, for p = 2 an improvement of (6.2.2) is established in [130], Theorem 1.1,
namely,

f e —foI?
QJQ

2
P LULCOI R (6.2.20)

dxdy > 2k ,
Y= o M

where k, »; i the sharp constant

n—1)/2 1+ps
=/ F(Tp) 1 {22SF(1+2s

) (1 —s) — %} . (6.2.21)

https://doi.org/10.1017/9781009254625.008 Published online by Cambridge University Press


https://doi.org/10.1017/9781009254625.008

116 Fractional Analogues

This refinement is achieved through the use of the one-dimensional inequality
in [130], Theorem 2.1, to replace Lemma 6.9 above, that for 1/2 < s < 1 and
feCga b,

2 b 2s
f / VO =JOF 41ty > 26,5, / V(x>|2(#+ ! ) dx,
x—y|‘+25 4 x—a b—x
(6.2.22)

which has the corollary that for any open set J C R, 1/2 < s < land f €
W,

_ 2
/ M dxdy > 2k o5 / FoP (
1Ji !

o — y[tFs

2s
500 + d,(x)) dx, (6.2.23)
where J is a countable union of disjoint intervals I; and for x € J, d;(x) =
dy, (x) = sup{|t|: x +t ¢ I}, where I} is the unique interval containing x.

By the Sobolev inequality, the left-hand side of (6.2.2) dominates the L,
norm of f for ¢ = np/(n — ps). Dyda and Frank prove in [57] that this remains
true even if the right-hand side of (6.2.2) is subtracted from the left; their result
is the fractional Hardy—Sobolev—Maz’ya inequality in

Theorem 6.12 Letn >2, 2 <p <o0, 0 <s < land1 < ps < n. Then
there exists a constant ky , ; > 0 such that for ¢ = np/(n — ps),

FG) —FOP P e
| [ EEtat asdy =,y o My Com & Fnos </ V(’C)'qd’“)
(6.2.24)

0
Jorall open Q C R" and all f € W3(€2).

This is the fractional analogue of (5.5.6). In the case of p = 2 and Q =
R, a proof of (6.2.24) was given in [160]. A variant of (6.2.24) for a half-
space, and more general John domains, is given in [59]; for R, = {x: x =
(x1, x2, ..., x,) € R", x, > 0}, the integral on the right-hand side has a weight
x, %4, where b = n(1/q — 1/p) +s.

6.3 Fractional Hardy Inequality with a Remainder Term
Dyda [56] proved the following refinement of (6.2.20):

Theorem 6.13 Ler 1/2 < s < 1 and Q2 a bounded domain in R". Then for all
ue C3°(2),
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1 —fo? ’
_/ M dxdy Z Kn,ZS V.L”z d.x
2Jala x—yI"t= o M;>(x)*»
Ao s ’
o [u(x)] .
diam (2) Jo My_12(x)>~!
where

25 4-207%
Apps = T 7VAT (—) -
2 ) 2sT (M2

The constant k, 55 cannot be replaced by a larger constant in (6.13).

117

(6.3.1)

(6.3.2)

The proofin [56] is based on the method developed in [130] to prove (6.2.20),
but with the inequality in the following proposition used instead of (6.2.22).

Proposition 6.14 Let 1 < @ < 2 and —0o < a < b < oo. Then for all

ue Ci(a,b),

2 a o=yt a b

423 b (1] 1
+ ux) { —+ —
x—a b—x

o (b_a) a

The constant k| o, cannot be replaced by a larger one.

Proof An important first step is the calculation of

u(y) — u(x)

Lu(x) := lim
1)y y|=e} X — y[1Te

e—>0+

b b _ 2 b 2
l/ (u(x)—u(y)) drdy > Kl,a/ e ( Lo, ! ) 0
a a X = - X

a—1
> dx.

(6.3.3)

Letg > —1, 0 < o < 2 and u,(x) = (1 — x*)7. Then on setting = y* and

integration by parts

A -y -1
yl-‘roc

Lu,(0) =2 lim /

—0+

1 1
=2<%/ (1 =% —t)—i—t]dt—/ y_]_“dy>
62 &

1 1
=2 lim <—(1 — )Tt — &/ (1 — e dt)
&2

e—0+ \ o o

1 1 e
+2 lim <—[ A —pireldgr4+ =~ - % )
e—0+ \ 2 J2 o o

2
= E[l —(q+1—-a/2)B(g+1,1—-a/2)]
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since

1 — 2—« 1 — 2\g+1 1
lim (—(1 — g2yt _ 8—) = lim £ <( £ )2 ) =0:
e—>0+ \ o o e—>0+ o &

B denotes the Euler beta function: B(a, b) = rlf‘gl;él)’)
For xp € (—1, 1),

1 2 2
(I —=y)7— (1 —xp)
Lu,(xg) = v/ d
R

where pv denotes the principal value. The variable change

transforms Lu,, into

(=21 — (1 — 1)

_ a—1-2¢q
e (1 — txp) dt

Luy(xo) = (1 — )™ /

—1

1 _ a—1 __
= (1 — 2y [Luq(O) —pv / wm}
—1

|t|1+e
e _x(2))q—oz |:pv/11 (1— tx(|)t)|‘j;;—2q —1 (1— tz)q dti| ’
Let
I:=pv /_11 % dr = 51_1)1& (Je (x0) + Je (—x0))
where

(1 —1x)* ' =1 L g e
J(XO)—f |l‘|1+a dZ‘Z/; ?—X() l‘_2: O[
1 « . 01
=—(--x ——(1—xo)
o £ o

1 1 —exp)* — 1
:___(1_)60)“4_%
o o«

oae®
By I’'Hopital’s rule
2 1 | N
I=———(1-=x0)% = =(1+x0)
o « o
and so
(1 —x)ae « o
Lug(x) = B {1 =0+ (1 +x%)}
(1 —x%)7@

{Qg+2—-)B(g+ 1,1 —a/2) +al(q)}, (63.4)
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where

1 —1-2
(1 — txp)*~1720 — |
1(q) == pv f (l)tl”" (1 — 2)dr.
—1

We also have

1 a1
1@/)2) :pv/ A= =1 peny
-1

|t|l+(x
1 o0 (t.x)k
_ Zk:Z _ 2\a/2
= TES (1 —)*=dt
1 oo (tx)k
_ Zk=2 _ 2\a/2
=2 T (1 =) =dt

o0
= ZB(k —a/2,1+a/2)x%
k=1

B 2 X Tk —a/2)
=T +a/2)l (-a/2) <k2=(; TCak 1)
- BOLARIZB ey

It can also be shown that I(“—gl) = I(“—gz) = 0and, if 1 < o < 2, that
1(%53) =B 1 - 9).

The next step in the proof of the proposition is the application of a result
which is analogous to the ground state representation for half-spaces and R” \
{0} in [82] and [83], and may be considered as a special case of Proposition
2.3 in [82]. The result is that with 0 < o < 2, w(x) = (1 —x*)@~D/2 and
u€ Co((—1,1)),

1 /1 ') —u))?

2000 |k =y
1 fl /1 (u(x) u(y>>2 wx)w()

= - — dxd
2000 \w) w) ) x—y|ite

1
+2“K1,a/ u(x)*(1 — x*) " dx
—1

dx dy

1 1
+ &/ U2 — (1 +0°— (1 —0*] (1 =) “dv.  (635)
—1

We are now equipped to complete the proof of Proposition 6.14. By scaling
we may and shall assume that a = —1, b = 1. By (6.3.5), we require that

2 (140" —(1—x)">Q2"=2)(1—x), 1 <a<2, 0<x<1. (63.6)
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On substituting u = x2, it suffices to prove that
g) = Q2% =u— (1 = Vu)* — (1 +Jw* +2
is concave, or

€0 =2 =24 57 (= Vi = (Vi)

is decreasing. Setting u = 2, h(@®) =0 —-0*"" =1+ 5>, we have that
(1= — (140" h@) —h0)

t t
h(H)—h(0)
t

is decreasing and hence so is g.
Therefore (6.3.6) is proved and the proposition follows. The sharpness of k| 4
is already established in [130]. ]

Since & is concave, the function ¢ +—

Proof of Theorem 6.13 This follows by using Proposition 6.14 with o« = 2s
instead of (6.2.22) in the proof of the case p = 2 of Theorem 6.8.
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