The discrete version of the Aharonov-Bohm potential corresponding to the magnetic flux Ψ is defined as

$$
\mathcal{A}_{\Psi}(k)=-i\left(A_{1}(k), A_{2}(k)\right)=-i\left(1-e^{2 \pi i \Psi \phi_{1}(k)}, 1-e^{2 \pi i \Psi \phi_{2}(k)}\right) .
$$

Let $e_{1}=(1,0)$ and $e_{2}=(0,1)$. The main result is Theorem 1.1 of [91]:
Theorem 5.19 For all functions $u: \mathbb{Z}^{2} \rightarrow \mathbb{C}$ decaying sufficiently fast,

$$
\begin{align*}
& \sum_{k \in \mathbb{Z}^{2}} \sum_{j=1,2}\left|u\left(k+e_{j}\right)-u(k)+i A_{j}(k) u(k)\right|^{2} \\
& \quad \geq 4 \sin ^{2}\left(\pi \frac{\operatorname{dist}(\Psi, \mathbb{Z}}{8}\right) \sum_{k \in \mathbb{Z}^{2} \backslash\{0\}} \frac{|u(k)|^{2}}{|k|_{\infty}^{2}} . \tag{5.6.6}
\end{align*}
$$

Since $\operatorname{dist}(\Psi, \mathbb{Z}) \leq 1 / 2$, we have

$$
\begin{aligned}
4 \sin ^{2}\left(\pi \frac{\operatorname{dist}(\Psi, \mathbb{Z})}{8}\right) & \geq 4\left[\pi \frac{\operatorname{dist}(\Psi, \mathbb{Z})}{8}\right]^{2} \frac{\sin ^{2}\left(\frac{\pi}{16}\right)}{\left(\frac{\pi}{16}\right)^{2}} \\
& =16 \sin ^{2}\left(\frac{\pi}{16}\right) \min _{l \in \mathbb{Z}}|l-\Psi|^{2}
\end{aligned}
$$

and (5.6.6) implies
Corollary 5.20 For all functions $u: \mathbb{Z}^{2} \rightarrow \mathbb{C}$ decaying sufficiently fast,

$$
\begin{align*}
& \sum_{k \in \mathbb{Z}^{2}} \sum_{j=1,2}\left|u\left(k+e_{j}\right)-u(k)+i A_{j}(k) u(k)\right|^{2} \\
& \quad \geq 16 \sin ^{2}\left(\frac{\pi}{16}\right) \min _{k \in \mathbb{Z}^{2}}|l-\Psi|^{2} \sum_{k \in \mathbb{Z}^{2} \backslash\{0\}} \frac{|u(k)|^{2}}{|k|_{\infty}^{2}} . \tag{5.6.7}
\end{align*}
$$

Note that $16 \sin ^{2}\left(\frac{\pi}{16}\right)=4(2-\sqrt{2+\sqrt{2}}) \sim 0.50896 \ldots$.

6

Fractional Analogues

6.1 Special Cases and Consequences

6.1.1 Fractional Hardy Inequalities on $\mathbb{R}^{\boldsymbol{n}}$ and $\mathbb{R}_{+}^{\boldsymbol{n}}$

The fractional Hardy inequality on a domain $\Omega \subset \mathbb{R}^{n}$ with non-empty boundary $\partial \Omega$ has the form

$$
\begin{equation*}
\int_{\Omega \times \Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d x \geq C(s, p, \Omega) \int_{\Omega} \frac{|u(x)|^{p}}{\delta(x)^{s}} d x, u \in C_{0}^{\infty}(\Omega) \tag{6.1.1}
\end{equation*}
$$

where $1<p<\infty, 0<s<1, \delta(x):=\inf \left\{|x-y|: y \in \mathbb{R}^{n} \backslash \Omega\right\}$ and $C(s, p, \Omega)$ is a positive constant which is independent of u. The expression on the left-hand side of (6.1.1) is $[u]_{s, p, \Omega}^{p}$, where $[u]_{s, p, \Omega}$ is the Gagliardo seminorm of u defined in Section 3.1.

We begin our investigation of these inequalities with important special cases on the half-space $\mathbb{R}_{+}^{n}=\left\{x: x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{n}>0\right\}$ and \mathbb{R}^{n}, and examine significant implications in the latter case for results on the limiting behaviour of fractional inequalities from [23] and [134] discussed in Section 3.2. The first theorem was proved by Bogdan and Dyda in [22] in the case $p=2$ and extended to all other values of p in [83]. We denote by $\stackrel{0}{W}_{p}^{s}\left(\mathbb{R}_{+}^{n}\right)$ the completion of $C_{0}^{\infty}\left(\mathbb{R}_{+}^{n}\right)$ with respect to the $W_{p}^{s}\left(\mathbb{R}_{+}^{n}\right)$ norm; for $p s<1$ this coincides with the completion of $C_{0}^{\infty}\left(\overline{\mathbb{R}_{+}^{n}}\right)$.

Theorem 6.1 Let $n \geq 1,1 \leq p<\infty$ and $0<s<1$ with $p s \neq 1$. Then, for all $u \in \stackrel{0}{W_{p}^{s}}\left(\mathbb{R}_{+}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d x \geq D_{n, s, p} \int_{\mathbb{R}_{+}^{n}} \frac{|u(x)|^{p}}{|x|^{p s}} d x \tag{6.1.2}
\end{equation*}
$$

with sharp constant

$$
\begin{equation*}
D_{n, p, s}:=2 \pi^{(n-1) / 2} \frac{\Gamma((1+p s) / 2)}{\Gamma((n+p s) / 2)} \int_{0}^{1}\left|1-r^{(p s-1) / 2}\right|^{p} \frac{d r}{(1-r)^{1+p s}} \tag{6.1.3}
\end{equation*}
$$

If $p=1$ and $n=1$, equality holds if and only if u is proportional to a nonincreasing function. If $p>1$ or if $p=1$ and $n \geq 2$, the inequality is strict for any non-trivial function $u \in W_{p}^{s}\left(\mathbb{R}_{+}^{n}\right)$.

The theorem follows from the special case $\Omega=\mathbb{R}_{+}^{n}$ of an abstract Hardy inequality in [83], Proposition 2.2,

$$
\begin{equation*}
E[u]:=\int_{\Omega} \int_{\Omega}|u(x)-u(y)|^{p} k(x, y) d x d y \geq \int_{\Omega} V(x)|u(x)|^{p} d x \tag{6.1.4}
\end{equation*}
$$

on compactly supported functions u on $\Omega \subset \mathbb{R}^{n}$, under the following assumptions. There exists a family of measurable functions $k_{\varepsilon}(\varepsilon>0)$ on $\Omega \times \Omega$ satisfying $k_{\varepsilon}(x, y)=k_{\varepsilon}(y, x), 0 \leq k_{\varepsilon}(x, y) \leq k(x, y)$ and $\lim _{\varepsilon \rightarrow 0} k_{\varepsilon}(x, y)=k(x, y)$ for a.e. $x, y \in \Omega$. Moreover, with w a positive, measurable function on Ω, the integrals

$$
V_{\varepsilon}(x):=2 w(x)^{-p+1} \int_{\Omega}(w(x)-w(y))|w(x)-w(y)|^{p-2} k_{\varepsilon}(x, y) d y
$$

are absolutely convergent for a.e. x, belong to $L_{1, l o c}(\Omega)$, and $\int V_{\varepsilon} \phi d x \rightarrow \int V \phi d x$ for any bounded ϕ with compact support in Ω. For the proof of Theorem 6.1, $\Omega=\mathbb{R}_{+}^{n}$ and setting $\alpha:=(1-p s) / p$, the following choices are made:

$$
w(x)=x_{n}^{-\alpha}, k(x, y)=|x-y|^{-n-p s}, k_{\varepsilon}(x, y)=|x-y|^{-n-p s} \chi_{\left|x_{n}-y_{n}\right|}
$$

Then [82], Lemma 3.1 gives that $V(x)=D_{n, p, s} x_{n}^{-p s}$ and hence

$$
\begin{equation*}
2 \lim _{\varepsilon \rightarrow 0} \int_{\| x|-|y||>\varepsilon}(w(x)-w(y))|w(x)-w(y)|^{p-2} k(x, y) d y=\frac{D_{n, p, s}}{|x|^{p s}} w(x)^{p-1} \tag{6.1.5}
\end{equation*}
$$

Therefore (6.1.2) is established. We refer to the proof of Theorem 1.1 in [83] for showing that the constant $D_{n, p, s}$ in (6.1.3) is optimal and also for details on the remainder of Theorem 6.1.

The approach sketched above for establishing Theorem 6.1 in [83], based on (6.1.4) with $\Omega=\mathbb{R}_{+}^{n}$, is used for $\Omega=\mathbb{R}^{n}$ in [82], and, in fact, will be used for a general domain Ω in Section 6.2. The choices

$$
w(x)=|x|^{-\alpha}, k(x, y)=|x-y|^{-n-p s}, V(x)=C(n, s, p)|x|^{-p s}
$$

yield the following modification in [82]:

Theorem 6.2 Let $n \geq 1$ and $0<s<1$. Then for all $u \in W_{p}^{s}\left(\mathbb{R}^{n}\right)=W_{p}^{s}\left(\mathbb{R}^{n}\right)$ (see (3.2.2)) if $1 \leq p<n / s$, and for all $u \in \stackrel{0}{W}_{p}^{s}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ if $p>n / s$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d x \geq C(n, s, p) \int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{|x|^{p s}} d x \tag{6.1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n, s, p}:=2 \int_{0}^{1} r^{p s-1}\left|1-r^{(n-p s) / p}\right|^{p} \Phi_{n, s, p}(r) d r, \tag{6.1.7}
\end{equation*}
$$

and

$$
\begin{gathered}
\Phi_{n, s, p}(r):=\omega_{n-2} \int_{-1}^{1} \frac{\left(1-t^{2}\right)^{(n-3) / 2}}{\left(1-2 r t+r^{2}\right)^{(n+p s) / 2}} d t, n \geq 2, \\
\Phi_{1, s, p}(r):=\left(\frac{1}{(1-r)^{1+p s}}+\frac{1}{(1+r)^{1+p s}}\right), n-1 .
\end{gathered}
$$

The constant $C_{n, s, p}$ is optimal. If $p=1$, equality holds if and only if u is proportional to a symmetric decreasing function. If $p>1$, the inequality is strict for any non-trivial function $u \in W_{p}^{s}\left(\mathbb{R}^{n}\right)$ or $W_{p}^{s}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, respectively.

6.1.2 The Limiting Cases of $s \rightarrow 0+$ and $s \rightarrow 1-$

It is proved in [134], Theorem 2, that for $n \geq 1,0<s<1,1 \leq p<n / s$ and $u \in W_{p}^{s}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y \geq c(n, p) \frac{(n-s p)^{p}}{s(1-s)} \int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{|x|^{p s}} d x \tag{6.1.8}
\end{equation*}
$$

for some constant $c(n, p)$ which depends only on n and p. Since $C(n, s, p)$ in Theorem 6.2 is optimal, it follows that

$$
\begin{equation*}
c(n, p) \frac{(n-s p)^{p}}{s(1-s)} \leq C(n, s, p) . \tag{6.1.9}
\end{equation*}
$$

There are related consequences of Corollary 3.2.19, where we saw that for $p \in(1, \infty)$ and $u \in W_{p}^{s}\left(\mathbb{R}^{n}\right)$, there exists a positive constant $K(p, n)$ such that

$$
\lim _{s \rightarrow 1-}(1-s) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y=\frac{K(p, n)}{p} \int_{\mathbb{R}^{n}}|\nabla u(x)|^{p} d x
$$

and hence by Hardy's inequality,
$\lim _{s \rightarrow 1-}(1-s) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y \geq \frac{K(p, n)}{p}\left(\frac{p-1}{p}\right)^{p} \int_{\mathbb{R}^{n}} \frac{|u(x)|^{p}}{|x|^{p}} d x$.

Also, for $u \in \bigcup_{0<s<1} W_{p}^{s}\left(\mathbb{R}^{n}\right)$, there exists a positive constant $C^{\prime}(n, p) \approx p^{-1} n$ such that

$$
\begin{equation*}
\lim _{s \rightarrow 0+} s \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y=C^{\prime}(n, p) \int_{\mathbb{R}^{n}}|u(x)|^{p} d x \tag{6.1.11}
\end{equation*}
$$

see Remark 3.2.20.
It is fitting to recall here that for $p s<1$, the Sobolev embedding theorem asserts that $W_{p}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p^{*}}\left(\mathbb{R}^{n}\right)$, where $p^{*}=n p /(n-p s)$, and

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{1 / p} \geq S_{n, s, p} \int_{\mathbb{R}^{n}}|u(x)|^{p *} d x \tag{6.1.12}
\end{equation*}
$$

The optimal values of the constants $S_{n, s, p}$ are not known. Estimates are given in [23] which reflect the correct behaviour as s tends to 1 ; in [134], Theorem 1, the sharp constant is shown to satisfy

$$
\begin{equation*}
S_{n, s, p} \geq c(n, p) \frac{(n-p s)^{p-1}}{s(1-s)} \tag{6.1.13}
\end{equation*}
$$

for some positive constant $c(n, p)$, and for $u \in \bigcup_{0<s<1} W_{p}^{s}\left(\mathbb{R}^{n}\right)$, the asymptotic result

$$
\begin{equation*}
\lim _{s \rightarrow 0+} s \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y=2 p^{-1} \omega_{n-1} \int_{\mathbb{R}^{n}}|u(x)|^{p} d x \tag{6.1.14}
\end{equation*}
$$

is proved in [134] Theorem 3. The following asymptotic result when $s \rightarrow 1-$ is established in [150] and [30] for all $u \in C_{0}^{\infty}(\Omega)$ and $\Omega \subset \mathbb{R}^{n}$ convex:

$$
\begin{equation*}
\lim _{s \rightarrow 1-}(1-s) \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y=\alpha_{n, p} \int_{\Omega}|\nabla u(x)|^{p} d x \tag{6.1.15}
\end{equation*}
$$

where, with $\mathbf{e}_{1}=(1,0,0, \ldots, 0)$,

$$
\alpha_{n, p}=\frac{1}{p} \int_{\mathbb{S}^{n-1}}\left|\left\langle\sigma \cdot \mathbf{e}_{1}\right\rangle\right|^{p} d \sigma=\frac{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{p+1}{2}\right)}{\pi^{1 / 2} \Gamma\left(\frac{n+p}{2}\right)}
$$

Thus an extension of Corollary 3.20 is achieved which allows for the inequality on a convex subset Ω of \mathbb{R}^{n}.

In [145], Peetre proved that the standard Sobolev embedding $W_{p}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow$ $L_{p *}\left(\mathbb{R}^{n}\right)$ can be refined to $W_{p}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p *, p}\left(\mathbb{R}^{n}\right)$. The following sharp inequality associated with this embedding is given in [82], Theorem 4.1:

Theorem 6.3 Let $n \in \mathbb{N}, 0<s<1,1 \leq p<n / s$ and $p^{*}=n p /(n-p s)$. Then $W_{p}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p^{*}, p}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\|u\|_{p^{*}, p} \leq\left(\frac{n}{\omega_{n-1}}\right)^{s / n} C_{n, p, s}^{-1 / p}\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{1 / p} \tag{6.1.16}
\end{equation*}
$$

for any $u \in W_{p}^{s}\left(\mathbb{R}^{n}\right)$ with $C_{n, p, s}$ from (6.1.7). The constant is sharp. For $p=1$, equality holds if u is proportional to a non-negative function v such that the level sets $\{v>\tau\}$ are balls for a.e. τ. For $p>1$ the inequality is strict for any non-trivial u.

In [21], Proposition 4.2, it is shown that if $1 \leq p<r$ and $0<q \leq r \leq \infty$, then

$$
\|u\|_{q, r} \leq\left(\frac{q}{p}\right)^{\frac{(r-p)}{r p}}\|u\|_{q, p} .
$$

It follows that we have
Corollary 6.4 Let $n \geq 1,0<s<1,1 \leq p<n / s, p^{*}=n p /(n-p s) \leq r \leq$ ∞ and $p<r$. Then $W_{p}^{s}\left(\mathbb{R}^{n}\right) \hookrightarrow L_{p^{*}, r}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\|u\|_{p^{*}, r} \leq\left(\frac{p *}{p}\right)^{\frac{r-p}{r p}}\left(\frac{n}{\omega_{n-1}}\right)^{s / n} C_{n, p, s}^{-1 / p}\left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y\right)^{1 / p} \tag{6.1.17}
\end{equation*}
$$

The choice $r=p^{*}$ gives the Sobolev inequality

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y \geq S_{n, s, p}\|u\|_{p^{*}}^{p}
$$

where

$$
\begin{equation*}
S_{n, s, p}=\left(\frac{p}{p^{*}}\right)^{p s / n}\left(\frac{\omega_{n-1}}{n}\right)^{p s / n} C_{n, s, p} \tag{6.1.18}
\end{equation*}
$$

The asymptotic inequality (6.1.11) is then recovered from (6.1.9).
It is proved in [82], Lemma 4.3, that for $0<s \leq 1$ and $1 \leq p<n / s$, any non-negative symmetric decreasing function u on \mathbb{R}^{n} satisfies

$$
\begin{equation*}
\|u\|_{p^{*}, p}=\left(\frac{n}{\omega_{n-1}}\right)^{s / n}\left(\int_{\mathbb{R}^{n}} \frac{u(x)^{p}}{|x|^{p s}} d x\right)^{1 / p} \tag{6.1.19}
\end{equation*}
$$

This establishes the link between Theorem 6.3 and the sharp inequality (6.1.6).
The 'local' analogue of (6.1.16) with $s=1$ is

$$
\begin{equation*}
\|u\|_{p^{*}, p} \leq\left(\frac{n}{\omega_{n-1}}\right)^{1 / n} \frac{p}{n-p}\left(\int_{\mathbb{R}^{n}}|\nabla u(x)|^{p} d x\right)^{1 / p} \tag{6.1.20}
\end{equation*}
$$

for $n \geq 2,1 \leq p<n$ and $p^{*}=n p /(n-p)$. This is the inequality (5.1.4) with the optimal constant proved by Alvino in [10].

A fractional Hardy inequality which focuses on the dependence of the constant on s is featured in the following theorem in [25] in which the correct asymptotic behaviour with respect to s as $s \rightarrow 0+$ and $s \rightarrow 1-$ is exhibited in accordance with (6.1.14) and (6.1.15). Note that the inequality (6.1.21) is not of
the type (6.1.1) since the integration on the left-hand side of (6.1.21) is over the whole of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ rather than $\Omega \times \Omega$, as in (6.1.1). The result should be compared with Theorem 6.8, which has the same domain of integration on both sides, gives the right asymptotic behaviour as $s \rightarrow 1-$ and $s \rightarrow 0+$, and has the best constant, but at the expense of requiring the condition $1 / p<s<1$.

Theorem 6.5 Let $1<p<\infty$ and $0<s<1$, and let Ω be a proper open convex subset of $\mathbb{R}^{n}, n \geq 1$. Then for all $u \in C_{0}^{\infty}(\Omega)$ and with $\delta(x):=$ $\inf \{|x-y|: y \notin \Omega\}$, there exists a positive constant $C(n, p)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+s p}} d x d y \geq C(n, p) \frac{1}{s(1-s)} \int_{\Omega} \frac{|u(x)|^{p}}{\delta(x)^{p s}} d x \tag{6.1.21}
\end{equation*}
$$

This is a nonlocal analogue of the inequality in Section 5.3 for the local Hardy inequality on convex domains. The proof is based on the property that for $0<s<1$ and $1<p<\infty, \delta^{s}$ is (s, p)-locally weakly superharmonic in the following weak sense:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \frac{\left|\delta(x)^{s}-\delta(y)^{s}\right|^{p-2}\left(\delta(x)^{s}-\delta(y)^{s}\right)(\phi(x)-\phi(y))}{|x-y|^{n+s p}} d x d y \geq 0 \tag{6.1.22}
\end{equation*}
$$

for all non-negative $\phi \in W_{s}^{p}(\Omega)$ with compact support in Ω. This property is written as $\left(-\Delta_{p}\right)^{s} \delta^{s} \geq 0$, where $\left(-\Delta_{p}\right)^{s}$ is the fractional p-Laplacian of order s; see (3.4.8) for more details on the significance of this property. The pivotal result in [25], Proposition 3.2, is that if Ω is an open, bounded, convex subset of \mathbb{R}^{n}, then δ^{s} is locally weakly (s, p)-superharmonic. An interesting preliminary result from [102] (and from [38] when $p=2$) is that for $\Omega:=\mathbb{R}_{+}^{n}, \delta^{s}$ is locally weakly (s, p)-harmonic, i.e., δ^{s} and $-\delta^{s}$ are both locally weakly (s, p) superharmonic.

The proof of Theorem 5.1.5 uses a Moser-type argument which is similar to that in Section 5.3, this time choosing

$$
\phi=\frac{|u|^{p}}{\left(\delta^{s}+\varepsilon\right)^{p-1}}
$$

where $u \in C_{0}^{\infty}(\Omega)$ and $\varepsilon>0$; in [25], Lemma 2.4, this choice is proved to be admissible, i.e., $\phi \in W_{s}^{p}(\Omega)$. Another important role in the proof is played by the following fractional counterpart from [25], Proposition 2.5, of the property that $|\nabla \delta|=1$ a.e. in Ω.

Proposition 6.6 Let $1<p<\infty, 0<s<1$, and let Ω be an open, bounded, convex subset of \mathbb{R}^{n}. Then

$$
\int_{y \in \Omega: \delta(y) \leq \delta(x)} \frac{|\delta(x)-\delta(y)|^{p}}{|x-y|^{n+s p}} d y \geq \frac{C_{1}}{1-s} \delta(x)^{p(1-s)}
$$

for a.e. $x \in \Omega$, where

$$
C_{1}=C_{1}(n, p)=\frac{1}{p} \sup _{0<\sigma<1\rangle}\left[\sigma^{p} \mathcal{H}^{n-1}\left(\left\{\omega \in \mathbb{S}^{n-1}:\left\langle\omega, e_{1}\right\rangle>\sigma\right\}\right)\right]
$$

$n-1$ is the Hausdorff dimension of the exhibited set and $\mathcal{H}^{n-1}(\cdot)$ is its $(n-1)-$ dimensional Hausdorff measure.

An analysis of the dependence of (6.1.1) on Ω, and the permissible values of p and s, is given in the following theorem from [55]:

Theorem 6.7 The inequality (6.1.1) holds in each of the following cases:

1. Ω is a bounded Lipschitz domain and $p s>1$;
2. $\Omega=\mathbb{R}^{n} \backslash K$, where K is a bounded Lipschitz domain, $p s \neq 1$, ps $\neq n$;
3. Ω is a domain above the graph of a Lipschitz function $\mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$ and $p s \neq 1$;
4. Ω is the complement of a point and $p s \neq n$.

Furthermore, (6.1.1) does not hold if

1. Ω is a bounded Lipschitz domain and $p s \leq 1, s<1$;
2. Ω is the complement of a compact set and $n=p s, s<p$.

A consequence is that in the integral on the left-hand side of (6.1.21), $\mathbb{R}^{n} \times \mathbb{R}^{n}$ cannot be replaced by $\Omega \times \Omega$ whenever Ω is bounded if $p s \leq 1$. It is observed in [55] (see also [44]) that if Ω is a bounded Lipschitz domain and $p s \leq 1$,

$$
\begin{equation*}
\int_{\Omega} \frac{|u(x)|^{p}}{\delta(x)^{p s}} d x \leq C\left(\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x+\int_{\Omega}|u(x)|^{p} d x\right) \tag{6.1.23}
\end{equation*}
$$

for all $u \in C_{0}^{\infty}(\Omega)$, the inequality being false without the final term even for domains Ω with a C^{∞} boundary.

In [23], Theorem 1, it is proved for Ω a cube in $\mathbb{R}^{n}(n>1), 0<s<1, p>$ $1, p s<n, \frac{1}{q}=\frac{1}{p}-\frac{s}{n}$ and $u \in W_{s}^{p}(\Omega)$, that

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{p}}{|x-y|^{n+p s}} d x \geq C(n)(n / q)^{p}(1-s)^{-1} \int_{\Omega}\left|u(x)-u_{\Omega}\right|^{q} d x \tag{6.1.24}
\end{equation*}
$$

where $u_{\Omega}:=(1 /|\Omega|) \int_{\Omega} u(x) d x$ and $C(n)$ depends only on n. Related work on inequalities of fractional Hardy and Poincaré type may be found in [58], [62], [99], [100] and [101].

6.2 General Domains

This section is mainly devoted to the fractional analogue of the local Hardytype inequality in Theorem 5.10 on a general domain Ω in $\mathbb{R}^{n}(n \geq 2)$ with non-empty boundary, involving a mean distance function $M_{p, \Omega}$. The appropriate mean distance function now depends on $s \in(0,1)$ and is defined by

$$
\begin{equation*}
\frac{1}{M_{s, p}(x)^{p s}}:=\frac{\pi^{1 / 2} \Gamma\left(\frac{n+p s}{2}\right)}{\Gamma\left(\frac{1+p s}{2}\right) \Gamma\left(\frac{n}{2}\right)} \int_{\mathbb{S}^{n-1}} \frac{1}{\delta_{v}^{p s}(x)} d \omega(v) \tag{6.2.1}
\end{equation*}
$$

where $1 / p<s<1$,

$$
\tau_{v}(x)=\min \{t>0: x+t \nu \notin \Omega\}, \delta_{v}(x)=\min \left\{\tau_{v}(x), \tau_{-v}(x)\right\}
$$

and the surface measure ω on \mathbb{S}^{n-1} is normalised, i.e., $\int_{\mathbb{S}^{n-1}} d \omega(\nu)=1$. If Ω is convex, then, as in Theorem 5.12, $M_{s, p}(x) \leq \delta(x)$.

Loss and Sloane show in [130] that Theorem 6.1 continues to hold with the same sharp constant for any convex domain Ω. Their proof makes use of a mean distance function and it is this which is the basis of this section.

Theorem 6.8 Let Ω be an open subset of \mathbb{R}^{n} with non-empty boundary, let $p \in(1, \infty)$ and $s \in(1 / p, 1)$. Then for all $f \in C_{0}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{n+p s}} d x d y \geq D_{n, p, p s} \int_{\Omega} \frac{|f(x)|^{p}}{M_{s, p}(x)^{p s}} d x \tag{6.2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{n, p, p s}:=\frac{\pi^{(n-1) / 2} \Gamma\left(\frac{1+p s}{2}\right)}{\Gamma\left(\frac{n+p s}{2}\right)} D_{1, p, p s} \tag{6.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{1, p, p s}:=2 \int_{0}^{1} \frac{\left|1-r^{(p s-1) / p}\right|}{(1-r)^{1+p s}} d r . \tag{6.2.4}
\end{equation*}
$$

For Ω convex,

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{n+p s}} d x d y \geq D_{n, p, p s} \int_{\Omega} \frac{|f(x)|^{p}}{\delta(x)^{p s}} d x \tag{6.2.5}
\end{equation*}
$$

The inequality (6.2.5) with some constant $C(n, p)$ continues to hold for $0<p \leq 1$, but the optimal value of the constant is not known, see [55].

The proof depends on the following one-dimensional inequality.
Lemma 6.9 Let $1<p<\infty, 1<p<s<1$ and $f \in C_{0}^{\infty}(a, b)$. Then

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y \geq D_{1, p, p s} \int_{a}^{b} \frac{|f(x)|^{p}}{\min \{(x-a),(b-x)\}^{p s}} d x \tag{6.2.6}
\end{equation*}
$$

Moreover, if $J \subset(a, b)$ is an open set and $f \in C_{0}^{\infty}(J)$, then for all $f \in C_{0}^{\infty}(J)$,

$$
\begin{equation*}
\int_{J} \int_{J} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y \geq D_{1, p, p s} \int_{J} \frac{|f(x)|^{p}}{\delta_{J}(x)^{p s}} d x \tag{6.2.7}
\end{equation*}
$$

J is a countable union of disjoint intervals I_{k}, and so for $x \in J$ there is a unique interval I_{k} containing x and then $\delta_{J}(x)=\delta_{I_{k}(x)}:=\inf \left\{|t|: x+t \notin I_{k}\right\}$.

Proof From [83], Proposition 2.2 and Lemma 2.4,

$$
\int_{a}^{b} \int_{a}^{b} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+\alpha}} d x d y \geq \int_{a}^{b} V(x)|f(x)|^{p} d x
$$

where, with $w(x)=\delta_{(a, b)}(x)^{-(1-\alpha) / p}, \alpha=p s$,

$$
\begin{equation*}
V(x)=\frac{2}{w(x)^{p-1}} \int_{a}^{\infty}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{1+\alpha}} . \tag{6.2.8}
\end{equation*}
$$

It is necessary to prove that $V(x) \geq \frac{1}{\delta(x)^{\alpha}} \mathcal{D}_{1, p, \alpha}$.
Let

$$
\begin{align*}
I(x) & :=2 \int_{0}^{\infty}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{1+\alpha}} \\
& =2\left(\int_{0}^{x}+\int_{x}^{\infty}\right)(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{1+\alpha}} \tag{6.2.9}\\
& =: 2\left(I_{1}(x)+I_{2}(x)\right),
\end{align*}
$$

where

$$
w(x)=x^{-(1-\alpha) / p}, 1<p<\infty, 1<\alpha<2 .
$$

Note that, to be precise, the integrals in (6.2.8), like the integral in (6.2.7), are principal values, being over $(0, \varepsilon)$ and (ε, ∞) and the limit as $\varepsilon \rightarrow 0+$ taken. Then, on putting $y=t x$,

$$
\begin{aligned}
I_{1}(x) & =x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{0}^{1}\left(1-t^{\frac{\alpha-1}{p}}\right)\left|\left(1-t^{\frac{\alpha-1}{p}}\right)\right|^{p-2} \frac{d t}{|1-t|^{1+\alpha}} \\
& =x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{0}^{1}\left|\left(1-t^{\frac{\alpha-1}{p}}\right)\right|^{p-1} \frac{d t}{|1-t|^{1+\alpha}} .
\end{aligned}
$$

On putting $y=x / t$,

$$
\begin{aligned}
I_{2}(x) & =-x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{1}^{0}\left(1-t^{-(\alpha-1) / p}\right)\left|1-t^{-(\alpha-1) / p}\right|^{p-2} \frac{d t}{t^{2}|1-1 / t|^{1+\alpha}} \\
& =-x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{1}^{0}\left(t^{(\alpha-1) / p}-1\right)\left|t^{(\alpha-1) / p}-1\right|^{p-2} \frac{t^{(\alpha-1) / p} d t}{|1-t|^{1+\alpha}} \\
& =-x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{0}^{1}\left|1-t^{\frac{\alpha-1}{p}}\right|^{p-1} \frac{t^{(\alpha-1) / p} d t}{|1-t|^{1+\alpha}} .
\end{aligned}
$$

Thus

$$
\begin{align*}
I(x) & =2 x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{0}^{1}\left|1-t^{(\alpha-1) / p}\right|^{p-1}\left(1-t^{(\alpha-1) / p}\right) \frac{d t}{|1-t|^{1+\alpha}} \\
& =2 x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \int_{0}^{1}\left|1-t^{(\alpha-1) / p}\right|^{p} \frac{d t}{|1-t|^{1+\alpha}} \\
& =x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \mathcal{D}_{1, p, \alpha} \tag{6.2.10}
\end{align*}
$$

also

$$
\begin{equation*}
I_{1}(x) \geq x^{\frac{(\alpha-1)}{p}(p-1)-\alpha} \mathcal{D}_{1, p, \alpha} \tag{6.2.11}
\end{equation*}
$$

From (6.2.7) with $w(x)=\delta_{(a, b)}(x)^{(\alpha-1) / p}$ and $c=(1 / 2)(a+b)$,

$$
\begin{equation*}
w(x)^{p-1} V(x)=2 \int_{a}^{c}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{(1+\alpha)}} \tag{6.2.12}
\end{equation*}
$$

for $a<x<c$ and

$$
\begin{equation*}
w(x)^{p-1} V(x)=2 \int_{c}^{b}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{(1+\alpha)}} \tag{6.2.13}
\end{equation*}
$$

for $c<x<b$. Similar calculations to those which yield (6.2.9) and (6.2.10) now give the following: for $a<x<c$,

$$
\begin{align*}
& \frac{2}{w(x)^{p-1}} \int_{a}^{\infty}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{(1+\alpha)}} \\
& \quad=\frac{1}{(x-a)^{\alpha}} \mathcal{D}_{1, p, \alpha} \tag{6.2.14}
\end{align*}
$$

and

$$
\begin{equation*}
V(x) \geq \frac{1}{(x-a)^{\alpha}} \mathcal{D}_{1, p, \alpha}, \tag{6.2.15}
\end{equation*}
$$

while for $c<x<b$,

$$
\begin{align*}
& \frac{2}{w(x)^{p-1}} \int_{-\infty}^{b}(w(x)-w(y))|w(x)-w(y)|^{p-2} \frac{d y}{|x-y|^{(1+\alpha)}} \\
& \quad=\frac{1}{(b-x)^{\alpha}} \mathcal{D}_{1, p, \alpha} \tag{6.2.16}
\end{align*}
$$

and

$$
\begin{equation*}
V(x) \geq \frac{1}{(b-x)^{\alpha}} \mathcal{D}_{1, p, \alpha} \tag{6.2.17}
\end{equation*}
$$

Therefore, $V(x) \geq \frac{1}{\delta(x)^{\alpha}} \mathcal{D}_{1, p, \alpha}$ and (6.2.5) is proved.

Since an open subset J is the countable union of disjoint intervals I_{k}, we have from (6.2.5)

$$
\begin{aligned}
\int_{J} \int_{J} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y & \geq \sum_{k=1}^{\infty} \int_{I_{k}} \int_{I_{k}} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y \\
& \geq \sum_{k=1}^{\infty} D_{1, p, p s} \int_{I_{k}} \frac{|f(x)|^{p}}{\delta_{I_{k}}(x)^{p s}} d x \\
& \geq D_{1, p, p s} \int_{J} \frac{|f(x)|^{p}}{\delta_{J}(x)^{p s}} d x .
\end{aligned}
$$

We now quote Lemma 2.4 in [130] which leads to the application of Lemma 6.9 and proof of Theorem 6.8.

Lemma 6.10 Let Ω be a domain in \mathbb{R}^{n}. Then for all $f \in C_{0}^{\infty}(\Omega)$,

$$
\begin{align*}
& \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y \\
& =\frac{\omega_{n-1}}{2} \int_{\mathbb{S}^{n-1}} d \omega \int_{x: x: \omega=0} d L_{\omega}(x) \int_{x+s \omega \in \Omega} d s \int_{x+t \omega \in \Omega} \frac{|f(x+s \omega)-f(x+t \omega)|^{p}}{|s-t|^{1+p s}} d t \tag{6.2.18}
\end{align*}
$$

where \mathcal{L}_{ω} denotes the $(n-1)$-dimensional Lebesgue measure on the plane $x \cdot \omega=0$; recall that the measure $d \omega$ on \mathbb{S}^{n-1} is normalised.

Proof Let

$$
I_{\Omega}(f):=\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y=\int_{\Omega} d x \int_{x+z \in \Omega} \frac{|f(x)-f(x+z)|^{p}}{|z|^{n+p s}} d z
$$

On using polar co-ordinates $z=r \omega$, we obtain

$$
\begin{aligned}
I_{\Omega}(f) & =\omega_{n-1} \int_{\Omega} d x \int_{\mathbb{S}^{n-1}} d \omega \int_{x+r \omega \in \Omega, r>0} \frac{|f(x)-f(x+r \omega)|^{p}}{r^{1+p s}} d r \\
& =\frac{1}{2} \omega_{n-1} \int_{\mathbb{S}^{n-1}} d \omega \int_{\Omega} d x \int_{x+h \omega \in \Omega} \frac{|f(x)-f(x+h \omega)|^{p}}{|h|^{1+p s}} d h
\end{aligned}
$$

The domain of integration $\{x+h \omega \in \Omega\}$ in the innermost integral is the line $x+h \omega$ intersected with Ω. On splitting the variable x into components perpendicular to ω and parallel to ω, i.e., replacing x by $x+l \omega$, where $x \cdot \omega=0$, we derive

$$
\frac{\omega_{n-1}}{2} \int_{\mathbb{S}^{n-1}} d \omega \int_{x: x \cdot \omega=0} d \mathcal{L}_{\omega}(x) \int_{x+l \omega \in \Omega} d l \int_{x+(l+h) \omega \in \Omega} \frac{|f(x+l \omega)-f(x+(l+h) \omega)|^{p}}{|h|^{1+p s}} d h
$$

The lemma follows by the variable change $t=l+h$.

Proof of Theorem 6.8 By Lemma 6.10 and (6.2.6),

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{1+p s}} d x d y \\
& =\frac{1}{2} \omega_{n-1} \int_{\mathbb{S}^{n-1}} d \omega \int_{x: x \cdot \omega=0} d L_{\omega}(x) \int_{x+l \omega \in \Omega} d s \int_{x+t \omega \in \Omega} \frac{|f(x+s \omega)-f(x+t \omega)|^{p}}{|s-t|^{1+p s}} d t \\
& \geq \frac{1}{2} \omega_{n-1} D_{1, p, p s} \int_{\mathbb{S}^{n-1}} d \omega \int_{x: x \cdot \omega=0} d \mathcal{L}_{\omega}(x) \int_{x+l \omega \in \Omega} \frac{|f(x+l \omega)|^{p}}{\delta_{\omega}(x+l \omega)^{p s}} d l \\
& =\frac{1}{2} \omega_{n-1} D_{1, p, p s} \int_{\mathbb{S}^{n-1}} d \omega \int_{\Omega} \frac{|f(x)|^{p}}{\delta_{\omega}(x)^{p s}} d x \\
& =D_{n, p, p s} \int_{\Omega} \frac{|f(x)|^{p}}{M_{s, p}(x)^{p s}} d x,
\end{aligned}
$$

since

$$
\frac{\omega_{n-1}}{2} \frac{\Gamma\left(\frac{n}{2}\right) \Gamma\left(\frac{1+p s}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n+p s}{2}\right)} D_{1, p, p s}=D_{n, p, p s} .
$$

In the case $\Omega=\mathbb{R}_{+}^{n}$, the constant $D_{n, p, p s}$ was proved to be best possible in [22] for $p=2$ and in [83] for the other values of p, by constructing a sequence of trial functions. For a general convex Ω, these trial functions are transplanted to Ω near a tangent hyperplane, following the proof of Theorem 5 in [132].

The theorem is therefore proved.

Remark 6.11

In the case $p=2$, it is proved in the appendix of [22] that

$$
\begin{equation*}
D_{1,2,2 s}=\frac{1}{s}\left\{\frac{2^{-2 s}}{\sqrt{\pi}} \Gamma\left(\frac{1+2 s}{2}\right) \Gamma(1-s)-1\right\} . \tag{6.2.19}
\end{equation*}
$$

Also, for $p=2$ an improvement of (6.2.2) is established in [130], Theorem 1.1, namely,

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2 s}} d x d y \geq 2 \kappa_{n, 2 s} \int_{\Omega} \frac{|f(x)|^{2}}{M_{s, 2}(x)^{2 s}} d x \tag{6.2.20}
\end{equation*}
$$

where $\kappa_{n, 2 s}$ is the sharp constant

$$
\begin{equation*}
\kappa_{n, 2 s}:=\frac{\pi^{(n-1) / 2} \Gamma\left(\frac{1+p s}{2}\right)}{\Gamma\left(\frac{n+p s}{2}\right)} \frac{1}{s}\left\{\frac{2^{-2 s}}{\sqrt{\pi}} \Gamma\left(\frac{1+2 s}{2}\right) \Gamma(1-s)-\frac{1}{2}\right\} . \tag{6.2.21}
\end{equation*}
$$

This refinement is achieved through the use of the one-dimensional inequality in [130], Theorem 2.1, to replace Lemma 6.9 above, that for $1 / 2<s<1$ and $f \in C_{0}^{\infty}(a, b)$,

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} \frac{|f(x)-f(y)|^{2}}{|x-y|^{1+2 s}} d x d y \geq 2 \kappa_{1,2 s} \int_{a}^{b}|f(x)|^{2}\left(\frac{1}{x-a}+\frac{1}{b-x}\right)^{2 s} d x \tag{6.2.22}
\end{equation*}
$$

which has the corollary that for any open set $J \subset \mathbb{R}, 1 / 2<s<1$ and $f \in$ $C_{0}^{\infty}(J)$,

$$
\begin{equation*}
\int_{J} \int_{J} \frac{|f(x)-f(y)|^{2}}{|x-y|^{1+2 s}} d x d y \geq 2 \kappa_{1,2 s} \int_{J}|f(x)|^{2}\left(\frac{1}{\delta_{J}(x)}+\frac{1}{d_{J}(x)}\right)^{2 s} d x \tag{6.2.23}
\end{equation*}
$$

where J is a countable union of disjoint intervals I_{k} and for $x \in J, d_{J}(x)=$ $d_{I_{k}}(x)=\sup \left\{|t|: x+t \notin I_{k}\right\}$, where I_{k} is the unique interval containing x.

By the Sobolev inequality, the left-hand side of (6.2.2) dominates the L_{q} norm of f for $q=n p /(n-p s)$. Dyda and Frank prove in [57] that this remains true even if the right-hand side of (6.2.2) is subtracted from the left; their result is the fractional Hardy-Sobolev-Maz'ya inequality in

Theorem 6.12 Let $n \geq 2,2 \leq p<\infty, 0<s<1$ and $1<p s<n$. Then there exists a constant $k_{n, p, s}>0$ such that for $q=n p /(n-p s)$,
$\int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{p}}{|x-y|^{n+p s}} d x d y-D_{n, p, p s} \int_{\Omega} \frac{|f(x)|^{p}}{M_{s, p}(x)^{p s}} d x \geq k_{n, p, s}\left(\int_{\Omega}|f(x)|^{q} d x\right)^{p / q}$
for all open $\Omega \nsubseteq \mathbb{R}^{n}$ and all $f \in \stackrel{0}{W_{p}^{s}}(\Omega)$.
This is the fractional analogue of (5.5.6). In the case of $p=2$ and $\Omega=$ \mathbb{R}_{+}^{n}, a proof of (6.2.24) was given in [160]. A variant of (6.2.24) for a halfspace, and more general John domains, is given in [59]; for $\mathbb{R}_{+}^{n}=\{x: x=$ $\left.\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x_{n}>0\right\}$, the integral on the right-hand side has a weight $x_{n}^{-b q}$, where $b=n(1 / q-1 / p)+s$.

6.3 Fractional Hardy Inequality with a Remainder Term

Dyda [56] proved the following refinement of (6.2.20):
Theorem 6.13 Let $1 / 2<s<1$ and Ω a bounded domain in \mathbb{R}^{n}. Then for all $u \in C_{0}^{\infty}(\Omega)$,

$$
\begin{align*}
\frac{1}{2} \int_{\Omega} \int_{\Omega} \frac{|f(x)-f(y)|^{2}}{|x-y|^{n+2 s}} d x d y \geq & \kappa_{n, 2 s} \int_{\Omega} \frac{|f(x)|^{2}}{M_{s, 2}(x)^{2 s}} d x \\
& +\frac{\lambda_{n, p s}}{\operatorname{diam}(\Omega)} \int_{\Omega} \frac{|u(x)|^{2}}{M_{s-1 / 2}(x)^{2 s-1}} d x \tag{6.3.1}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{n, p s}=\pi^{(n-1) / 2} \Gamma\left(\frac{2 s}{2}\right) \frac{4-2^{3-2 s}}{2 s \Gamma\left(\frac{n+2 s-1}{2}\right)} . \tag{6.3.2}
\end{equation*}
$$

The constant $\kappa_{n, 2 s}$ cannot be replaced by a larger constant in (6.13).
The proof in [56] is based on the method developed in [130] to prove (6.2.20), but with the inequality in the following proposition used instead of (6.2.22).

Proposition 6.14 Let $1<\alpha<2$ and $-\infty<a<b<\infty$. Then for all $u \in C_{0}^{\infty}(a, b)$,

$$
\begin{align*}
\frac{1}{2} \int_{a}^{b} \int_{a}^{b} \frac{(u(x)-u(y))^{2}}{|x-y|^{1+\alpha}} d x d y \geq & \kappa_{1, \alpha} \int_{a}^{b} u(x)^{2}\left(\frac{1}{x-a}+\frac{1}{b-x}\right)^{2 s} d x \\
& +\frac{4-2^{3-\alpha}}{\alpha(b-a)} \int_{a}^{b} u(x)^{2}\left(\frac{1}{x-a}+\frac{1}{b-x}\right)^{\alpha-1} d x \tag{6.3.3}
\end{align*}
$$

The constant $\kappa_{1, \alpha}$ cannot be replaced by a larger one.
Proof An important first step is the calculation of

$$
L u(x):=\lim _{\varepsilon \rightarrow 0+} \int_{(-1,1) \cap\{y:|x-y|>\varepsilon\}} \frac{u(y)-u(x)}{|x-y|^{1+\alpha}} d y .
$$

Let $q>-1,0<\alpha<2$ and $u_{q}(x)=\left(1-x^{2}\right)^{q}$. Then on setting $t=y^{2}$ and integration by parts

$$
\begin{aligned}
L u_{q}(0)= & 2 \lim _{\varepsilon \rightarrow 0+} \int_{\varepsilon}^{1} \frac{\left(1-y^{2}\right)^{q}-1}{y^{1+\alpha}} d y \\
= & 2\left(\frac{1}{2} \int_{\varepsilon^{2}}^{1}(1-t)^{q} t^{-1-\alpha / 2}[(1-t)+t] d t-\int_{\varepsilon}^{1} y^{-1-\alpha} d y\right) \\
= & 2 \lim _{\varepsilon \rightarrow 0+}\left(\frac{1}{\alpha}\left(1-\varepsilon^{2}\right)^{q+1} \varepsilon^{-\alpha}-\frac{q+1}{\alpha} \int_{\varepsilon^{2}}(1-t)^{q} t^{-\alpha / 2} d t\right) \\
& +2 \lim _{\varepsilon \rightarrow 0+}\left(\frac{1}{2} \int_{\varepsilon^{2}}(1-t)^{q} t^{-\alpha / 2} d t+\frac{1}{\alpha}-\frac{\varepsilon^{-\alpha}}{\alpha}\right) \\
= & \frac{2}{\alpha}[1-(q+1-\alpha / 2) B(q+1,1-\alpha / 2)]
\end{aligned}
$$

since

$$
\lim _{\varepsilon \rightarrow 0+}\left(\frac{1}{\alpha}\left(1-\varepsilon^{2}\right)^{q+1} \varepsilon^{-\alpha}-\frac{\varepsilon^{-\alpha}}{\alpha}\right)=\lim _{\varepsilon \rightarrow 0+} \frac{\varepsilon^{2-\alpha}}{\alpha}\left(\frac{\left(1-\varepsilon^{2}\right)^{q+1}-1}{\varepsilon^{2}}\right)=0
$$

B denotes the Euler beta function: $B(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(1 / 2)}$.
For $x_{0} \in(-1,1)$,

$$
L u_{q}\left(x_{0}\right)=p v \int_{-1}^{1} \frac{\left(1-y^{2}\right)^{q}-\left(1-x_{0}^{2}\right)^{q}}{\left|y-x_{0}\right|^{1+\alpha}} d y
$$

where $p v$ denotes the principal value. The variable change

$$
t=\varphi(y)=\frac{x_{0}-y}{1-x_{0} y}
$$

transforms $L u_{p}$ into

$$
\begin{aligned}
L u_{q}\left(x_{0}\right)= & \left(1-x_{0}^{2}\right)^{q-\alpha} \int_{-1}^{1} \frac{\left(1-t^{2}\right)^{q}-\left(1-t x_{0}\right)^{2 q}}{|t|^{1+\alpha}}\left(1-t x_{0}\right)^{\alpha-1-2 q} d t \\
= & \left(1-x_{0}^{2}\right)^{q-\alpha}\left[L u_{q}(0)-p v \int_{-1}^{1} \frac{\left(1-t x_{0}\right)^{\alpha-1}-1}{|t|^{1+\alpha}} d t\right] \\
& +\left(1-x_{0}^{2}\right)^{q-\alpha}\left[p v \int_{-1}^{1} \frac{\left(1-t x_{0}\right)^{\alpha-1-2 q}-1}{|t|^{1+\alpha}}\left(1-t^{2}\right)^{q} d t\right]
\end{aligned}
$$

Let

$$
I:=p v \int_{-1}^{1} \frac{\left(1-t x_{0}\right)^{\alpha-1}-1}{|t|^{1+\alpha}} d t=\lim _{\varepsilon \rightarrow 0+}\left(J_{\varepsilon}\left(x_{0}\right)+J_{\varepsilon}\left(-x_{0}\right)\right),
$$

where

$$
\begin{aligned}
J_{\varepsilon}\left(x_{0}\right) & =\int_{\varepsilon}^{1} \frac{\left(1-t x_{0}\right)^{\alpha-1}-1}{|t|^{1+\alpha}} d t=\int_{\varepsilon}^{1}\left(\frac{1}{t}-x_{0}\right)^{\alpha-1} \frac{d t}{t^{2}}=\frac{\varepsilon^{-\alpha}-1}{\alpha} \\
& =\frac{1}{\alpha}\left(\frac{1}{\varepsilon}-x_{0}\right)^{\alpha}-\frac{1}{\alpha}\left(1-x_{0}\right)^{\alpha}-\frac{\varepsilon^{-\alpha}-1}{\alpha} \\
& =\frac{1}{\alpha}-\frac{1}{\alpha}\left(1-x_{0}\right)^{\alpha}+\frac{\left(1-\varepsilon x_{0}\right)^{\alpha}-1}{\alpha \varepsilon^{\alpha}} .
\end{aligned}
$$

By l'Hôpital's rule

$$
I=\frac{2}{\alpha}-\frac{1}{\alpha}\left(1-x_{0}\right)^{\alpha}-\frac{1}{\alpha}\left(1+x_{0}\right)^{\alpha}
$$

and so

$$
\begin{align*}
L u_{q}(x)= & \frac{\left(1-x^{2}\right)^{q-\alpha}}{\alpha}\left\{(1-x)^{\alpha}+\left(1+x^{\alpha}\right)\right\} \\
& -\frac{\left(1-x^{2}\right)^{q-\alpha}}{\alpha}\{(2 q+2-\alpha) B(q+1,1-\alpha / 2)+\alpha I(q)\}, \tag{6.3.4}
\end{align*}
$$

where

$$
I(q):=p v \int_{-1}^{1} \frac{\left(1-t x_{0}\right)^{\alpha-1-2 q}-1}{|t|^{1+\alpha}}\left(1-t^{2}\right)^{q} d t .
$$

We also have

$$
\begin{aligned}
I(\alpha / 2) & =p v \int_{-1}^{1} \frac{(1-t x)^{-1}-1}{|t|^{1+\alpha}}\left(1-t^{2}\right)^{\alpha / 2} d t \\
& =\int_{-1}^{1} \frac{\sum_{k=2}^{\infty}(t x)^{k}}{|t|^{1+\alpha}}\left(1-t^{2}\right)^{\alpha / 2} d t \\
& =2 \int_{-1}^{1} \frac{\sum_{k=2}^{\infty}(t x)^{k}}{|t|^{1+\alpha}}\left(1-t^{2}\right)^{\alpha / 2} d t \\
& =\sum_{k=1}^{\infty} B(k-\alpha / 2,1+\alpha / 2) x^{2 k} \\
& =\Gamma(1+\alpha / 2) \Gamma(-\alpha / 2)\left(\sum_{k=0}^{\infty} \frac{x^{2 k} \Gamma(k-\alpha / 2)}{\Gamma(-\alpha / 2) k!}-1\right) \\
& =\frac{2 B(1+\alpha / 2,1-\alpha / 2)}{\alpha}\left(1-\left(1-x^{2}\right)^{\alpha / 2}\right) .
\end{aligned}
$$

It can also be shown that $I\left(\frac{\alpha-1}{2}\right)=I\left(\frac{\alpha-2}{2}\right)=0$ and, if $1<\alpha<2$, that $I\left(\frac{\alpha-3}{2}\right)=x^{2} B\left(\frac{\alpha-1}{2}, 1-\frac{\alpha}{2}\right)$.

The next step in the proof of the proposition is the application of a result which is analogous to the ground state representation for half-spaces and $\mathbb{R}^{n} \backslash$ $\{0\}$ in [82] and [83], and may be considered as a special case of Proposition 2.3 in [82]. The result is that with $0<\alpha<2, w(x)=\left(1-x^{2}\right)^{(\alpha-1) / 2}$ and $u \in C_{0}((-1,1))$,

$$
\begin{align*}
& \frac{1}{2} \int_{-1}^{1} \int_{-1}^{1} \frac{(u(x)-u(y))^{2}}{|x-y|^{1+\alpha}} d x d y \\
& \quad=\frac{1}{2} \int_{-1}^{1} \int_{-1}^{1}\left(\frac{u(x)}{w(x)}-\frac{u(y)}{w(y)}\right)^{2} \frac{w(x) w(y)}{|x-y|^{1+\alpha}} d x d y \\
& \quad+2^{\alpha} \kappa_{1, \alpha} \int_{-1}^{1} u(x)^{2}\left(1-x^{2}\right)^{-\alpha} d x \\
& \quad+\frac{1}{\alpha} \int_{-1}^{1} u(x)^{2}\left[2^{\alpha}-(1+x)^{\alpha}-(1-x)^{\alpha}\right]\left(1-x^{2}\right)^{-\alpha} d x . \tag{6.3.5}
\end{align*}
$$

We are now equipped to complete the proof of Proposition 6.14. By scaling we may and shall assume that $a=-1, b=1$. By (6.3.5), we require that

$$
2^{\alpha}-(1+x)^{\alpha}-(1-x)^{\alpha} \geq\left(2^{\alpha}-2\right)\left(1-x^{2}\right), 1 \leq \alpha \leq 2,0 \leq x \leq 1
$$

On substituting $u=x^{2}$, it suffices to prove that

$$
g(u):=\left(2^{\alpha}-2\right) u-(1-\sqrt{u})^{\alpha}-(1+\sqrt{u})^{\alpha}+2
$$

is concave, or

$$
g^{\prime}(u)=2^{\alpha}-2+\frac{\alpha}{2 \sqrt{u}}\left((1-\sqrt{u})^{\alpha-1}-(1+\sqrt{u})^{\alpha-1}\right)
$$

is decreasing. Setting $u=t^{2}, h(t)=(1-t)^{\alpha-1}-(1+t)^{\alpha-1}$, we have that

$$
\frac{(1-t)^{\alpha-1}-(1+t)^{\alpha-1}}{t}=\frac{h(t)-h(0)}{t}
$$

Since h is concave, the function $t \mapsto \frac{h(t)-h(0)}{t}$ is decreasing and hence so is g^{\prime}. Therefore (6.3.6) is proved and the proposition follows. The sharpness of $\kappa_{1, \alpha}$ is already established in [130].

Proof of Theorem 6.13 This follows by using Proposition 6.14 with $\alpha=2 s$ instead of (6.2.22) in the proof of the case $p=2$ of Theorem 6.8.

