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Abstract

The so-called triangular Hilbert transform is an elegant trilinear singular integral form which
specializes to many well-studied objects of harmonic analysis. We investigate L p bounds for a
dyadic model of this form in the particular case when one of the functions on which it acts is
essentially one dimensional. This special case still implies dyadic analogues of boundedness of the
Carleson maximal operator and of the uniform estimates for the one-dimensional bilinear Hilbert
transform.

2010 Mathematics Subject Classification: 42B20

1. Introduction

1.1. Motivation. In this article we begin the study of a dyadic model of the
so-called triangular Hilbert transform. In order to motivate its definition, consider
the family of trilinear forms (dual to two-dimensional bilinear Hilbert transforms)

Λ Eβ0, Eβ1, Eβ2
(F0, F1, F2) :=

∫∫
R2

p.v.
∫
R

2∏
i=0

Fi(Ex − Eβi t)
dt
t

d Ex, (1.1)
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where Eβi ∈ R2 are distinct points. When all three points Eβi lie on the same line,
these forms reduce to integrals of one-dimensional bilinear Hilbert transforms,
and by the results of [LT97, LT99] we have the L p bounds

|Λ Eβ0, Eβ1, Eβ2
(F0, F1, F2)| . Eβ0, Eβ1, Eβ2

2∏
i=0

‖Fi‖pi (1.2)

for all 1 < pi <∞ with

2∑
i=0

αi = 1, αi = 1
pi
. (1.3)

By scaling, condition (1.3) is necessary.
Bounds of the form (1.2) in the more general situation when the Eβi are in

general position (that is, not on the same line) would unify some of the central
results in time–frequency analysis.

(1) From the general case, one could recover L p bounds for the Carleson
maximal operator by making an appropriate choice of the functions Fi ; see
Appendix B.

(2) From the general case, one could also recover the uniform bounds for the
one-dimensional bilinear Hilbert transform in [GL04]. In fact, if the estimate
(1.2) is true for any triple of Eβi in general position, then it is true for every
triple of Eβi , and the implied constant does not depend on the triple. This
calculation is carried out in Appendix B, where it is verified that the constant
will be the same as in the corresponding estimate for the trilinear form,

Λ∆(F0, F1, F2) := p.v.
∫∫∫

R3
F0(x, y)F1(y, z)F2(z, x)

d(x, y, z)
x + y + z

, (1.4)

which can be called the triangular Hilbert transform.

(3) By the method of rotations, a hypothetical estimate for (1.1) also implies
L p estimates for the ‘less singular’ bilinear singular integrals from [DT10]
uniformly over all choices of the ‘direction matrices’, at least for odd two-
dimensional kernels; see Appendix B.

Unfortunately, the desired estimates for the triangular singular form (1.4) still
seem to be out of reach of the current techniques and, from what we have said,
they are expected to be highly nontrivial. In this paper we work in a dyadic model
instead of the classical one, and we consider a particular case when one of the

https://doi.org/10.1017/fms.2015.25 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.25


Dyadic triangular Hilbert transform 3

functions F0, F1, F2 takes a special form. This case still turns out to be general
enough to imply (dyadic versions of) both the L p bounds for the Carleson operator
and uniform bounds for the bilinear Hilbert transform. In this sense our result has
stronger one-dimensional consequences than the dyadic version of the argument
from [DT10] which appears in [Dem15]: the latter does not contain the uniform
bounds for the bilinear Hilbert transform.

1.2. Notation. Let us now introduce the dyadic model for the triangular
Hilbert transform. In this model, the real line is replaced by the (Walsh) field
W = F2((1/t)) of one-sidedly infinite power series with coefficients in the two-
element field F2. The field W is traditionally identified with [0,∞) via the map∑

k ak t k 7→∑
k ak2−k , where F2 is identified with {0, 1}. This map is one-to-one

on a conull set, and we normalize the Haar measure on W in such a way that this
map becomes measure preserving. Under this identification the addition ⊕ and
the multiplication ~ on W correspond to addition and multiplication of binary
numbers without carrying over digits. We refer for instance to [Thi95, Section 1]
for more details.

The sets
Ak := [0, 2k), k ∈ Z

then become additive subgroups, and their cosets are simply dyadic intervals of
length 2k , the collection of which will be denoted by Ik . Some dyadic intervals
(typically denoted by Latin letters, such as I ) will be interpreted as time intervals,
and they will always be subsets of the unit interval [0, 1). Other dyadic intervals
will be interpreted as frequency intervals (typically denoted by Greek letters, such
as ω), and they will have integer endpoints. For a dyadic interval I , we write I 1

for its left half and I−1 for its right half. The unique dyadic parent of I will be
denoted par I . When we mention a dyadic square we will always mean a dyadic
square contained in [0, 1)2.

We work with real-valued functions, which is no restriction, since all systemic
functions under consideration, most notably the Haar functions, are real valued.
Let us then reserve the letter i to denote an index i ∈ {0, 1, 2}. It is convenient to
regard i as an element of Z/3Z, and interpret i + 1 and i − 1 correspondingly.
We shall also consider the set Ik of all triples EI = (I0, I1, I2) of dyadic intervals
contained in [0, 1) such that

|I0| = |I1| = |I2| = 2k, 0 ∈ I0 ⊕ I1 ⊕ I2,

and the set I =⋃k60 Ik . We write

(I0, I1, I2) ⊂ (J0, J1, J2)

if Ii ⊂ Ji for i = 0, 1, 2.
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Any function F on the unit square shall be interpreted as the integral operator

(Fϕ)(x) :=
∫ 1

0
F(x, y)ϕ(y) dy

on L2([0, 1)), denoted by the same letter. For any dyadic interval I , we normalize
the Haar function hI in L∞, so that hI =

∑
j∈{±1} j1I j . We shall also write hI for

the spatial multiplier operator acting on L2([0, 1)) and defined by

(hIϕ)(x) := hI (x)ϕ(x).

The dyadic triangular Hilbert transform can be written as

Λε(F0, F1, F2) :=
∑
EI∈I
ε EI |Ii |−1tr(hIi Fi−1hIi+1 Fi hIi−1 Fi+1), (1.5)

where (ε EI ) EI∈I is an arbitrary sequence of scalars bounded in magnitude by 1, and
i ∈ {0, 1, 2} is a fixed index. The expression does not depend on the specific
choice of i by cyclicity of the trace. If the reader prefers an explicit integral
representation, then (1.5) can be rewritten as

Λε(F0, F1, F2)

=
∑
EI∈I
ε EI |I0|−1

∫∫∫
W3

hI1(x)F0(x, y)hI2(y)F1(y, z)hI0(z)F2(z, x) dx dy dz,

(1.6)

but we will continue to use the convenient ‘trace-operator’ notation. We note that
(1.6) is a perfect Calderón–Zygmund kernel analogue of (1.4); that is,∑

EI∈I
ε EI |I0|−1hI1(x)hI2(y)hI0(z)

replaces 1/(x + y + z). It is necessary to insert the coefficients ε EI , as otherwise
the above kernel would telescope to the Dirac mass δ0 evaluated at x + y + z,
and the form would become trivial. Informally speaking, the Walsh model
cannot distinguish between p.v.1/t and δ0(t), so it becomes faithful only after
breaking the form into scales. We obtain the following strong type estimates (see
Section 2.1 for the definition of the character e).

THEOREM 1.7. Let F0, F1, F2 be functions supported on A2
0. Suppose that either

F0(x1, x2) = f (x2 ⊕ (a ~ x1)) for all x1, x2 ∈ A0 (1.8)

holds with some a ∈W \ A0 and some measurable f :W→ R, or

F0(x1, x2) = f (x2)e(Nx2 ~ x1) for all x1, x2 ∈ A0 (1.9)
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Figure 1. Ranges of exponents satisfying the scaling condition (1.3) in coordinates
(α0, α1, α2) = (1/p0, 1/p1, 1/p2).

holds with some measurable N :W→W and f :W→ R. Then

|Λε(F0, F1, F2)| . ‖F0‖p0‖F1‖p1‖F2‖p2 (1.10)

for any 1 < p2 <∞ and 2 < p0, p1 <∞ with (1.3). The implied constant does
not depend on a, N , or the scalars |ε EI | 6 1 with ε EI = 0 whenever some Ii 6⊆ A0.
In case (1.9), we can relax the restriction on p0 to 1 < p0 < ∞. In case (1.8),
a ∈ A1 \ A0, we can relax the restrictions on both p0 and p1 to 1 < p0, p1 <∞.

Since conditions (1.8) and (1.9) (with a and N fixed) describe subspaces
of L p0(W2) that are themselves L p0 spaces, Theorem 1.7 follows by real
interpolation from (generalized) restricted weak type estimates. Such estimates
also hold for certain negative values of pi , the precise range of which is
summarized below with the aid of Figure 1. Theorem 1.7 is the restriction of
our results to the Banach triangle c ∪ b0 ∪ b1 ∪ b2 in Figure 1.

The local L2 case (triangle c in Figure 1) is covered by Proposition 2.4. In this
case, the localization EI ∈ Ik , k 6 0, in definition (1.5) can be removed using the
Loomis–Whitney inequality∣∣∣∣∫∫∫

R3
F0(x, y)F1(y, z)F2(z, x) d(x, y, z)

∣∣∣∣ 6 ‖F0‖2‖F1‖2‖F2‖2

to estimate contributions of scales k > 0.
Triangle d12 is covered by Theorem 5.1; this gives the lower half of the solid

hexagon in Figure 1. Triangle d10 in cases (1.9) and (1.8), a ∈ A1 \ A0, is covered
by Theorem 5.2; together with the previous result, this gives the full solid hexagon
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in Figure 1. Finally, case (1.8), a ∈ A1 \ A0, is symmetric in indices 0, 2; in this
case, we obtain estimates in the dashed extension of the solid hexagon in Figure 1.

Cases (1.8) and (1.9) are treated in a unified way, and they cover all types
of function used to recover algebraically defined dyadic models for the
Carleson operator and uniform estimates for the bilinear Hilbert transform; see
Appendix A. However, note that already one type, namely case (1.8), a ∈ A1 \ A0,
suffices to recover the bounds for both these operators. In particular, we recover
the full range of exponents for which uniform estimates for the (dyadic) bilinear
Hilbert transform are known (triangles a1, a2 have been treated in [Li06], and
triangles d12, d21 in [OT11]). This range seems to be the best possible, because for
α±1 6 −1/2 there are indications that even nonuniform bounds for the bilinear
Hilbert transform fail, whereas for α0 6 0 the bounds fail in the limiting case of
the 1-linear Hilbert transform.

2. Tile decomposition

In this section, we describe a time–frequency decomposition for the form (1.5)
that is well adapted both to diagonal functions (1.8) and to fiberwise characters
(1.9). While the decomposition of the form is the same in both cases, the time–
frequency projections of (one of) the functions differ. However, in both cases the
time–frequency projections satisfy the same localization and scale compatibility
properties, summarized in Definition 2.1. The proof of the local L2 bounds uses
only these properties and a single tree estimate. We will have to come back to
the definition of time–frequency projections in the multifrequency Calderón–
Zygmund decomposition in Section 5.

2.1. Wave packets. The characters on the Walsh field W are the Walsh
functions

wN (x) := e(N ~ x),

where N ∈W and e : W→ R is simply the periodization of h[0,1). Their particular
cases are the Rademacher functions rk := w2−k , k ∈ Z. The Walsh wavepacket
associated with a dyadic rectangle I × ω of area 1 is

wI×ω(x) := |I |−1/21I (x)e(l(ω)~ x),

where l(ω) is the left endpoint of ω. This definition satisfies the usual recursive
relations

wPup = (wPleft − wPright)/
√

2, wPdown = (wPleft + wPright)/
√

2

on every dyadic rectangle P of area 2, and therefore coincides with the usual
definition; see [Thi95, Section 1].
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2.2. Tile decomposition. Our time–frequency analysis is 1 1
2 -dimensional in

the sense of [DT10]. We define tiles as dyadic boxes

p = Ip,0 × Ip,2 × ωp,1 where |Ip,0| = |Ip,2| = |ωp,1|−1.

A bitile is then any dyadic box of the form

P = IP,0 × IP,2 × ωP,1 where |IP,0| = |IP,2| = 2|ωP,1|−1.

We will omit the subscripts p, P if no confusion seems possible. For notational
convenience we will throughout write I1 = I0 ⊕ I2.

Dyadic boxes are partially ordered by

P 6 P ′ : ⇐⇒ Ii ⊆ I ′i , ωi ⊇ ω′i .
Writing one of the Haar functions in (1.5) as a difference of two characteristic
functions, we arrive at

Λε(F0, F1, F2) =
∑
EI
ε EI
∑

j∈{±1}
j |I1|−1tr(1I j

1
1I j

1
F0hI2 F1hI0 F2),

where 1I denotes, along with the characteristic function of the interval I , also the
projection operator

(1Iϕ)(x) = 1I (x)ϕ(x).

Inserting identity operators (expanded in the Walsh basis) between characteristic
functions, we obtain∑

EI
ε EI
∑

j∈{±1}
j

∑
ω1:|ω1|=2|I1|−1

2|I1|−2tr(1I j
1
(wl1 ⊗ wl1)1I j

1
F0hI2 F1hI0 F2).

Changing the order of summation, we obtain

Λε(F0, F1, F2) =
∑

P bitile

ε EIP
ΛP(F0, F1, F2),

where

Λ EI×Eω(F0, F1, F2) :=
∑

j∈{±1}
j2|I1|−2tr(1I j

1
(wl ⊗ wl)1I j

1
F0hI2 F1hI0 F2).

Note that each l can be replaced by any frequency from ω, since this only
multiplies the corresponding character by a constant on each of the intervals I j

i .

2.3. Time–frequency projections. We begin by collecting desirable proper-
ties of time–frequency projections.
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DEFINITION 2.1. We call orthogonal projections Π (i)
p , acting on L2(xi−1, xi+1)

and indexed by tiles p, time–frequency projections if they satisfy the following
conditions.

(1) (Orthogonality) The projections Π (i)
p corresponding to disjoint tiles are

orthogonal.

(2) (Scale compatibility) Bitile projections Π (i)
P are well defined (there are two

ways to write a bitile as a disjoint union of tiles, and the corresponding sums
of tile projections are equal).

(3) (Support) suppΠ (i)
p Fi ⊂ Ii−1 × Ii+1.

A collection of bitiles P is called convex if P, P ′′ ∈ P, P 6 P ′ 6 P ′′ implies
that P ′ ∈ P. The union of any finite convex collection of bitiles P can be written
as the union of a collection of disjoint tiles p (this is proved by induction on the
number of bitiles; see [Thi95, Lemma 1.7]). Given time–frequency projections,
this allows us to consider the projections

Π
(i)
P Fi :=

∑
p∈p

Π (i)
p Fi .

The scale compatibility property 2.1(2) implies that these projections do not
depend on the choice of p; see [Thi95, Corollary 1.9].

DEFINITION 2.2. We call time–frequency projections adapted to F0 if, for every
choice of F1, F2, every bitile P , and any convex collection of bitiles P 3 P , we
have

ΛP(F0, F1, F2) = ΛP(Π
(0)
P F0,Π

(1)
P F1,Π

(2)
P F2). (2.3)

The existence of adapted time–frequency projections suffices to establish
restricted type bounds on the dyadic triangular Hilbert transform in the local L2

range.

PROPOSITION 2.4. Let Ei ⊂ A2
0, i ∈ {0, 1, 2}, be measurable sets, and let

|Fi | 6 1Ei be functions for which there exist time–frequency projections adapted
to F0. Then

|Λε(F0, F1, F2)| . a1/2
1 a1/2

2

(
1+ log

a0

a1

)
,

where ai = |Eσ(i)| is a decreasing rearrangement; that is, σ is a permutation of
{0, 1, 2} and a0 > a1 > a2. The implied constant is independent of the choices of
the scalars |ε EI | 6 1.
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We finish this section with the construction of time–frequency projections
adapted to (1.8) and (1.9). For indices 0 and 2, we use the projections

Π (2)
p F2(x0, x1) := 1I0(x0)〈F2(x0, ·), wI1×ω1〉wI1×ω1(x1) (2.5)

and
Π (0)

p F0(x2, x1) := 1I2(x2)〈F0(x2, ·), wI1×ω1〉wI1×ω1(x1). (2.6)

The structural information given by (1.8) and (1.9) is encoded in the projections
Π (1).

2.3.1. One-dimensional functions Suppose that (1.8) holds. Then we have

Π (0)
p F0(x1, x2) = 1I1(x1)(ΠI2×a~ω1 F0(·, x1))(x2),

where the projection on the right-hand side is a one-dimensional time–frequency
projection (as defined for example in [OT11]) with a possibly multidimensional
range. In this case, we define

Π
(1)
P F1(x2, x0) := 1I0(x0)(ΠI2×a~ω1 F1(·, x0))(x2).

2.3.2. Fiberwise characters Suppose that (1.9) holds. Then we have

Π (0)
p F0(x1, x2) = 1I1(x1)1I2(x2)1ω1(Nx2)F0(x1, x2).

In this case, we define

Π (1)
p F1(x2, x0) := 1I0(x0)1I2(x2)1ω1(Nx2)F1(x2, x0).

The projectionsΠ (1) constructed above satisfy (2.3) only for bitiles with Ii ⊆ A0,
which explains the truncation in Theorem 1.7.

3. Single tree estimate

A tree T is a convex set of bitiles that contains a maximal element

PT = EIT × EωT = IT,0 × IT,2 × ωT,1.

Equivalently, a tree can be described by a top frequency ξT,1 and a convex
collection of space boxes IT . The corresponding tree T then consists of all bitiles
P = EI × Eω with EI ∈ IT and ξT,1 ∈ ω1.

For a convex collection P of bitiles, define

size(i)(P, Fi) := sup
T⊂P tree

| EIT |−1/2‖Π (i)
T Fi‖2. (3.1)
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For a collection P of bitiles, write

Λε
P(F0, F1, F2) :=

∑
P∈P

ε EIP
ΛP(F0, F1, F2).

The objective of this section is to show that Definition 2.1 implies that

|Λε
T (F0, F1, F2)| . | EIT |

2∏
i=0

size(i)(T, Fi), (3.2)

where T is a tree and the implied constant is absolute. It follows from
Definition 2.1 that

| EIP |−1/2‖Π (i)
P Fi‖L2(Ii−1,P×Ii+1,P ) . size(i)(T, Fi) for all P ∈ T .

Thus in view of (2.3) it suffices to show that

|Λε
T (F0, F1, F2)| . | EIT |

2∏
i=0

sup
EI∈IT∪LT

| EI |−1/2‖Fi‖L2(Ii−1×Ii+1), (3.3)

where LT denotes the collection of leaves of a tree, that is, maximal elements
of I contained in a member of T that are not themselves members of IT . By
modulation, we may assume that ξT,1 = 0. The tree operator can be written as∑
EI∈IT

ε EI |I1|−2(tr((1⊗ 1)1I1 F0hI2 F1hI0 F2hI1)+ tr((1⊗ 1)hI1 F0hI2 F1hI0 F21I1)).

The two summands are symmetric (under permuting the indices 0 and 2), and we
consider only the first of them. With the convention that the domain of integration
is xi , yi ∈ Ii and the dyadic intervals have size |Ii | = 2k , we have

tr((1⊗ 1)1I1 F0hI2 F1hI0 F2hI1)

=
∫

F0(x1, x2)rk(x2)F1(x2, x0)rk(x0)F2(x0, y1)rk(y1) dx1 dx2 dx0 dy1.

The change of variables x1 = x2 + y0, y1 = x0 + y2 gives∫
F0(x2 + y0, x2)rk(x2)F1(x2, x0)rk(x0)

× F2(x0, x0 + y2)rk(x0 + y2) dy0 dx2 dx0 dy2

=
∫

F̃0(y0, x2)rk(x2)F1(x2, x0)F̃2(x0, y2)rk(y2) dy0 dx2 dx0 dy2,

where F̃0(y0, x2) := F0(x2 + y0, x2) and F̃2(x0, y2) := F2(x0, x0 + y2).
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Thus the first half of the tree operator can be written as a single tree operator
from [Kov12, Section 3] with square-dependent coefficients. The first step in
the proof of [Kov12, Proposition 4] is an application of the Cauchy–Schwarz
inequality in the sum over squares, so it still works in our situation. This, together
with [Kov12, (2.2)], gives the required estimate.

4. Tree selection and local L2 bounds

4.1. The tree selection algorithm. We organize bitiles into trees closely
following the argument in [OT11, Lemma 2.2]. Here and later we use coordinate
projections π(i) :W3 →W2, (xi−1, xi , xi+1) 7→ (xi−1, xi+1).

PROPOSITION 4.1. Let n ∈ Z, i ∈ {0, 1, 2}, a function Fi , and a system of (not
necessarily adapted) time–frequency projections Π (i) be given. Then every finite
convex collection of bitiles P can be partitioned into a convex collection of bitiles
P′ with

sizei(P′, Fi) 6 2−n

and a further convex collection of bitiles that is the disjoint union of a collection
of convex trees T with∑

T∈T, EIT⊂ EJ
| EIT | 6 9 · 22n‖1π(i) EJ Fi‖2

2,
EJ ∈ I. (4.2)

The latter bound includes both an L1 estimate (taking EJ large enough to contain
all time intervals in P) and a BMO estimate (noting ‖1π(i) EJ Fi‖2

2 6 | EJ |‖Fi‖2
∞) for

the counting function
∑

T∈T 1 EIT
.

Proof. We will remove three collections of trees, each of which satisfies (4.2)
with a smaller constant. At each step we remove a tree that is also a down-set, thus
ensuring that both the remaining collection P′ and the collection of all removed
tiles are convex.

Replacing Fi by 2n Fi , we may assume that n = 0. We write every bitile P as
P+1 ∪ P−1, where the tiles P j , j = ±1, are given by EIP × ω j

P,1.
For a tree T , write

T j := {P ∈ T : P j 6 PT }, j = ±1.

Then
Π

(i)
T Fi = Π (i)

PT
Fi +

∑
j=±1

∑
P∈T j

Π
(i)
P− j Fi ,

and this sum is orthogonal by Definition 2.1(1).
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Let {P1, . . . , Pn} be the collection of maximal bitiles in P that satisfy

‖Π (i)
Pk

Fi‖2
2 > 3−1| EIPk |.

These bitiles are necessarily pairwise disjoint, so we have∑
k: EIPk⊂ EJ

| EIPk | < 3
∑

k: EIPk⊂ EJ
‖Π (i)

Pk
Fi‖2

2 6 3‖1π(i) EJ Fi‖2
2

for every EJ ∈ I , where the last inequality follows from parts (1) and (3) of
Definition 2.1. Thus, removing the bitiles P 6 Pk from P, we may assume that

‖Π (i)
P Fi‖2

2 6 3−1| EIP |, P ∈ P.

The next step will be done twice, for j =±1. In each case, we remove a collection
of trees T j such that for every remaining tree T we have∑

P∈T j

‖Π (i)
P− j Fi‖2 6 3−1| EIT |2. (4.3)

The collection T j = {T1, T2, . . . } is selected iteratively. Suppose that T1, . . . , Tk

have been selected, and suppose that (4.3) is violated for some remaining tree
T ⊂ P \ T1 ∪ · · · ∪ Tk . Choose one such tree for which either the left endpoint of
ωT,1 is minimal (if j = −1) or the right endpoint is maximal (for j = +1), and
let Tk+1 ⊂ P be the down-set spanned by the chosen tree.

We claim that the tiles of the form P− j
m , Pm ∈ (Tm) j , are pairwise disjoint. This

is clear within each tree, so assume for contradiction that P− j
k < P− j

l , k 6= l.
In particular, we have Pk < Pl , and this implies that k < l, since otherwise Pk

should have been included in Tl . On the other hand, ω− j
Pk ,1 ) ω

− j
Pl ,1 implies that

ω
− j
Pk ,1 ⊇ ωPl ,1 ) ω

j
Pl ,1 ⊇ ωTl ,1, whereas ωTk ,1 ⊆ ω j

Pk ,1. Thus ωTk ,1 is either to the
right (if j = −1) or to the left (if j = +1) of ωTl ,1, in both cases contradicting the
choice of Tk .

Violation of (4.3) for Tk ∈ T j and parts (1) and (3) of Definition 2.1 give∑
k: EITk⊂ EJ

| EITk | <
∑

k: EITk⊂ EJ
3
∑

P∈(Tk ) j

‖Π (i)
P− j Fi‖2

2 6 3‖1π(i) EJ Fi‖2
2,

as required. For each remaining tree, we will have

‖Π (i)
PT

Fi‖2 +
∑
j=±1

∑
P∈T j

‖Π (i)
P− j Fi‖2 6 (3−1 + 3−1 + 3−1)| EIT |,

and this gives the required estimate for sizei(T, Fi).
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4.2. Local L2 bounds (triangle c).

Proof of Proposition 2.4. Normalizing F̃i = Fi/|Ei |1/2, we have to show that

|Λε
P(F̃0, F̃1, F̃2)| . a−1/2

0

(
1+ log

a0

a1

)
(4.4)

with a constant independent of the (finite) convex collection of bitiles P. We have
size(i)(F̃i) 6 ‖F̃i‖∞ 6 |Ei |−1/2 = a−1/2

σ−1(i) and ‖F̃i‖2 6 1. Fix integers ni such
that 2ni−1 < a−1/2

i 6 2ni ; note that in particular n0 6 n1 6 n2. Running the tree
selection algorithm (Proposition 4.1) iteratively at each scale n 6 n2 for each
i ∈ {0, 1, 2}, we obtain collections of trees Tn with∑

T∈Tn

|IT,i |2 . 2−2n

and
size(i)(T, F̃i) 6 min(2n, 2n

σ−1(i)), T ∈ Tn.

Summing the single tree estimate (3.3) over all trees, we obtain

|Λε(F̃0, F̃1, F̃2)| .
∑
n6n2

2−2n
2∏

i=0

min(2n, 2ni ).

The sum over n is an increasing geometric series for n < n0 and a decreasing
geometric series for n > n1. In particular, the sum is dominated by the terms
n0 6 n 6 n1; that is, we have the estimate

2n0(1+ n1 − n0) . a−1/2
0

(
1+ log

a0

a1

)
,

as required.

5. Fiberwise multifrequency Calderón–Zygmund decomposition and an
extended range of exponents

In order to extend the range of exponents in our main result, we perform a
fiberwise multifrequency Calderón–Zygmund decomposition. Here, in contrast
to the local L2 range, we have to use the special form of the time–frequency
projections Π (0) and Π (2).

Our decomposition unites the main features of the one-dimensional
multifrequency Calderón–Zygmund decomposition in [OT11] and the fiberwise
single-frequency Calderón–Zygmund decomposition in [Ber12, Kov12].
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A useful simplification with respect to [OT11] is that we do not attempt to
control the size of the good function; this corresponds to the observation that the
argument on [OT11, page 1709] works directly for a in place of am .

5.1. Triangles b2 and d12.

THEOREM 5.1. Let 0 < α0 6 1/2 6 α2 < 1 and −1/2 < α1 < 1/2 satisfy (1.3).
Then for any measurable sets Ei ⊂ A2

0, i ∈ {0, 1, 2} there exists a major subset
E ′1 ⊂ E1 (which can be taken equal to E1 if α1 > 0) such that for any dyadic test
functions |Fi | 6 1Ei , |F1| 6 1E ′1 with (1.8) or (1.9) we have

|Λε(F0, F1, F2)| .α0,α1,α2

2∏
i=0

|Ei |αi ,

where the implied constant is independent of the choices of the scalars |ε EI | 6 1
with ε EI = 0 whenever Ii 6⊂ A0.

Proof. The required estimate is invariant under rescaling by powers of 2, so we
may normalize |E1| ≈ 1. The localization changes to Ei ⊂ A2

k for some k ∈ Z, but
all previous results still apply by scale invariance. When |E2| & |E1|, the estimate
with E ′1 = E1 follows from the local L2 case 0 < α0, α1, α2 6 1/2, which is given
by Proposition 2.4. Thus we may assume that |E2| < 2−20.

Define the exceptional sets

B0 := {Mp0(|E0|−1/p0 1E0) > 210}
and

B2 := {M̃p2(|E2|−1/p2 1E2) > 210},
where M̃p2 is the directional maximal function (in direction x1). The set

B1 := π(1)((π−1
(0) B0 ∪ π−1

(2) B2) ∩∆), ∆ := {x0 ⊕ x1 ⊕ x2 = 0} ⊂W3,

has measure < 1/2 by the Hardy–Littlewood maximal inequality. Consider the
major subset E ′1 := E1 \ B1.

Define normalized functions

F̃i := |Ei |−1/pi Fi .

By construction of the major subset, only the bitiles P with

π(1) EIP 6⊂ B1

contribute to the trilinear form Λ, so consider a finite convex collection P of
such bitiles. Since the Mp0 maximal function dominates the M2 maximal function
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pointwise, and by Definition 2.1(3), we have

size(0)(P, F̃0) . 1, size(1)(P, F̃1) . 1.

By the tree selection algorithm in Proposition 4.1, we partition P into a sequence
of pairwise disjoint convex unions of pairwise disjoint trees Pk = ⋃T∈Tk

T and a
remainder set with zero contribution to Λ in such a way that

size(0)(Pk, F̃0) . 2−k

and

‖Nk‖p .p 22k‖F̃0‖2/p
2 ‖F̃0‖2−2/p

∞ , Nk :=
∑
T∈Tk

1 EIT
, 1 6 p <∞.

Choosing p = p0/2, we obtain the bound

‖Nk‖p .p 22k .

For a fixed k we will show that

|Λε
Pk
(F̃0, F̃1, F̃2)| . 2−δk

for some δ > 0, depending only on the pi , to be determined later.
Let IB denote the collection of the maximal one-dimensional dyadic intervals

of the form {x0}× J1 ⊂ B2. For each one-dimensional interval J = {x0}× J1 ∈ IB

let
ΩJ := {ω : |ω||J | = 1, ∃T ∈ Tk : EIT ⊇ J, ω ⊇ ωT }.

Let

G :=
∑
J∈IB

G J , G J (x0, x1) := 1J (x0, x1)
∑
ω∈ΩJ

(ΠJ1×ω F̃2(x0, ·))(x1).

The sum defining the function G is pointwise finite, and G is measurable since F̃2

is a dyadic test function.
We claim that for every P = EI × ω1 ∈ Pk we have

ΛP(F̃0, F̃1, F̃2) = ΛP(F̃0, F̃1,G).

Since E2 ⊂ B2 by construction, and the collection IB covers B2, it suffices to
show that∫

J1

F̃1(x0, x2)hI0(x0)F̃2(x0, x1)wI j
1×ω1

(x1) dx1

=
∫

J1

F̃1(x0, x2)hI0(x0)G J (x0, x1)wI j
1×ω1

(x1) dx1

for every J = {x0} × J1 ∈ IB , every x2 ∈ I2, and every j ∈ {±1}. If I0 × I1 ∩
J = ∅, then both sides vanish identically. therwise we must have x0 ∈ I0.
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If now I1 ⊆ J1, then, by construction, F̃1 vanishes on {x0} × I2, so both sides
again vanish identically. On the other hand, if J1 ( I1, then, by construction, ΩJ

contains an ancestor of ω1, so the integrals coincide again. This finishes the proof
of the claim.

Now we estimate ‖G‖2. By Hölder and Hausdorff–Young inequalities, we get

‖G J‖2
L2(J ) =

∑
ω∈ΩJ

|〈F̃2(x0, ·), wJ1×ω〉|2

6 |ΩJ |1−2/p′1

( ∑
ω∈ΩJ

|〈F̃2(x0, ·), wJ1×ω〉|p
′
1

)2/p′1

6 |ΩJ |1−2/p′1‖F̃2‖2
L p2 (J )|J1|1−2/p1 .

Maximality of J ⊂ B2 gives an upper bound on the above L p2(J ) norm, and we
obtain

‖G J‖2
L2(J ) . |ΩJ |1−2/p′2 |J1| 6

∫
J

N 1−2/p′2
k .

Integrating these bounds, and using monotonicity of L p norms (recall |B2| . 1),
we get

‖G‖2
2 .

∫
B2

N 1−2/p′2
k .

(∫
B2

N p
k

)(1−2/p′2)/p

6 ‖Nk‖1−2/p′2
p . 22k(1−2/p′2).

Normalize
G̃ := 2−k(1−2/p′2)G,

so that ‖G̃‖2 . 1. We claim that

|Λε
Pk
(F̃0, F̃1, G̃)| . 2−k(1+ pk),

which would finish the proof. By the tree selection algorithm in Proposition 4.1
(beginning at some scale l0 6 0 with size(2)(Pk, G̃) 6 2−l0 ), we partition

Pk =
dpke⋃
l=l0

⋃
T∈Tk,l

T ∪ P′k,

where
size(2)(T, G̃) . 2−l, size(1)(T, F̃1) . min(1, 2−l)

for T ∈ Tk,l , ∑
T∈Tk,l

| EIT | . 22l,
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and
size(2)(P′k, G̃), size(1)(P′k, F̃1) . 2−pk .

By the single tree estimate (3.3), we obtain∣∣∣∣∑
l

∑
T∈Tk,l

Λε
T (F̃0, F̃1, G̃)

∣∣∣∣ . dpke∑
l=−∞

22l2−k min(1, 2−l)2−l . 2−k(1+ pk).

The remaining term can be written as

|Λε
P′k
(F̃0, F̃1, G̃)| =

∣∣∣∣∑
T∈Tk

Λε
T∩P′k

(F̃0, F̃1, G̃)
∣∣∣∣.

Each T ∩ P′k is the disjoint union of a set of trees the union of whose top squares
has measure bounded by | EIT |. We have∑

T∈Tk

| EIT | 6
∥∥∥∥∑

T∈Tk

1 EIT

∥∥∥∥p

p

. 22pk,

so, again by the single tree estimate (3.3),

|Λε
P′k
(F̃0, F̃1, G̃)| . 22pk2−k2−pk2−pk = 2−k,

finishing the proof of the claim.

5.2. Triangles b0 and d10.

THEOREM 5.2. Let 0 < α2 6 1/2 6 α0 < 1 and −1/2 < α1 < 1/2 satisfy (1.3).
Then for any measurable sets Ei ⊂ A2

0, i ∈ {0, 1, 2} there exists a major subset
E ′1 ⊂ E1 (which can be taken equal to E1 if α1 > 0) such that for any dyadic test
functions |Fi | 6 1Ei , |F1| 6 1E ′1 satisfying either (1.8) with a ∈ A1 \ A0 or (1.9),
we have

|Λε(F0, F1, F2)| .α0,α1,α2

2∏
i=0

|Ei |αi ,

where the implied constant is independent of the choices of the scalars |ε EI | 6 1
with ε EI = 0 whenever Ii 6⊂ A0.

Proof. We can assume that |E0| 6 2−20|E1|, since otherwise the conclusion
follows from the local L2 case with E ′1 = E1.

In case (1.9), we can also without loss of generality assume that E0 = A0× Ẽ0.
Setting E ′1 = E1\ Ẽ0×A0, we get that the left-hand side of the conclusion vanishes
identically.
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In case (1.8), we argue as in the proof of Theorem 5.1, with the roles of indices 0
and 2 interchanged. The main difference from the previous case is that the time–
frequency projections in general need not be adapted to the good function G.
However, under the additional condition a ∈ A1 \ A0, we may assume that

1B0(x1, x2) = 1B̃0
(x2 ⊕ (a ~ x1)),

and then the directional maximal function M̃p0 1B0 coincides with the two-
dimensional maximal function Mp0 1B0 . It follows that for every J ∈ IB and every
bitile P = EI × ω1 ∈ P we have either J ∩ I1 × I2 = ∅ or J1 ( I1, which in turn
implies that

Π
(0)
Pk

F̃0 = Π (0)
Pk

G.

Thus we may replace F̃0 by G in the single tree estimates.
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Appendix A. Known special cases

Let us discuss briefly how our main result specializes to some cases that have
already appeared in the literature in a very similar form.

A.1. Maximally modulated Haar multiplier. Since the ordinary Haar
multipliers

(H ε f )(x) :=
∑

I

εI |I |−1〈 f, hI 〉hI (x),

where |εI | 6 1 for each dyadic interval I , constitute a good dyadic model for the
Hilbert transform, the maximally modulated Haar multipliers

(H ε
? f )(x) := sup

N
|(H εMN f )(x)| (A.1)

provide a reasonable algebraic model for the Carleson operator, albeit different
from the model of truncated Walsh–Fourier series considered for example in
[Bil67]. Here MN simply represents the Walsh modulation operator,

(MN f )(x) := wN (x) f (x).

Let ε EI = ε(I0,I1,I2) depend only on the interval I0, and take two functions f and
g on A0. Suppose that N : A0 → {0, 1, 2, . . .} is a choice function that linearizes
the supremum in (A.1). If we substitute
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F0(x1, x2) := f (x1 ⊕ x2),

F1(x2, x0) := sgn g(x0)
√|g(x0)|wN (x0)(x2),

F2(x0, x1) :=
√
|g(x0)|wN (x0)(x1 ⊕ x0)

into (1.6), we will obtain for Λε(F0, F1, F2) the equal expression∑
EI∈I

εI0

|I0|
∫∫∫

f (x1 ⊕ x2)g(x0)wN (x0)(x1 ⊕ x0)wN (x0)(x2)hI1(x1)hI2(x2)hI0(x0) d Ex .

Here and later in this appendix we use the convention that xi , yi ∈ Ii for
integration domains, unless specified otherwise. By the character property of the
Walsh functions and the fact that the Haar functions are simply restrictions of the
Rademacher functions to the corresponding intervals, this equals∑

EI∈I

εI0

|I0|
∫∫∫

f (x1 ⊕ x2)g(x0)wN (x0)(x1 ⊕ x2 ⊕ x0)rk(x1 ⊕ x2 ⊕ x0) d Ex .

By changing the variables y0 = x1⊕x2 (for fixed x1) and observing y0 ∈ I1⊕ I2 =
I0, the above equals∑

EI∈I

εI0

|I0|
∫∫∫

f (y0)g(x0)wN (x0)(y0 ⊕ x0)rk(y0 ⊕ x0) dy0 dx1 dx0.

Observe that at each scale k the integral
∑

I∈Ik

∫
x1∈I1

can be disregarded, as it
simply integrates over the union of intervals I1, which is A0. Using the character
property once again, we obtain∑

I0

εI0

|I0|
∫∫

f (y0)g(x0)wN (x0)(y0)wN (x0)(x0)hI0(y0)hI0(x0) dy0 dx0

=
∫
W

∑
I0

εI0

|I0| 〈wN (x0) f, hI0〉hI0(x0)wN (x0)(x0)g(x0) dx0

=
∫
(MN (x0)H

εMN (x0) f )(x0)g(x0) dx0.

From the established bound for Λε in Theorem 1.7 using duality, we deduce that

‖H ε
? f ‖p . ‖ f ‖p for any 1 < p <∞.

A.2. Walsh model of uniform bilinear Hilbert transform. Theorem 1.7
implies a bound for the trilinear form

Λ
ε,L
BHT( f, g, h) :=

∫ ∑
k

∑
I∈Ik

ω:|ω|=2−k

εI (ΠI×(ω⊕2−k ) f )(ΠI×(2Lω)g)(ΠI×(2Lω⊕ω⊕2−k )h),
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V. Kovač, C. Thiele and P. Zorin-Kranich 20

where ε = (εI )I is a sequence of coefficients indexed by dyadic intervals and
satisfying |εI | 6 1, while L is an arbitrary positive integer. This observation is
interesting, because a single estimate for the triangular Hilbert transform implies
bounds for a sequence of one-dimensional trilinear forms Λε,L

BHT with constants
independent of ε and L .

This form is similar to, but different from, the trilinear form studied in [OT11].
As in Appendix A.1, the discrepancy is due to the fact that our model is based on
the algebraic structure of the Walsh field rather than on the order structure.

In order to apply Theorem 1.7, substitute

F0(x1, x2) := f (x1 ⊕ x2 ⊕ 2−L x2),

F1(x2, x0) := h(2−L x2 ⊕ x0),

F2(x0, x1) := g(x0 ⊕ 2−L x0 ⊕ 2−L x1)

into (1.6) to obtain

Λε(F0, F1, F2) =
∑

k

2−k
∑
EI∈Ik

ε EI

∫∫∫
f (x1 ⊕ x2 ⊕ 2−L x2)

× g(x0 ⊕ 2−L x0 ⊕ 2−L x1)

× h(2−L x2 ⊕ x0)rk(x1 ⊕ x2 ⊕ x0) dx1 dx2 dx0.

Observe that xi ∈ Ii , i = 0, 1, 2, implies that

x1 ⊕ x2 ⊕ 2−L x2 ∈ I1 ⊕ I2 ⊕ 2−L I2 = I0 ⊕ 2−L I2,

x0 ⊕ 2−L x0 ⊕ 2−L x1 ∈ I0 ⊕ 2−L(I0 ⊕ I1) = I0 ⊕ 2−L I2,

2−L x2 ⊕ x0 ∈ I0 ⊕ 2−L I2,

so we should expand f, g, h into the Walsh–Fourier series on the dyadic interval
I = I0⊕ 2−L I2 of length 2k , that is, into the wave packets with fixed eccentricity:

f (x1 ⊕ x2 ⊕ 2−L x2) = 2−k
∞∑

m0=0

〈 f, 1Iwm02−k 〉wm02−k (x1 ⊕ x2 ⊕ 2−L x2),

g(x0 ⊕ 2−L x0 ⊕ 2−L x1) = 2−k
∞∑

m2=0

〈g, 1Iwm22−k 〉wm22−k (x0 ⊕ 2−L x0 ⊕ 2−L x1),

h(2−L x2 ⊕ x0) = 2−k
∞∑

m1=0

〈h, 1Iwm12−k 〉wm12−k (2−L x2 ⊕ x0).
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Inserting these into the previous expression for Λε(F0, F1, F2), we obtain∑
k

2−4k
∑
EI∈Ik

ε EI
∑

m0,m2,m1

〈 f, 1Iwm02−k 〉〈g, 1Iwm22−k 〉〈h, 1Iwm12−k 〉
(∫

I1

e((m0 ⊕ m22−L ⊕ 1)2−k ~ x1)dx1

)
(∫

I2

e((m0 ⊕ m02−L ⊕ m12−L ⊕ 1)2−k ~ x2)dx2

)
(∫

I0

e((m2 ⊕ m22−L ⊕ m1 ⊕ 1)2−k ~ x0)dx0

)
.

Since we are integrating over intervals of length 2k , the above summands vanish
unless

m0 ⊕ m22−L ⊕ 1, m0 ⊕ m02−L ⊕ m12−L ⊕ 1, and m2 ⊕ m22−L ⊕ m1 ⊕ 1

all belong to A0, which is easily seen to be equivalent to the conditions

m0 ⊕ m2 ⊕ m1 = 0 and m0 ⊕ m22−L ⊕ 1 ∈ A0.

Moreover, in that case the three functions under the integrals over I1, I2, I0 are
precisely the constants

2ke((m0 ⊕ m22−L ⊕ 1)2−k ~ l(Ii)), i = 1, 2, 0,

where l(Ii) is the left endpoint of Ii . Because 0 ∈ I0 ⊕ I1 ⊕ I2, they multiply to
23k . Allow the coefficients ε EI to depend on I = I0 ⊕ 2−L I2 only, and observe that
each interval I ∈ Ik appears for exactly 2−k choices of EI as they range over Ik .
(Indeed, I2 is arbitrary, and I0, I1 are then uniquely determined.) We end up with∑

k

2−2k
∑
I∈Ik

εI

∑
m0,m2,m1

m0⊕m2⊕m1=0
m0⊕m22−L⊕1∈A0

〈 f, 1Iwm02−k 〉〈g, 1Iwm22−k 〉〈h, 1Iwm12−k 〉;

that is, by substituting m = m0 ⊕ 1 and n = m2 ⊕ (m0 ⊕ 1)2L ,∑
k

2−2k
∑
I∈Ik

εI

∑
m,n

06n<2L

〈 f, 1Iw(m⊕1)2−k 〉〈g, 1Iw(m2L⊕n)2−k 〉

〈h, 1Iw(m2L⊕n⊕m⊕1)2−k 〉. (A.2)

On the other hand, we can start from Λ
ε,L
BHT, and write the dyadic interval ω

explicitly as ω = [m2−k, (m + 1)2−k). The three time–frequency projections
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appearing in the definition can be expanded using vertical decompositions into
tiles as

ΠI×(ω⊕2−k ) f = 2−k〈 f, 1Iw(m⊕1)2−k 〉1Iw(m⊕1)2−k ,

ΠI×(2Lω)g = 2−k
2L−1∑
n=0

〈g, 1Iw(m2L⊕n)2−k 〉1Iw(m2L⊕n)2−k ,

ΠI×(2Lω⊕ω⊕2−k )h = 2−k
2L−1∑
n′=0

〈h, 1Iw(m2L⊕n′⊕m⊕1)2−k 〉1Iw(m2L⊕n′⊕m⊕1)2−k .

Observe that the integral∫
(ΠI×(ω⊕2−k ) f )(ΠI×(2Lω)g)(ΠI×(2Lω⊕ω⊕2−k )h)

is equal to

2−2k
2L−1∑
n=0

〈 f, 1Iw(m⊕1)2−k 〉〈g, 1Iw(m2L⊕n)2−k 〉〈h, 1Iw(m2L⊕n⊕m⊕1)2−k 〉,

since the terms with n 6= n′ disappear. That way we arrive at (A.2) once again,
completing the proof of Λε(F0, F1, F2) = Λε,L

BHT( f, g, h).

A.3. Endpoint counterexample. The observation from the previous section is
also useful to explain the failure of some estimates at the boundary of the Banach
triangle. By formally taking L →∞, we are motivated to substitute

F0(x1, x2) := f (x1 ⊕ x2), F1(x2, x0) := h(x0), F2(x0, x1) := g(x0),

in which case (1.6) becomes∑
EI∈I
εI0 |I0|−1

(∫∫
f (x1 ⊕ x2)hI1(x1)hI2(x2) dx1 dx2

)(∫
g(x0)h(x0)hI0(x0) dx0

)
=
∑

I0

εI0 |I0|−1〈 f, hI0〉〈gh, hI0〉 =
∫

f (x)H ε(gh)(x) dx .

Since Haar multipliers are generally not bounded on L1, we see that estimate
(1.10) cannot hold when p0 = ∞.

The positive results in this limiting case do not reveal the true structural
complexity of Λε . Indeed, when one of the functions depends on a single
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variable alone (such as F0(x, y) = x), then the triangle ‘breaks’ immediately. No
techniques from time–frequency analysis are required to bound such degenerate
cases, even though they correspond both to the limiting case a → ∞ and to the
special case N ≡ 0 in Theorem 1.7.

Appendix B. Real triangular Hilbert transform

In this appendix we show the equivalence of (1.1) and (1.4), and indicate how
to obtain the Carleson operator from (1.4).

B.1. Equivalence of the definitions. For Eβ0, Eβ1, Eβ2 ∈ R2 in general position,
consider the change of variables t

u
v

 = B

x0

x1

x2

 , B :=
(

1 1 1
Eβ0 Eβ1 Eβ2

)
.

If πi denotes the projection πi : R3 → R2, πi(x0, x1, x2) = (xi+1, xi−1), then, for
arbitrary functions F0, F1, F2, we have

Λ∆(F0, F1, F2) =
∫∫∫ 2∏

i=0

Fi(πi(x0, x1, x2))
1

x0 + x1 + x2
dx0 dx1 dx2

= |detB|−1
∫∫∫ 2∏

i=0

Fi(πi B−1(t, u, v))
dt
t

du dv

= |detB|−1
∫∫∫ 2∏

i=0

F̃i((u, v)− Eβi t)
dt
t

du dv

= |detB|−1Λ Eβ0, Eβ1, Eβ2
(F̃0, F̃1, F̃2),

where
F̃i(u, v) := Fi(πi B−1(0, u, v)). (B.1)

Here we have used the fact that

πi B−1

(
1
Eβi

)
=
(

0
0

)
.

The surprising observation is now that

‖F̃i‖pi = |detB|1/pi‖Fi‖pi .
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Indeed, the change of variables in the definition of F̃i is given by the 2 × 2
submatrix of B−1 obtained by crossing out the first column and the i th row. By
Cramer’s rule, the determinant of that submatrix equals det B−1 times the (1, i)th
entry of B, up to the sign. Since the latter entry of B is 1, the determinant of
the change of variables is ±(det B)−1. The ratio of L pi norms equals the absolute
value of the determinant to the power −1/pi , as required.

This shows that an L p0 × L p1 × L p2 estimate for Λ∆ cannot be worse than the
corresponding estimate for Λ Eβ0, Eβ1, Eβ2

. Running the above argument backwards, we
also obtain the converse. Finally, a uniform (in Eβi ) estimate forΛ Eβ0, Eβ1, Eβ2

with Eβi in
general position implies the same estimate for the Eβi lying on a line by a limiting
argument.

B.2. Less singular two-dimensional forms. The trilinear forms introduced in
[DT10] can be written as

ΛK
B0,B1,B2

(F0, F1, F2) :=
∫∫

R2
p.v.

∫
R2

2∏
i=0

Fi(Ex − BiEt)K (Et) dEt d Ex,

where B1, B2, B3 are now 2 × 2 real matrices (interpreted as linear operators
on R2) and K is a two-dimensional Calderón–Zygmund kernel. If K is odd and
homogeneous of degree −2, then it takes the form

K (r cos θ, r sin θ) = Ω(θ)

r 2
,

Ω(θ + π) = −Ω(θ) for 0 < r <∞, θ ∈ R/(2πZ).

Observe that

p.v.
∫
R2

2∏
i=0

Fi
(Ex − BiEt

)
K (Et) dEt

= p.v.
∫ 2π

0

∫ ∞
0

2∏
i=0

Fi
(Ex − Bi(r cos θ, r sin θ)

)Ω(θ)
r 2

r dr dθ

=
∫ π

0
Ω(θ) p.v.

∫
R

2∏
i=0

Fi
(Ex − r Bi(cos θ, sin θ)

)dr
r

dθ,

so

ΛK
B0,B1,B2

=
∫ π

0
Ω(θ)ΛB0(cos θ,sin θ),B1(cos θ,sin θ),B2(cos θ,sin θ) dθ;
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that is, ΛK
B0,B1,B2

is a ‘superposition’ of the forms (1.1). Consequently, L p

estimates for all cases of the matrices studied in [DT10] and the remaining case
from [Kov12] would follow from a single estimate for (1.4), even uniformly over
all choices of B0, B1, B2.

B.3. Carleson maximal operator. Analogously to the dyadic case, but with
an additional smooth cutoff, we consider

F(x, y) := f (−x − y) D p
Lφ(x),

G(y, z) := eN (z)(y) sgn g(z)
√|g(z)| D2p′

L φ(y + z),

H(z, x) := eN (z)(z + x)
√|g(z)| D2p′

L φ(x)

for f ∈ L p(R) and g ∈ L p′(R), 2 < p < ∞, where eN (x) = e2π i N x , N is a
measurable linearizing function for the Carleson operator, φ is a smooth positive
function with compact support, and D p

Lφ(x) = L−1/pφ(x/L). Then

Λ∆(F,G, H) =
∫∫∫

f (−x − y)eN (z)(x + y + z)g(z)

× D p
Lφ(x)D

2p′
L φ(x)D2p′

L φ(y + z)
d(x, y, z)
x + y + z

.

The change of variables t = x + y + z gives∫∫∫
f (z − t)eN (z)(t)g(z)D

p
Lφ(x)D

2p′
L φ(x)D2p′

L φ(t − x)
d(x, z, t)

t
,

which converges to a constant times∫∫
1
t

f (z − t)eN (z)(t)g(z) d(z, t)

as L →∞, and yields an L p bound for

(CN f )(z) = p.v.
∫
R

f (z − t)e2π i N (z)t dt
t
.

B.4. Multilinear generalization. For any positive integer n, one can also
consider the straightforward (n + 1)-linear generalization of (1.1) given by

Λ Eβ0, Eβ1,..., Eβn
(F0, F1, . . . , Fn) :=

∫
Rn

p.v.
∫
R

n∏
j=0

F j(Ex − Eβ j t)
dt
t

d Ex, (B.2)
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where this time Eβ j ∈ Rn and the functions F j are n-dimensional. This object is
expected to be even more difficult, as conjectured bounds for the one-dimensional
trilinear Hilbert transform

Λ3HT( f0, f1, f2, f3) :=
∫
R

p.v.
∫
R

f0(x) f1(x − t) f2(x − 2t) f3(x − 3t)
dt
t

dx

(B.3)
and its variants would follow from bounds for (B.2) when n = 3. No positive
results are known for this operator; see [Dem08] for some negative results.
However, an interesting observation is that the linearized polynomial Carleson
operator

(CN1,...,Nn−1 f )(x) = p.v.
∫
R

f (x − t)ei(N1(x)t+N2(x)t2+···+Nn−1(x)tn−1) dt
t

can be encoded into (B.2). Let Eβ0 be the origin, and let Eβ1, . . . , Eβn constitute the
standard basis for Rn . The identity

k∑
j=0

(−1)k− j

(
k
j

)
jm =

{
0 for m = 0, 1, . . . , k − 1,
k! for m = k

can be shown easily by induction on a positive integer k, and its immediate
consequence is that

n−1∑
j=0

n−1∑
k=max{ j,1}

(−1) j 1
k!
(

k
j

)
Nk(xn)

( k∑
l=1

lxl − j t
)k

=
n−1∑
k=1

Nk(xn)t k .

It follows that, with

F j(x1, . . . , xn) = g j(xn)

n−1∏
k=max{ j,1}

exp
(

i(−1) j 1
k!
(

k
j

)
Nk(xn)

( k∑
l=1

lxl

)k)
for j = 0, 1, . . . , n − 1 and

Fn(x1, . . . , xn) = f (xn),

the form (B.2) formally becomes
∫
(CN1,...,Nn−1 f )g0g1 · · · gn−1. To be precise we

should also include appropriate cutoffs of the functions F j , similarly as we did in
the previous subsection. It would be interesting to investigate which particular
cases of Λ Eβ0, Eβ1,..., Eβn

can be resolved using the techniques from [Lie09] and
[Lie11].
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