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Three-dimensional direct numerical simulations of rotating Rayleigh–Bénard convection
in the planar geometry with no-slip top and bottom and periodic lateral boundary
conditions are performed for a broad parameter range with the Rayleigh number
spanning in 5 × 106 ≤ Ra ≤ 5 × 1013, Ekman number within 5 × 10−9 ≤ Ek ≤ 5 × 10−5

and Prandtl number Pr = 1. The thermal and Ekman boundary layer (BL) statistics,
temperature drop within the thermal BL, interior temperature gradient and scaling
behaviours of the heat and momentum transports (reflected in the Nusselt Nu and Reynolds
numbers Re) as well as the convective length scale are investigated across various flow
regimes. The global and local momentum transports are examined via the Re scaling
derived from the classical theoretical balances of viscous–Archimedean–Coriolis (VAC)
and Coriolis–inertial–Archimedean (CIA) forces. The VAC-based Re scaling is shown to
agree well with the data in the cellular and columnar regimes, where the characteristic
convective length scales as the onset length scale ∼Ek1/3, while the CIA-based Re scaling
and the inertia length scale ∼ (ReEk)1/2 work well in the geostrophic turbulence regime
for Ek ≤ 1.5 × 10−8. The examinations of Nu, global and local Re, and convective length
scale as well as the temperature drop within the thermal BL and its thickness scaling
behaviours, indicate that for extreme parameters of Ek ≤ 1.5 × 10−8 and 80 � RaEk4/3 �
200, we have reached the diffusion-free geostrophic turbulence regime.

Key words: Bénard convection, geostrophic turbulence, turbulent convection

1. Introduction

Rotating thermal convection (Ecke & Shishkina 2023) is a widespread phenomenon
observed in the fluid cores of stars and planets, planetary atmospheres, terrestrial oceans
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and industrial processes (Greenspan 1968; Busse & Carrigan 1976; Kunnen 2021).
Investigations of rotating thermal convection in astrophysical and geophysical flows are
of immense significance in comprehending the mechanisms of heat and momentum
transport, as well as the maintenance of the magnetic field in the many planets and
stars such as the Earth and Sun (Aurnou et al. 2015; Hanasoge, Gizon & Sreenivasan
2016; Yadav et al. 2016; Schumacher & Sreenivasan 2020; Yadav & Bloxham 2020).
Rotating Rayleigh–Bénard convection (RRBC) has been served as a canonical model
to examine rotation-influenced buoyancy-driven flows for decades (Chandrasekhar 1953;
Rossby 1969; Ecke & Shishkina 2023). In this model system the fluid is heated from below
and cooled from above (with the temperature difference, Δ) and confined between two
parallel horizontal plates separated by a distance of L. The system rotates with a constant
angular velocity Ω in the vertical direction. Studies of RRBC have been focused on
(1) the effects of rotation on heat transfer modifications and flow structures as compared
with its non-rotating counterpart; (2) the role of the Ekman boundary layer (BL) and
resulting Ekman pumping in controlling heat transfer; (3) the dynamics and formation
of large-scale vortices induced by the inverse energy cascade; (4) the geostrophic flow
regime at very low Ek and high Ra (defined below); (5) the boundary zonal flow that
occurs near the lateral sidewall and its relation to the wall modes; and (6) other effects
such as the non-Oberbeck–Boussinesq effects. For more general introduction on RRBC
with these topics, we refer to the reviews by Kunnen (2021) and Ecke & Shishkina (2023).

One of the most important tasks in RRBC studies is to comprehend the scaling relations
between the system’s global response and the control parameters (Kunnen 2021; Ecke
& Shishkina 2023). The three control parameters are the Rayleigh number Ra, which is
the dimensionless temperature difference between the two plates, the Prandtl number Pr,
which represents the fluid’s diffusive properties, and the Ekman number Ek, which is the
ratio of viscous force to Coriolis force or, alternatively, the convective Rossby number Roc,
which denotes the ratio of buoyancy to rotation strength. They are defined as

Ra = αTgL3Δ

κν
, Pr = ν

κ
, Ek = ν

2ΩL2 , Roc =
√

αTgΔ/L
2Ω

. (1.1a–d)

Here, ν, κ and αT are the kinematic viscosity, thermal diffusivity and thermal expansion
coefficient of the fluid, respectively. The system’s responses are mainly quantified by the
dimensionless heat transport represented by the Nusselt number Nu and the momentum
transport denoted by the Reynolds number Re, as

Nu = 〈uzθ〉 − κ∂z〈θ〉
κΔ/L

, Re = uL
ν

. (1.2a,b)

Here, u is the typical velocity, uz the vertical component of the velocity, θ the temperature
and 〈· · · 〉 denotes averaging in time and over any horizontal cross-section. The scaling
relations of Nu and Re are sought in the form ∼ RaαEkβPrγ . Numerous studies have been
conducted to study the heat transfer scaling relations in RRBC (e.g. see the reviews by
Plumley & Julien 2019; Kunnen 2021; Ecke & Shishkina 2023).

Under strong rotation (Ek ≤ 10−4), with increasing thermal driving strength Ra,
RRBC undergoes transitions among distinct flow regimes: the onset of convection,
rotation-dominated, rotation-affected and buoyancy-dominated convection (Cheng et al.
2018; Kunnen 2021; Ecke & Shishkina 2023). Close to the onset of steady convection, the
critical value of Rac for instability scales as Rac ≈ 8.7Ek−4/3, and the typical convective
length scales as �/L ≈ 2.4Ek1/3 for Pr ≥ 0.68 (Chandrasekhar 1953, 1961). In the
rotation-dominated regime the primary balance of forces is between the Coriolis force and
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the pressure gradient terms, which is also known as the geostrophic balance (Greenspan
1968). For moderate supercriticality RaEk4/3, which is proportional to Ra/Rac, the heat
transport follows the scaling law Nu ∼ (RaEk4/3)α for a certain positive α, and the flow
consists of coherent, vertically aligned columns or plumes that transport cold and hot
fluid downward and upward, respectively (Julien et al. 2012a; Nieves, Rubio & Julien
2014; Stellmach et al. 2014; Cheng et al. 2015; Kunnen 2021). Using the marginal thermal
BL instability criterion, Boubnov & Golitsyn (1990) theoretically derived the scaling law
Nu ∼ Ra3Ek4 for the rotation-dominated regime; see also King, Stellmach & Aurnou
(2012). This steep scaling law has been observed in direct numerical simulations (DNS)
and experiments of planar RRBC with no-slip boundary conditions for Ek ≥ 10−6 (King
et al. 2012; Stellmach et al. 2014). Moreover, experiments show a trend of ever-steepening
scaling with the exponent α ≈ 3.6 as Ek further decreases to Ek ≈ 3 × 10−8 at Pr = 7
(Cheng et al. 2015). For a chaotic flow where the viscous effects are not negligible, the
so-called viscous–Archimedean–Coriolis (VAC) force balance gives rise to the momentum
transport scaling of Re ∼ Ra1/2(Nu − 1)1/2Ek1/3Pr−1 (Gillet & Jones 2006; Aurnou,
Horn & Julien 2020; Hawkins et al. 2023; Madonia et al. 2023).

Using asymptotically reduced equations (Sprague et al. 2006), for the rotationally
constrained regime with Ek → 0, an inviscid heat transfer scaling of Nu ∼
Ra3/2Ek2Pr−1/2 was derived by Julien et al. (2012a). This regime of the geostrophic
turbulence can also be derived from the Coriolis, inertia and Archimedean (CIA)
force balance or from the inviscid theory (Stevenson 1979; Gillet & Jones 2006;
Guervilly, Cardin & Schaeffer 2019; Aurnou et al. 2020). The corresponding diffusion-free
momentum and convective length scales are Re ∼ RaEkPr−1 and �/L ∼ (ReEk)1/2 =
Ro1/2 = Ra1/2EkPr−1/2, respectively, as shown by Guervilly et al. (2019), Aurnou et al.
(2020), Madonia et al. (2023) and Hawkins et al. (2023). Here the Rossby number
is defined as Ro = u/(2ΩL). Remarkably, the diffusion-free heat transfer scaling of
Nu ∼ Ra3/2Ek2Pr−1/2 is analogous to the ultimate regime in non-rotating RB, where
the heat transport is independent of diffusion and the flow is bulk-dominated (Ahlers,
Grossmann & Lohse 2009; Lohse & Xia 2010). This scaling has been observed in DNS of
RRBC in planar configuration with stress-free boundary conditions and asymptotically
reduced models without Ekman pumping (Julien et al. 2012a; Stellmach et al. 2014;
Plumley et al. 2017). Recently, Bouillauta et al. (2021) observed such heat transport
scaling in an experimental set-up where convection is driven radiatively. The ultimate
heat transport scaling was verified via DNS for a no-slip insulating bottom boundary and
a stress-free insulating top one. Previously, the diffusion-free heat transport was observed
in spherical RB convection with no-slip boundary conditions and Ek ≤ 10−5 (Gastine,
Wicht & Aubert 2016; Wang et al. 2021), where it arises from the complex interplay
of convection dynamics in polar and equatorial regions (Gastine & Aurnou 2023). Not
only the diffusion-free convective heat, but also the diffusion-free momentum and length
scale of the geostrophic turbulence regime have been elucidated theoretically and verified
in DNS of RRBC in planar geometry with no-slip boundary conditions at extreme
buoyancy and rotation parameters (up to Ra = 3 × 1013 and down to Ek = 5 × 10−9)
(Song, Shishkina & Zhu 2024). A primary objective of this study is to further broaden
the parameter range, allowing us to investigate both the CIA balance regime and the VAC
balance regime and to illustrate the gradual transition between these two regimes.

Beyond the rotation-dominated regime, there is a rotation-affected regime, where the
Coriolis force is important but not dominant; this regime is characterized by the emission
of vertical thermal plumes from the BL and the absence of large-scale vortices (Cheng
et al. 2018, 2020; Ecke & Shishkina 2023). Recently, Cheng et al. (2020) conducted
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experiments using the TROCONVEX facility with water at Pr ≈ 5.2 and very high
Ra ∼ 1013 and low Ek ∼ 10−8, and identified a turbulence regime influenced by rotation
where Nu ∼ Ra0.52. They suggested that this intermediate regime of rotation-affected
convection becomes wider as Ek decreases. The heat transport enhancement in the
rotation-affected regime with Pr ≥ 4.38 has been investigated by Yang et al. (2020) and
Hartmann et al. (2023). For relatively low Ra � 5 × 108, they found that the optimal
heat transport enhancement occurs when the thicknesses of the viscous and thermal BL
are approximately equal; while for high Ra � 5 × 108, the heat transport enhancement
becomes smaller as the bulk flow at these values of Ra in the rotation-affected
regime changes to geostrophic turbulence. As Ra further increases, the flow enters the
buoyancy-dominated regime, where the effect of the Coriolis force becomes negligible.
In this regime, the flow structures and scaling relations approach those observed in
non-rotating RB convection (Ahlers et al. 2009; Ecke & Shishkina 2023).

As described above, RRBC exhibits several distinct flow regimes, each with its own heat
transport scaling relation. Also very recently, both the VAC- and CIA-based Re scaling
relations are shown to be applicable to different flow regimes of some experimental and
DNS datasets (Hawkins et al. 2023; Madonia et al. 2023). To verify and assess these
scaling relations in different flow regimes, we have conducted extensive DNS of RRBC
in planar geometry, across a wide range of parameters, including nine Ekman numbers
spanning 5 × 10−9 ≤ Ek ≤ 5 × 10−5, Rayleigh numbers within the range 5 × 106 ≤
Ra ≤ 5 × 1013 and a unity Prandtl number. To the authors’ knowledge, Ra = 5 × 1013

is the most extreme Ra achieved so far in DNS for RRBC. The DNS has revealed not only
the typical flow regimes of rotation-dominated flow, namely, cellular flow, Taylor columns,
plumes, geostrophic turbulence and large-scale vortices, but also the buoyancy-dominated
flow. The typical flow structures for rotation-dominated regimes and turbulent statistics
associated with viscous and thermal BLs of all these flow regimes are studied in detail.
Importantly, the scaling relations for Nu, the global and local Re, the convective length
as well as the temperature drop within the thermal BL and its thickness are examined for
these flow regimes, which further indicate the achievement of the diffusion-free regime of
geostrophic turbulence at extreme parameters (very small Ek ≤ 1.5 × 10−8 and very large
Ra ≥ 1013) in the present study. Furthermore, our investigation reveals a clear transition
from the VAC- to CIA-balanced momentum transport scaling behaviour with increasing
Ra and decreasing Ek.

The paper is organised as follows. In § 2 we introduce the numerical models and
governing equations and describe the computational details. Flow structures and typical
turbulent statistics associated with viscous and thermal BLs are shown in § 3. Scaling
behaviours of the heat, momentum transport and convective length scale are discussed in
§ 4. We give our conclusions in § 5.

2. Problem formulation and computational details

The Boussinesq approximation is used to describe RRBC of a fluid between two horizontal
plates, which is rotated with a constant angular velocity Ω around the vertical axis z,
under gravitational acceleration g = −gez, where ez is the vertical unit vector. The chosen
reference scales are the height of the domain L, the temperature difference between
the plates Δ and the characteristic free-fall velocity Uff = √

gαT�L. Non-dimensional
temperature θ , velocity u, pressure p and time t are obtained using these scales. The
dimensionless governing equations for the incompressible fluid are

∇ · u = 0, (2.1)
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∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u + θez − 1
Ek

√
Pr
Ra

ez × u, (2.2)

∂θ

∂t
+ u · ∇θ = 1√

RaPr
∇2θ, (2.3)

and all results in this paper will be presented in the dimensionless form. No-slip boundaries
and constant temperature conditions at the bottom and top plates, as well as periodic
boundary conditions in both horizontal directions were applied. We consider periodic
boundary conditions in the lateral directions, in order to avoid the influence of the wall
modes that develop next to the sidewalls in rapidly RRBC (Ecke, Zhong & Knobloch
1992; Herrmann & Busse 1993; Favier & Knobloch 2020; Shishkina 2020; Zhang et al.
2020; Zhang, Ecke & Shishkina 2021; Ecke, Zhang & Shishkina 2022). The centrifugal
buoyancy is not considered due to its weak role in the flow of the planetary core convection.
To solve the governing equations, an energy-conserving second-order finite-difference
code AFiD was utilized (Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu
et al. 2018). The original code was updated to include a Coriolis force term in the
momentum equations to account for system rotation. The code was parallelized using a
two-dimensional pencil domain decomposition strategy, allowing it to effectively handle
large-scale computations (van der Poel et al. 2015). To ensure a proper resolution of the
flow and temperature fields, sufficiently large computational domains and grid mesh sizes
were used for each studied case. Specifically, in every studied case, the computational
domain size is large enough to capture the typical flow structures: the horizontal extension
of the domain is at least 20 times larger than the onset convective length scale of 2.4Ek1/3

(Chandrasekhar 1961). A Chebyshev-like distribution of the grid points is applied in the
wall normal z direction and a uniform distribution in the periodic x and y directions, so
that the grid points are clustered near the bottom and top plates. A proper grid resolution is
needed within the BLs, especially for the thin viscous (Ekman) BL, which requires special
attention (Stellmach et al. 2014; Aguirre Guzmán et al. 2021; Hartmann et al. 2023). In our
simulations, there are always at least 10 grid points in each thermal and viscous (Ekman)
BL. In order to check the bulk grid resolution used in the DNS, we calculated the mean
dimensionless Kolmogorov microscale (normalised by L) η ≡ ν3/4〈εu〉−1/4

V , where 〈εu〉V
denotes the volume and temporal averaged kinetic energy dissipation rate. The maximum
values of the ratio of the mesh size to the mean Kolmogorov microscale are listed in
table 1 in the Appendix. The maximal value of the ratio of the mesh size to the mean
Kolmogorov microscale, even for the highest Ra = 5.0 × 1013, is always smaller than 2.5;
this value was empirically found to be acceptable (Verzicco & Camussi 2003; Shishkina
et al. 2010; Scheel, Emran & Schumacher 2013). Sufficiently long preliminary simulations
(at least 400 free-fall time units) were performed to ensure statistically steady flow states
are achieved. After that, ensemble averages are obtained over a time period of ≥200
free-fall time units (see table 1 in the Appendix for details of the averaging interval). The
convergence of the Nusselt numbers are checked for the entire domain and the BL flow
scales are well resolved. In this study the maximum relative errors of the Nusselt numbers
calculated by five different methods listed in the Appendix were less than 1 % (see the
Appendix for computational details). The explored parameter range of DNS on RRBC
with periodic boundary conditions on the lateral directions are summarised in figure 1.
It should be noted that in combination with Song et al. (2024), our extensive DNS has
extended the one and half-decade old previously explored Ek parameter range.

989 A3-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.484


J. Song, O. Shishkina and X. Zhu

Direct numerical simulations on periodic domains

Julien et al. (1996)

Schmitz & Tilgner (2009)

Schmitz & Tilgner (2009)

King et al. (2009, 2012, 2013)

King et al. (2009, 2012, 2013)

Favier et al. (2014)

Guervilly et al. (2014)

Stellmach et al. (2014)

Stellmach et al. (2014)

Stellmach et al. (2014)

Kunnen et al. (2016)

Aguirre Guzmán et al. (2020)

Aguirre Guzmán et al. (2020)

Aguirre Guzmán et al. (2022)

Yang et al. (2020)

Yang et al. (2020)

Yang et al. (2020)

Hartmann et al. (2023)

Hartmann et al. (2023)

Present

Pr = 1

Pr = 7

Pr = 0.7

Pr = 100

Pr = 7

Pr = 1

Pr = 1

Pr = 1

Pr = 3

Pr = 7

Pr = 1

Pr = 5.2

Pr = 0.1

Pr = 100

Pr = 4.38

Pr = 6.4

Pr = 100

Pr = 4.38

Pr = 6.4

Pr = 1

102

101R
a
/R

a
c

Ek

100

10–9 10–8 10–7 10–6 10–5 10–4

Figure 1. Phase diagram of DNS on RRBC with periodic lateral boundary conditions for different Ek and
Ra/Rac, where Rac is the critical value for the onset instability (Chandrasekhar 1953; Kunnen 2021). The data
comes from Julien et al. (1996), Schmitz & Tilgner (2009), King et al. (2009, 2012); King, Stellmach & Buffett
(2013), Favier, Silvers & Proctor (2014), Guervilly, Hughes & Jones (2014), Stellmach et al. (2014), Kunnen
et al. (2016), Aguirre Guzmán et al. (2020, 2022), Yang et al. (2020), Hartmann et al. (2023) as denoted by
different symbols on the right-hand side.

3. Flow structures and BL statistics

As demonstrated in figure 2, after the onset of convection (Nu > 1), at moderate Ra in the
rotation-dominated regime, the steep heat transfer scaling of Nu − 1 ∼ Ra3 as compared
with the non-rotating cases is observed for Ek ≤ 10−6. With increasing Ra, the steep
growth of Nu − 1 with increasing Ra gradually flattens. With further increase of Ra, the
convective heat transport approaches the scaling about ∼Ra1/3 for the classical regime
of non-rotating RB convection for the corresponding Ra (Grossmann & Lohse 2000).
Interestingly, for the lowest Ek = 5 × 10−9, after the steep heat transport scaling regime,
the diffusion-free heat transfer scaling ∼Ra3/2 is observed for the very high Ra ≥ 1013

(Song et al. 2024). Obviously, in no-slip RRBC, there are several distinct heat transfer
scaling regimes that are associated with different combinations of Ra and Ek ranges. In
contrast to this, previous numerical results of RRBC with stress-free boundary conditions
showed only the diffusion-free heat transfer scaling of ∼Ra3/2 in almost the whole studied
range of Ra and Ek (Stellmach et al. 2014; Plumley et al. 2017; Plumley & Julien 2019).
This suggests that in the presence of no-slip boundaries, the viscous (Ekman) BL dynamics
has a significant impact on the heat transfer properties in RRBC (Kunnen et al. 2011;
Stellmach et al. 2014; Kunnen et al. 2016; Plumley et al. 2016). Specifically, there is a
growth of thermal perturbations that lead to vertical and horizontal motions. The vertical
velocity amplification can be viewed as an effective Ekman pumping boundary condition
that yields a much steeper variation of Nu with Ra than the rotation-dominated regime
without the Ekman BL (Kunnen et al. 2011; Stevens, Clercx & Lohse 2013; Julien et al.
2016; Kunnen et al. 2016; Plumley et al. 2016; Aguirre Guzmán et al. 2020; Ecke &
Shishkina 2023). However, how the BL dynamics affects the heat and momentum transfer
scaling relations in different flow regimes of the RRBC requires detailed investigation.
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103
Ek = ∞
Ek = 5 × 10–5

Ek = 1.5 × 10–5

Ek = 1.5 × 10–6

Ek = 5 × 10–6

Ek = 5 × 10–7

∼ Ra
1/3

∼ 
R

a
3/

2

∼
R

a
3

Ek = 1.5 × 10–7

Ek = 5 × 10–8

Ek = 5 × 10–9

Ek = 1.5 × 10–8

102

101

100

106 107 108 109 1010 1011 1012 1013 1014

N
u
 –

 1

Ra

Figure 2. Dimensionless convective heat transport Nu − 1 as a function of Rayleigh number Ra for different
Ekman numbers Ek, as obtained in the DNS. The black dashed line represents the heat transfer scaling relation
of Nu − 1 ∼ Ra1/3 for non-rotating RB convection in the classical regime, the dash-dotted line represents the
steep heat transfer scaling of ∼ Ra3 and the dotted line represents the geostrophic turbulence heat transfer
scaling of ∼ Ra3/2. Different symbols represent different Ek and the colour of the lines and symbols reflects
the rotation rate (darker with smaller Ek).

In order to illustrate the distinct flow regimes discussed above, we show the typical flow
structures of RRBC. As depicted in figure 3, at the lowest Ek = 5 × 10−9, with increasing
RaEk4/3, the flow undergoes in sequence cells, Taylor columns, plumes, geostrophic
turbulence and the gradually enhanced formation of large-scale vortices (Julien et al.
2012b; Stellmach et al. 2014; Kunnen 2021). Obviously, there are two important features of
the flow structures in rotation-dominated RB convection: firstly, the flows are dominated
by the vertically aligned structures in the cells, columns and plumes regimes where the
geostrophic balance is predominant; secondly, in contrast to non-rotating RB convection
where a large-scale circulation spans across the bottom and top walls in the flow field, the
flow displays convective motions that have a smaller length scale as compared with the
domain size. It should be noted that figure 3 shows only the typical flow structures of the
rotation-dominated regime. With further increase of Ra, the flow will undergo transition
into the buoyancy-dominated regime. To look at these flow structures, we refer to figure 3
of Cheng et al. (2020) or figure 1 of Ecke & Shishkina (2023).

To further characterize the flow phenomenology of these distinct flow regimes (except
for the large-scale vortices, for which we refer to Guervilly et al. 2014; de Wit et al. 2022),
the horizontal and vertical cross-sections of near-wall and bulk flow dynamics have been
assessed and shown in figure 4. The spatial characteristics of these rotation-dominated
flow regimes are consistent with previous numerical results of the asymptotically reduced
model for quasigeostrophic convection with Pr = 1 (Oliver et al. 2023) and similar to
the DNS results with other Pr values demonstrated in Aguirre Guzmán et al. (2022).
Specifically, the temperature fluctuations near the wall regions are much stronger than
in the middle height plane. In cellular and columnar regimes, the colder fluid parcels are
concentrated in small regions that display nearly circle shapes and they are surrounded
by hotter fluid, and vice versa (see figure 4a,b,e, f ). This flow pattern is also known
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(a)

–0.006 0.006 –0.02 0.02 –0.03 0.03

–0.04 0.04 –0.06 0.06 –0.06 0.06

(b) (c)

(d) (e) ( f )

Figure 3. Thermal fluctuations θ − 〈θ〉 showing (a) cells at RaEk4/3 = 12.82, (b) the Taylor columns at
RaEk4/3 = 21.37, (c) plumes at RaEk4/3 = 42.75, (d) geostrophic turbulence at RaEk4/3 = 85.50, (e) weak
large-scale vortices at RaEk4/3 = 256.50 and ( f ) strong large-scale vortices at RaEk4/3 = 427.49 as obtained
in the DNS for Ek = 5 × 10−9. The domains have been stretched horizontally by a factor of 8 for clarity.
Everywhere, 〈· · · 〉 denotes the average in time and over horizontal cross-sections.

as the ‘shielding effect’ for Taylor columns (Sprague et al. 2006; Julien et al. 2012b;
Stellmach et al. 2014). Moreover, the number of these concentrated regions reduce and
their sizes become larger as the flow transition from cellular to columnar regimes. During
this transition, the bottom–top connected columns get distorted with the loss of a perfect
vertical coherence (also see figure 4i, j). In the plume regime (figure 4c,g,k), the flow is
essentially chaotic in the bulk region, while some concentrated columnar regions can still
be observed within the Ekman BLs. In the view of the xz plane, most of the top–down
connected hot and cold columns have lost their vertical coherences. In the geostrophic
turbulence regime, more violent fluctuations of smaller spatial scales especially near the
wall regions are observed (see figure 4d,h). Intriguingly, figure 4(l) shows that the flow is
highly turbulent and almost independent from the vertical position in the bulk region, with
very weak vertical coherence.

The insufficient mixing of the temperature at the middle height demonstrated above
implies the obvious temperature gradients in the bulk region in RRBC (Boubnov &
Golitsyn 1990; Julien et al. 1996; Gillet & Jones 2006; Kunnen, Geurts & Clercx 2010;
Julien et al. 2012b; King et al. 2012; Stellmach et al. 2014; Gastine et al. 2016). The
time and horizontally averaged temperature profiles for different Ra and Ek are elucidated
in figure 5. Non-vanishing temperature gradients in the bulk regions are observed for
all considered rotating cases. At a constant Ek = 5 × 10−9 (figure 5a), the increase of
Ra changes the temperature distribution toward the isothermal fluid bulk, with gradually
thinner thermal BL thickness as will be discussed in the following part. However, as
demonstrated in figure 5(b), the mean temperature profiles look similar even for several
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Figure 4. Instantaneous horizontal cross-sections (xy plane) of temperature fluctuations θ − 〈θ〉 at the edge of
the bottom Ekman BL (a–d), mid-height (e–h) and vertical cross-sections (xz plane) (i–l) for selected cases of
(a,e,i) cells (RaEk4/3 = 12.82), (b, f, j) Taylor columns (RaEk4/3 = 21.37), (c,g,k) plumes (RaEk4/3 = 42.75)
and (d,h,l) geostrophic turbulence (RaEk4/3 = 85.50), for the smallest Ek = 5 × 10−9. For clarity, the xz planes
are stretched horizontally by a factor of 8.
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Figure 5. Vertical profiles of the time and horizontally averaged temperature 〈θ〉 for (a) different Ra and a
fixed Ekman number Ek = 5 × 10−9 and (b) different Ekman numbers and similar Nusselt numbers 10.6 ≤
Nu ≤ 12.3.

orders difference in Ek, if the heat transport (Nu) is similar. This means that these flows
have comparable fluctuation-induced heat fluxes 〈wθ ′〉 in the bulk region.

The temperature gradient measured at mid-height is frequently used for determining
different regimes and flow transitions in RRBC (Stevenson 1979; Julien et al. 2012b;
Stellmach et al. 2014; Cheng et al. 2020; Aguirre Guzmán et al. 2022). As one can see,
the mean temperature gradients at the middle height shown in figure 6(a) first decrease

989 A3-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.484


J. Song, O. Shishkina and X. Zhu

101 102

RaEk 4/3

103 101 102

RaEk 4/3

103

0.2

0.4

0.8

0.1

0.2

0.4

0.3∼ (RaEk 4/3) –0.21

∼ (R
aE

k 4/3
) –0.96

0.5
(a) (b)

–
d
〈θ

〉/d
z|

1
/2

A

Ek = 5 ×10–5

Ek = 1.5 ×10–5

Ek = 5 ×10–6

Ek = 1.5 ×10–6

Ek = 5 ×10–7

Ek = 1.5 ×10–7

Ek = 5 ×10–8

Ek = 5 ×10–9
Ek = 1.5 ×10–8

Figure 6. (a) Temperature gradient at middle height as a function of RaEk4/3 for different Ek. The
horizontal solid line denotes a flattened range of the smallest Ek. The dashed line represents the scaling of
(RaEk4/3)−0.96 proposed by Julien et al. (2012b), the dash-dotted line denotes the scaling of (RaEk4/3)−0.21

for rotation-influenced turbulence demonstrated by Cheng et al. (2020) in experiments. (b) Kinetic energy
anisotropy A = u2

z /(u
2
h + u2

z ) as a function of RaEk4/3 for different Ek. The horizontal dashed line (A = 1/3)
denotes isotropy.

in the cellular and columnar regimes and then saturate for larger Ek > 1.5 × 10−5. The
decrease exponent is around −0.86, consistent with Aguirre Guzmán et al. (2022) and
slightly differ from the asymptotic scaling of (RaEk4/3)−0.96 proposed by Julien et al.
(2012b). For the smaller Ek ≤ 5 × 10−6, a slight increase of the mean temperature
gradients instead of the saturation is obtained, which corresponds to a transition to
the plume regime (Nieves et al. 2014). Similar mean temperature gradients were also
observed by Zhong et al. (2009), Kunnen et al. (2010), Liu & Ecke (2011), Horn &
Shishkina (2014), Cheng et al. (2020) in both simulations and experiments, in agreement
with predictions by Julien et al. (2012b) for the transition from the plume regime to
geostrophic turbulence regime. Here, we observe the flattened region at 80 ≤ RaEk4/3 ≤
250 with Ek = 5 × 10−9 of the diffusion-free regime. However, it should be noted that
only when the thermal deriving and rotation are sufficiently strong, the geostrophic
turbulence regime can be observed for a wide range of RaEk4/3. For RaEk4/3 ≥ 100,
all gradients decrease monotonically to the lowest value of about 0.2, getting closer
to zero value, which corresponds to the well-mixed isothermal bulk state of highly
turbulent non-rotating convection. It should be noted that a saturated non-zero bulk
gradient for geostrophic turbulence and its required transition to a zero gradient for
buoyancy-dominated convection has been raised by Julien et al. (2012b) and later studied
by Aguirre Guzmán et al. (2022) and Hartmann et al. (2023). The decrease slope is steeper
than −0.21 for the so-called rotation-influenced turbulence observed in extensive water
experiments with Pr ≈ 5.2 by Cheng et al. (2020). In addition, to study the degree of
anisotropy in different flow regimes, we plot the kinetic energy anisotropy as a function
of RaEk4/3 for each simulation in figure 6(b), where A = u2

z /(u
2
h + u2

z ) (Madonia et al.
2023). In contrast to the almost isotropy of the flows measured in the experiments with
Pr ≈ 5.2 by Madonia et al. (2023), we obtain that the degree of anisotropy increases
with stronger rotation in the cellular and columnar regimes. Note that the velocity was
measured in experiments at the middle plane, while here, the volume-averaged velocity is
considered, which could be an explanation for this discrepancy. For higher Ek > 5 × 10−6,
when the flow undergoes a transition to the buoyancy-dominated regime, it becomes
nearly isotropic. For the stronger rotation for Ek ≤ 5 × 10−6, the flow is more anisotropic
as the flow undergoes a transition to the plume regime and/or geostrophic turbulence
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Figure 7. Sketches to the definitions of the thermal (a) and the viscous (b) BL thicknesses, by example of
Ra = 5 × 1013 and Ek = 5 × 10−9. The shown solid lines are mean temperature 〈θ〉 and horizontal velocity
〈uh〉, respectively. The yellow dashed line is the root mean square of the temperature fluctuation (multiplied
by 10 for clarity). The black dashed lines denote the tangent lines near the walls. The dash-dot lines denote
(a) the tangent at middle height and (b) the horizontal passing through the maximum value of 〈uh〉. The blue
dots denote the intersects, i.e. the BL positions according to the slope method. The yellow dots denote the peak
values, i.e. the BL positions according to the maximum value method. The insets show enlarged figures near
the bottom plate.

regime. This anisotropy is especially strong when the large-scale vortices form (see the
last two open symbols).

Before discussing the BL statistics, we first consider the definitions of thermal and
viscous BLs, with two frequently used approaches: the slope and the maximum value
methods (Verzicco & Camussi 1999; Breuer et al. 2004; Gastine et al. 2016). The
motivation to discuss the BL properties via two different definition methods are twofold:
first, the different properties of the BL thickness and associated temperature drop within
the BL based on these two common methods have not been well studied in RRBC until
now; second, in such a broad parameter range, whether the scaling behaviours of the
BL thickness defined by these two methods are similar or not is not clear, especially
in the geostrophic turbulence regime. Specifically, as illustrated in figure 7(a), the slope
method defines the thermal BL thickness δs

θ as the depth where the linear fit to the mean
temperature profile near the wall intersects the linear fit to the profile at mid-depth. The
maximum value method defines the thermal BL thickness δm

θ as the average distance from
the bottom and top walls to the location of the maximum value of the root mean square of
the temperature fluctuations θ ′ = θ − 〈θ〉 near each wall. Analogously, the slope method
defines the viscous BL thickness δs

u as the distance from the wall where the linear fit to the

horizontal velocity profile uh =
√

〈u2
x + u2

y〉 near the wall intersects with the horizontal
line passing through the maximum of uh (see figure 7b); the maximum value method
defines the viscous BL thickness δm

u as the average distance from the bottom and top walls
to the maximum value of 〈uh〉 near each wall.

The heat transport behaviour of RRBC is intimately related to the BL dynamics. In
figure 8(a,b) we show the thermal BL thicknesses calculated via the two methods with
the definitions described above. The values of the two types of the BL thicknesses show
a similar trend to a monotonical decrease with the supercriticality RaEk4/3, and they
show no sign of saturation for rapidly rotating cases, which is consistent with previous
results for different Pr (Julien et al. 2012b). Moreover, Julien et al. (2012b) proposed
that the relation δθ ∼ (RaEk4/3)−2 should hold for the turbulent state of rapidly RRBC.
Here, this scaling relation can be locally observed for 50 � RaEk4/3 � 200 for the
thermal BL, defined with the slope method. In turbulent non-rotating RB convection the
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Figure 8. The dimensionless thermal BL thicknesses defined by (a) the slope method δs
θ and (b) the maximum

value method δm
θ as a function of RaEk4/3, for different Ek. The dash-dot lines denote the scaling of δθ ∼

(RaEk4/3)−2 predicted by Julien et al. (2012b) for geostrophic turbulence. The dimensionless thermal BL
thickness δs

θ (c) and δm
θ (d) vs Nu for different Ek. The dash-dotted lines denote δs

θ = 0.3Nu−1 and δm
θ =

0.4Nu−1, respectively. The insets show the compensated plots with (2Nu)−1.

thermal BL thickness is given by δθ ≈ (2Nu)−1 (Ahlers et al. 2009). As demonstrated in
figure 8(c), in RRBC the relation of δθ ≈ (2Nu)−1 is also roughly held for the BL thickness
defined by the slope method. This scaling relation for the maximum value defined thermal
BL thickness shown in figure 8(d) is scattered for different Ek. In the compensated
plots, the two BL thicknesses, δs

θ and δm
θ , show different trends with the supercriticality

in the rotation-dominated regime (RaEk4/3 ≤ 20). However, for both δs
θ and δm

θ , short
flattened ranges of 80 ≤ RaEk4/3 ≤ 200 are found for the smallest Ek = 5 × 10−9, which
roughly corresponds to the geostrophic turbulence regime. At high RaEk4/3 ≥ 200, the
compensated values for both δs

θ and δm
θ begin to increase and gradually approach 1.

Despite the different trends from the two thermal BL thickness definitions, the
mean temperature drop within the thermal BL shown in figure 9 demonstrates similar
behaviours with the supercriticality, in both cases. Specifically, it first decreases with
RaEk4/3, then follows a short plateau and, in turn, increases as the flow approaches
the buoyancy-dominated regime, where the mean temperature drop in the bulk is small.
Specifically, in the cellular and columnar regimes (RaEk4/3 ≤ 20), the value of δT(m)

decreases dramatically from around 0.5 to 0.15. In contrast to the case Pr = 1 reported
in Julien et al. (2012b), an obvious plateau at RaEk4/3 ≈ 100 is observed here for
the plume regime and geostrophic turbulence regime for the smallest Ek = 5 × 10−9.
Here, the temperature drop within the thermal BL, according to the maximum value
definition, δT(m), goes down and reaches the lowest value of around 0.1, which implies
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Figure 9. The temperature drop within the thermal BL thicknesses defined by (a) the slope method and (b) the
maximum value method, as a function of RaEk4/3, for different Ek. The dash-dot lines denote the scaling of
δT ∼ (RaEk4/3)−1/2 predicted by Julien et al. (2012b) for geostrophic turbulence. The symbols have the same
meaning as in figure 2.

the very small BL contribution to the total mean temperature drop within the system.
Hence, the heat transport in the turbulence regime of rapidly RRBC is dominated by the
bulk dynamics. In particular, for the slope method based temperature drop, the scaling
of δT ∼ (RaEk4/3)−1/2 is observed in this regime of rapidly RRBC (Ek = 5 × 10−9) as
predicted by Julien et al. (2012b). Combining this with the valid relation δθ ∼ (RaEk4/3)−2

(see figure 8a) one obtains 2Nu ∼ δT/δθ ∼ (RaEk4/3)3/2. A closer look at the validity
range for these scaling relations leads to a conclusion that the slope method defined
thermal BL statistics reflects more accurately the diffusion-free regime of geostrophic
turbulence.

The kinetic BL in non-rotating RB convection is mainly determined by the shear
induced by the large-scale circulation (Ahlers et al. 2009). Rotation dramatically changes
the kinetic BL into the Ekman BL type (Greenspan 1968), with the BL thickness
δu ∼ 3Ek1/2. This relation can be obtained by considering a force balance between the
Coriolis force and viscous force in the limit of Ek → 0 (Greenspan 1968). To verify
this relation, we calculate the viscous BL thicknesses based on the definition sketched
in figure 7. As shown in figure 10(a,b), the slope viscous BL thickness δs

u is almost
an order of magnitude smaller than δm

u , calculated with the maximum value method.
This has also been reported by Hartmann et al. (2023), where the slope method defined
viscous BL thickness is understood as the thickness of a pseudo shear BL. The difference
between the two definitions also suggests that they might have slightly different physical
meanings. Interestingly, for each Ek, the values of δs

u and δm
u remain almost constant

and slightly change with Ra. The insets in figure 10(a,b) show that both definitions of
the Ekman BL thicknesses follow the theoretical scaling of δu ∼ Ek1/2, especially in
the rotation-dominated regime (RaEk4/3 � 300). Beyond this range, δs

u shows a slight
decrease and δm

u shows a slight increase. It should be noted that the δm
u /Ek1/2 ≈ 3, which

is in excellent agreement with the theoretical prefactor proposed by Greenspan (1968).

4. Heat, momentum transport, convective length scale scalings

In this section the global and local heat and momentum transport as well as the
characteristic convective length scale scaling relations of RRBC are analysed, with
particular emphasis on the local Re and Ro scaling behaviours in the bulk and within
the Ekman BL regions. It should be noted that in non-rotating RB convection, there exists
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Figure 10. The dimensionless viscous BL thicknesses defined by (a) the slope method δs
u and (b) the maximum

value method δm
u as functions of Ek for different Ra. The dash-dotted lines denote δs

u = 1.25Ek1/2 and δm
u =

3Ek1/2 in (a) and (b), respectively. The insets show the compensated plots with Ek1/2 for δs
u (a) and δm

u (b) as
functions of RaEk4/3, for different Ek.

a large-scale circulation with a single typical length scale L, determined by the container
and the velocity scale U (Grossmann & Lohse 2000). In RRBC, as shown in figure 3,
the typical flow structures vary from vertically aligned cells and columns to plumes,
geostrophic turbulence and/or large-scale vortices. As suggested by Guervilly et al. (2014,
2019) and Maffei et al. (2021), in order to accurately characterize the amplitude of

convective motions, the vertical fluctuation velocity u =
√

〈u2
z 〉 is frequently used as the

typical velocity scale to define the Reynolds number (Re = uL/ν), which denotes the value
obtained by time and the full volumetric average (Hawkins et al. 2023).

First, we recall the two important force balances that determine various heat and
momentum transfer scaling relations in RRBC. On the one hand, the balance of the
viscous, buoyancy and Coriolis forces, i.e. the so-called VAC balance, leads to the onset
length scale of �o ∼ Ek1/3 and the following momentum transfer scaling (Aurnou et al.
2020; Hawkins et al. 2023; Madonia et al. 2023):

ReVAC ∼ Ra1/2(Nu − 1)1/2Pr−1Ek1/3. (4.1)

On the other hand, the balance of the Coriolis and inertial forces leads to �i ∼
(u/2ΩL)1/2 = Ro1/2, proposed for the case when the viscosity effects are negligible in
a fully developed turbulent state. The balance of CIA forces gives rise to

ReCIA ∼ Ra2/5(Nu − 1)2/5Pr−4/5Ek1/5. (4.2)

Based on our extensive DNS data for Pr = 1, we can check the above ReVAC and ReCIA
scaling relations for various flow regimes. As demonstrated in figure 11(a,b), the DNS
data are in a good agreement with both scaling relations for the whole parameter range.
The best fit of the VAC scaling is Re = (0.33 ± 0.01)Re1.12±0.005

VAC and the best fit of the
CIA scaling is Re = (0.43 ± 0.02)Re1.00±0.005

CIA . In order to determine which force balance
matches the present data better, we present compensated plots for these two Re scalings in
figure 11(c,d). A broad flattened range of 8 ≤ RaEk4/3 ≤ 100 is observed in figure 11(c),
while only a very narrow flattened range of 50 ≤ RaEk4/3 ≤ 100 is seen in figure 11(d),
indicating that the VAC-based Re scaling agrees with the present data better than the
CIA-based Re scaling. Indeed the plateau range for the geostrophic turbulence regime
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Figure 11. (a) Plot of Re vs ReVAC, where the best fit dashed line is given as Re = (0.33 ± 0.01)Re1.12±0.005
VAC ;

(b) Re vs ReCIA, where the best fit dashed line is Re = (0.43 ± 0.02)Re1.00±0.005
CIA . (c) The compensated plots of

Re/ReVAC and (d) Re/ReCIA vs RaEk4/3.

in figure 11(d) is very limited. The reason could be the formation of large-scale vortices
in the geostrophic turbulence regime with larger RaEk4/3 ≥ 100, which is associated with
an additional increase of Re due to the inverse energy cascade (Julien et al. 2012a,b; Wedi
et al. 2022). Here, a prefactor of about 2 is found for this flattening range for the VAC-based
Re scaling relation (4.1), and the valid range of CIA-based Re scaling has a prefactor close
to 1. The prefactors are consistent with the results of VAC- and CIA-based Ro scaling
reported in Hawkins et al. (2023).

It should be noted that the above ReVAC and ReCIA scaling relations contain the
convective heat transport of Nu − 1, which is a global response parameter of the thermal
convection system. In order to determine the ReVAC and ReCIA scaling upon the control
parameters, the convective heat transport Nu − 1 scaling should be first determined. As it
was shown in previous studies, the heat transport scaling varies dramatically in different
flow regimes and the scaling exponent changes smoothly during the transition. We assume
that there are three main options for the convective heat transfer Nu − 1 dependence upon
the control parameters for RRBC. First, for the columnar regime of RRBC with no-slip
bottom and top walls, based on extensive measurements of the vertical mean temperature
profile, Boubnov & Golitsyn (1990) derived a steep heat transfer scaling of

Nu − 1 ∼ (Ra/Rac)
3 ∼ Ra3Ek4. (4.3)
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Figure 12. Convective heat transport Nu − 1 versus (a) the supercriticality RaEk4/3 and (b) the ε =
Ra/(8.7Ek−4/3) − 1 for all the DNS data shown in figure 2. The dashed line in (a) denotes the steep heat
transfer scaling of Nu − 1 ∼ 0.001Ra3Ek4 and the dash-dotted line the asymptotic heat transfer scaling
of Nu − 1 ∼ 0.06Ra3/2Ek2. The dashed line in (b) denotes the scaling of Nu − 1 = 5ε1.4, the solid line
Nu − 1 = 2.2ε + 3.5ε2 proposed by Ecke (2015), and the dash-dotted line the asymptotic heat transfer scaling
of Nu − 1 ∼ 1.8ε1.5.

This scaling was also proposed by King et al. (2012) using the marginal stability argument
for the thermal BL. This is an analogy of the Malkus’s theory for non-rotating RB
convection (Malkus 1954).

Second, in the rotation-dominated geostrophic turbulence regime, under the assumption
that the dimensional heat flux q is independent of the diffusive fluid properties ν and
κ , along with the further assumption that the heat flux might only depend on the
supercriticality Ra/Rac (Julien et al. 2012a), one can derive the following diffusivity-free
heat transport scaling:

Nu − 1 ∼ (Ra/Rac)
3/2 ∼ Ra3/2Ek2Pr−1/2. (4.4)

Using the CIA force balance analysis, Stevenson (1979), Gillet & Jones (2006) and Aurnou
et al. (2020) also derived the above asymptotic heat transport scaling relation. The inviscid
heat transfer scaling of (4.4) was also derived by Julien et al. (2012a) using asymptotically
reduced equations for Ek → 0 (Sprague et al. 2006).

At last, with increasing thermal driving force, the flow approaches the buoyancy-
dominated regime (also see figure 2), where the heat transfer follows the classical scaling
for non-rotating RB convection for the considered Ra and Pr,

Nu − 1 ∼ Ra1/3; (4.5)

see Malkus (1954) and Grossmann & Lohse (2000).
Before we insert the convective heat transport scaling into the momentum scaling

relations (4.1), (4.2) to obtain the Re scaling, we first verify it. As demonstrated in
figure 12(a), where Nu − 1 is plotted versus the supercriticality RaEk4/3, the steep heat
transfer scaling (4.3) and the diffusion-free scaling (4.4) are observed in the present
dataset, as also elucidated in Song et al. (2024) for the data for Ek ≤ 1.5 × 10−7.
Specifically, for the cellular and columnar regimes for 10 ≤ RaEk4/3 ≤ 30, the steep
heat transfer scaling is broadly observed for almost all Ek considered here; while the
diffusion-free heat transport scaling is observed only for the two smallest Ek ≤ 1.5 × 10−8

for 70 ≤ RaEk4/3 ≤ 300. However, as suggested by Ecke (2015), the heat transport data
can also be considered from the perspective of weakly nonlinear theory. To this end,
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DNS of rotating Rayleigh–Bénard convection

we also plot the data with ε = Ra/(8.7RaEk4/3) − 1 in figure 12(b). Similar results are
obtained in Ecke (2015): the steep heat transport scaling shown in figure 12(a) can be well
fitted using the weakly nonlinear theory leading to Nu − 1 ≈ 2.2ε + 3.5ε2 or Nu − 1 ≈
5ε1.4. However, for ε ≤ 0.3, the coefficient for the weakly nonlinear expansion shows
a strong dependence on Ek. For high ε > 10, the diffusion-free heat transport scaling
of Nu − 1 ≈ 1.8ε1.5 is achieved for the two smallest Ek ≤ 1.5 × 10−8. The comparison
between these two ways demonstrates the substantial differences of the scaling relations
for the low ε < 10 and similar results for higher ε > 10.

By inserting the above convective heat transfer scaling relations (4.3), (4.4), (4.5)
into the momentum scaling relations (4.1), (4.2), we obtain the corresponding Re
scaling relations for the specific flow regimes. Firstly, for the columnar regime, the
viscosity-dependent heat and momentum transport scaling relations should be considered,
as the flow is not turbulent. Hence, after we insert the steep heat transport relation (4.3)
into the VAC-derived momentum transport scaling (4.1), we obtain

ReVACS ∼ Ra2Ek7/3Pr−1 = (RaEk4/3)2Ek−1/3Pr−1. (4.6)

In the geostrophic turbulence regime the viscous effects on the convective flow can be
assumed negligible, thus, the diffusion-free heat transport relation (4.4) is substituted into
the CIA-based momentum transport scaling (4.2), which leads to

ReCIAD ∼ Ra1Ek1Pr−1 = (RaEk4/3)1Ek−1/3Pr−1. (4.7)

This is the diffusion-free momentum transport scaling relation for the geostrophic
turbulence regime (Aurnou et al. 2020; Hawkins et al. 2023; Madonia et al. 2023), which
is also derived from the inviscid theory (Guervilly et al. 2019).

In the buoyancy-dominated regime for moderate Ra, where the viscous and inertia
effects cannot be neglected, both the VAC- and CIA-based momentum transport scaling
relations might work. To this end, taking the classical heat transport relation (4.5) for the
non-rotating case and the VAC momentum transport scaling (4.1) leads to

ReVACC ∼ Ra2/3Ek1/3Pr−1 = (RaEk4/3)2/3Ek−5/9Pr−1. (4.8)

The insert to the CIA momentum transport scaling (4.2) gives rise to

ReCIAC ∼ Ra8/15Ek1/5Pr−4/5 = (RaEk4/3)8/15Ek−23/45Pr−4/5. (4.9)

Recently, Hawkins et al. (2023) have derived equations (4.7), (4.9) and verified (4.9) via
their extensive experimental and DNS results, which show a very good agreement with
the local Re and Ro scaling relations, which we discuss later.

The verification of the above derived global Re scaling relations are shown in figure 13
with the corresponding compensation shown as the insets. As expected and as shown in
figure 13(a), the VAC-based viscous scaling agrees well with the data in the range of
moderate supercriticality RaEk4/3 � 20, where the flows are in the cellular and columnar
regimes. As demonstrated in figure 13(c), the CIA-based diffusion-free scaling matches
the data for high supercriticality 30 � RaEk4/3 � 200, especially for the geostrophic
turbulence regime of the two smallest Ekman numbers (Ek ≤ 1.5 × 10−8). In addition, as
shown in figure 13(b,d), both the VAC- and CIA-based Re scaling relations derived from
the classical Nu − 1 ∼ Ra1/3 serve as an upper bound scaling for the present data that
approach the non-rotating state. However, as compared with the insets of figure 13(b,d),
which force balance based scaling is most applicable to this regime is hard to
determine.
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Figure 13. The global Re scaling of (a) the VAC-derived scaling ReVACS ∼ (RaEk4/3)2/3Ek−5/9, (b) the
VAC-derived scaling ReVACC ∼ (RaEk4/3)2Ek−1/3, (c) the CIA-derived diffusion-free scaling ReCIAD ∼
(RaEk4/3)1Ek−1/3 and (d) the CIA-derived scaling ReCIAC ∼ (RaEk4/3)8/15Ek−23/45. The best fit solid lines
are y = 0.015x, y = 0.1x, y = 0.34x and y = 0.34x in (a), (b), (c) and (d), respectively. The inset in each plot
shows the corresponding compensation of Re with the x-coordinate scaling relation.

In order to further verify the agreement of VAC- and CIA-based Re scaling relations
in the present DNS data with Pr = 1, we follow Hawkins et al. (2023) and check the
scaling relations for the local Reynolds number and Rossby number. Specifically, the
local bulk Reynolds number is defined as Rel = u�/ν = ReEk1/3, the local bulk Rossby
number as Rol = u/(2Ω�) = RoEk−1/3 and the local Rossby number in the Ekman BL
as RoδE = u/(2ΩδE) = RoEk−1/2. Here, the characteristic convective length scale is
assumed to follow the onset length scale of �o ∼ Ek1/3. For the VAC-based scaling relation
ReVACS ∼ (RaEk4/3)2Ek−1/3Pr−1, after the substitution of (4.6) into these local quantities,
we obtain

Rel = ReEk1/3 ∼ Ra2Ek8/3Pr−1 = (RaEk4/3)2Pr−1,

Rol = (ReEk)Ek−1/3 ∼ Ra2Ek3Pr−1 = (RaEk4/3)2Ek1/3Pr−1,

RoδE = (ReEk)Ek−1/2 ∼ Ra2Ek17/6Pr−1 = (RaEk4/3)2Ek1/6Pr−1.

⎫⎬
⎭ (4.10)

In turn, for the CIA-based scaling relation ReCIAD ∼ (RaEk4/3)1Ek−1/3Pr−1, the
substitution of (4.7) into these local quantities leads to

Rel = ReEk1/3 ∼ Ra1Ek4/3Pr−1 = (RaEk4/3)1Pr−1,

Rol = (ReEk)Ek−1/3 ∼ Ra1Ek5/3Pr−1 = (RaEk4/3)1Ek1/3Pr−1,

RoδE = (ReEk)Ek−1/2 ∼ Ra1Ek3/2Pr−1 = (RaEk4/3)1Ek1/6Pr−1.

⎫⎬
⎭ (4.11)
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Figure 14. The scaling relations for the local bulk Reynolds number Rel = ReEk1/3 (a,d), local bulk Rossby
number Rol = RoEk−1/3 (b,e) and local Rossby number in the Ekman BL RoδE = RoEk−1/2 (c, f ). The scaling
relations in (a–c) are derived from the VAC-Re scaling as (4.10) and the solid lines denote y = 0.014x. The
scaling relations in (d–f ) are derived from the CIA-Re scaling as (4.11) and the solid lines denote y = 0.35x.
The symbols have the same meaning as in figure 2.

The above CIA-based asymptotic local Re- and Ro-scaling relations (4.11) were
proposed by Hawkins et al. (2023), but these asymptotic scalings were not verified since
the diffusion-free heat transfer regime given by (4.4) was not attained in their dataset. In
the cellular and columnar regimes, as demonstrated in figure 14(a–c), the local bulk Re,
local bulk Ro and local Ro in the Ekman BL scaling relations (4.10) are in reasonable
agreements with our data in the range of moderate supercriticality. On the other side, in
the figure 14(d–f ), the local scaling relations (4.11) also show decent agreements with
our data for the geostrophic turbulence regime for small Ek ≤ 1.5 × 10−8. In addition,
the corresponding compensated plots of figure 14 (not shown here) look very similar to
the insets of figure 13, that show the compensated plots of global Re-scaling relations.
Hence, the VAC-based (RaEk4/3 � 20) and CIA-based (30 � RaEk4/3 � 200) local Re-
and Ro-scaling relations work similarly well as demonstrated in figure 13.

It should be noted that the CIA force balance requires the characteristic convective
length scale to follow the inertial length scale �i ∼ Ro1/2 (Aurnou et al. 2020; Hawkins
et al. 2023; Madonia et al. 2023). To this end, here we also use this inertial length scale to
define the local Reynolds number as Reli = u�/ν = ReRo1/2, local bulk Rossby number
as Roli = u/(2Ω�) = Ro1/2. The local Rossby number in the Ekman BL, RoδE , remains
unchanged. Hence, we have

Reli = ReRo1/2 ∼ Ra3/2Ek2Pr−3/2 = (RaEk4/3)3/2Pr−3/2,

Roli = ReEkRo−1/2 ∼ Ra1/2Ek1Pr−1/2 = (RaEk4/3)1/2Ek1/3Pr−1/2.

}
(4.12)
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Figure 15. Scaling relations of (a) the local bulk Reynolds number Reli = ReRo1/2 and (b) the local bulk
Rossby number Roli = Ro1/2; see (4.12). The solid lines denote y = 0.2x and y = 0.6x, respectively. The
compensated plots of (c) the local bulk Reynolds number Rel vs RaEk4/3, see (4.11), and (d) Reli vs (RaEk4/3)2,
see (4.12).

The above local Reli and Roli scaling relations, which are defined on the inertial length
scale, are shown in figure 15(a,b). As expected, both local scalings show a decent
agreement with our data for the geostrophic turbulence regime for small Ek ≤ 1.5 × 10−8.
In order to assess which of the two length scales is more appropriate in the CIA-force
balance regime, we compare the compensation plots of Rel vs RaEk4/3 derived from (4.11)
and Reli vs (RaEk4/3)2 derived in (4.12). Again, figure 15(c,d) shows a very similar trend
and even the magnitude of the compensated results, which implies that the characteristic
convective length scale might be co-scale for the valid range of 20 � RaEk4/3 � 200.
Recently, Hawkins et al. (2023) have also demonstrated the co-scale of the CIA and VAC
scalings based on their experimental and DNS data with 1.25 × 10−7 ≤ Ek ≤ 3 × 10−5

and Pr ≈ 6. They have also theoretically elucidated that the onset and inertial length
scales should co-scale if Rel ≈ O(1) and Rol ≤ O(1), which we verify and discuss
later.

Another important characteristic of RRBC is the cross-axial length scale that plays
an essential role in deriving the VAC- and CIA-related Nu and Re scaling relations.
As mentioned in the introduction, there are two important theoretical characteristic
convective length scales in rotating convection: the onset critical length scale �o ∼ Ek1/3

and the inertial convective length scale �i ∼ (ReEk)1/2 = Ro1/2. Since the vertical velocity
uz is used to quantify the convective flow motions in rotating convection, following
Guervilly et al. (2014, 2019), Maffei et al. (2021) we calculate the convective length scale
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Figure 16. Dimensionless convective length scale � compensated with (a) Ek1/3 and (b) (ReEk)1/2 as
functions of RaEk4/3.

� as

� =
∑
kh

[ûz(kh)û∗
z (kh)]

/∑
kh

kh[ûz(kh)û∗
z (kh)] . (4.13)

Here, ûz(kh) and û∗
z (kh) are, respectively, the two-dimensional Fourier transforms of the

vertical velocity and its complex conjugate at the middle height and kh ≡ (k2
x + k2

y)
1/2

is the horizontal wavenumber. It should be noted that, based on recent studies on the
convective length scale by Madonia et al. (2021), Song et al. (2024), the different
definitions of the length scale could significantly affect the scaling range.

The convective length scale at the onset of convection scales as � ∼ Ek1/3, as elucidated
by the linear stability analysis (Chandrasekhar 1953, 1961). This relation is believed to
hold also in the columnar and even plume regimes (Nieves et al. 2014). This is supported
by figure 16(a), where the data collapse and show a plateau at RaEk4/3 � 20, while for
higher RaEk4/3 ≥ 50, the data become scattered, indicating that this Ek1/3 scaling does
not hold in other flow regimes. However, for higher RaEk4/3 ≥ 20, the convective length
scale follows rather the scaling with Ro1/2 = (ReEk)1/2, as demonstrated in figure 16(b).
This implies that the convective length scale changes in the transition to different regimes.
The scalings become clearly different for RaEk4/3 � 100.

Finally, to compare the above derived heat and momentum transport scaling relations
and our DNS data, we follow the procedure by Gastine et al. (2016) and calculate the local
effective exponents αeff and βeff for the convective heat transport, Nu − 1, and momentum
transport, Re as functions of Ra:

αeff = ∂ln(Nu − 1)

∂lnRa
, βeff = ∂lnRe

∂lnRa
. (4.14a,b)

As demonstrated in figure 17(a), αeff remains almost constant (≈0.33, solid line) for
non-rotating convection. For all Ek values considered here, Ek holds for 0.3 ≤ αeff ≤ 5.2.
For any Ek and relatively low values of Ra, one obtains αeff ≥ 3 that corresponds to
the steep heat transport scaling regime elucidated in (4.3) and figure 12(a). From Ek ≤
5 × 10−6, the maximum value of αeff decreases monotonically with decreasing Ek, and
αeff tends to saturate at a value with further reduction in Ek. Hence, more results with
even lower Ek are required to demonstrate the robustness of the scaling of Nu − 1 ∼ Ra3,
which was derived theoretically. For higher Ek ≥ 5 × 10−6, with increasing Ra, the values
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Figure 17. Local effective exponent of (a) αeff of Nu − 1 ∼ Raαeff
and (b) βeff of Re ∼ Raβeff

as functions
of Ra, for different Ekman numbers. The solid and dashed lines in (a) denote αeff = 1/3 and αeff = 1.5,
respectively, and in (b) denote βeff = 0.5 and αeff = 1.0, respectively. The symbols have the same meaning as
in figure 2.

of αeff first decrease sharply and then slowly approach 1/3. While for Ek ≤ 5 × 10−6, after
the sharp drop, αeff increases slightly and in turn decreases to a value, which is gradually
larger than 1/3. For example, at the smallest Ek = 5 × 10−9, αeff � 1.45 at very high
Ra > 1013, which shows the trend towards the asymptotic diffusion-free heat transport
scaling exponent of 1.5 (dashed line) elucidated in (4.4) and figure 12.

Intriguingly, in figure 17(b), βeff shows a very similar change in the trend as αeff , but the
magnitude is relatively smaller. For non-rotating convection, βeff remains almost constant,
around 0.5 (solid line). In the regime of the steep heat transport, the momentum transport
scaling exponent βeff decreases from ≈ 3 to ≈ 2.3 with increasing rotation rate. The
value range of 2.3 ≤ βeff ≤ 3.5 in this regime is larger than the VAC-derived Re scaling
exponent of 2, see (4.6), which again requires further investigations at even lower Ek to
quantify the agreement of the VAC force balance in the specific parameter range of rotating
convection. For higher Ek ≥ 5 × 10−6, beyond the steep heat transport regime, the values
of βeff also decrease sharply with Ra and then slowly approach 0.5 (solid line) for the
non-rotating case. For small Ek ≤ 1.5 × 10−8, after the sharp drop, βeff in turn increases
a little bit to the value of about 1.2, due to the formation of large-scale vortices in the flow.
This value is slightly larger than 1 (dashed line), which corresponds to the asymptotic
diffusion-free momentum transport scaling elucidated in (4.7) and figure 13(a).

5. Conclusions

Rotating Rayleigh–Bénard convection at Pr = 1 has been investigated via extensive
three-dimensional DNS in the planar geometry with no-slip top and bottom and periodic
lateral boundary conditions, for extreme rotation (Ek−1) and buoyancy (Ra) parameters
range. The DNS are performed in a broad parameter range with more than seven orders of
Ra and four orders of Ek, and up to Ra = 5 × 1013 down to Ek = 5 × 10−9. The extensive
DNS has revealed the typical flow regimes of cellular flow, Taylor columns, plumes,
geostrophic turbulence, large-scale vortices and also the buoyancy-dominated flows. The
thermal and viscous BL statistics based on two different definitions are examined, these
definitions are based on the slope method and maximum value method. It is shown that
the dimensionless thermal BL thickness calculated by the slope method roughly follows
δθ ∼ Nu−1 in a broad range. We demonstrate that the slope method thermal BL thickness
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shows more consistent scaling of δθ ∼ (RaEk4/3)−2, δθ ∼ (Nu)−1, δT ∼ (RaEk4/3)−1/2,
which at last leads to 2Nu ∼ δT/δθ ∼ (RaEk4/3)3/2 for the geostrophic turbulence regime
at very rapid rotation (Ek ≤ 1.5 × 10−8), as predicted by Julien et al. (2012b). However,
the mean temperature drops within the thermal BL defined by the two methods show a very
similar trend versus RaEk4/3 in different flow regimes. In addition, both the viscous BL
thicknesses follow δu ∼ Ek1/2 well in the rotation-dominated regime, but the maximum
value viscous BL thickness agrees better with the theoretical scaling result of δu ∼ 3Ek1/2,
proposed by Greenspan (1968).

When the convective heat transport is plotted versus the supercriticality RaEk4/3,
the steep heat transport scaling of Nu − 1 ∼ Ra3Ek4 is observed for RaEk4/3 ≤ 30, for
almost all considered values of Ek in the columnar regime. The steep heat transport
scaling relation is replaced by the weakly nonlinear relation Nu − 1 = 2.2ε + 3.5ε2

or shallower scaling Nu − 1 = 5ε1.4 when plotted with ε = Ra/(8.7RaEk4/3) − 1, as
proposed by Ecke (2015). The asymptotic diffusion-free heat transport scaling relation
Nu − 1 ∼ Ra3/2Ek2 ∼ ε3/2 is observed in the two different approaches. Both the VAC-
and CIA-based Re scaling relations are shown to agree well with the data for Nu calculated
from our DNS in a broad parameter range. After substituting the specific heat transport
scaling relations into the Re scaling relation derived from the VAC and CIA force balances,
both the global and local VAC-based Re scaling relations are shown to agree well with the
data in the cellular and columnar regimes, while the CIA-based Re scalings work well in
the geostrophic turbulence regimes for a very rapid rotation, Ek ≤ 1.5 × 10−8. In addition,
the convective length scale calculated based on the vertical velocity is demonstrated to
scale well with the onset length scale of Ek1/3 in the cellular and columnar regimes, while
in the geostrophic turbulence regime it follows the inertia scale of Ro1/2. Importantly, the
achievement of the diffusion-free regime of geostrophic turbulence at extreme parameters
(for very small Ek ≤ 1.5 × 10−8 and very large Ra ≥ 1013) is proved via examinations
of different quantities. In order to increase the validity range of this diffusion-free
regime, more extreme values of the parameters are needed. The local effective scaling
exponents for the heat and momentum transport with respect to Ra demonstrate a smooth
change between the various distinct sub-regimes in RRBC. Finally, the proposed scaling
relations that include also Pr dependences, encourage future numerical and experimental
investigations of the scaling relations with varying Pr.
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Appendix. Numerical parameters and grid resolutions

No. Ra Roc Re Nu Err �tavg errh ΔV/η Nz × Nx × Ny

Ek = 5.0 × 10−5, Γ = 4.0
1 5.0 × 106 1.1 × 10−1 35.17 2.11 0.09 % 200 0.03 % 0.32 108 × 864 × 864
2 6.0 × 106 1.2 × 10−1 59.72 3.54 0.22 % 200 0.30 % 0.41 108 × 864 × 864
3 7.0 × 106 1.3 × 10−1 82.05 5.09 0.29 % 200 0.03 % 0.49 108 × 864 × 864
4 8.0 × 106 1.4 × 10−1 102.87 6.63 0.37 % 200 0.31 % 0.54 108 × 864 × 864
5 9.0 × 106 1.5 × 10−1 121.47 8.04 0.36 % 200 0.26 % 0.59 109 × 864 × 864
6 1.0 × 107 1.6 × 10−1 137.76 9.20 0.60 % 200 0.21 % 0.48 144 × 1152 × 1152
7 1.3 × 107 1.8 × 10−1 184.13 12.21 0.41 % 200 0.09 % 0.55 144 × 1152 × 1152
8 1.6 × 107 2.0 × 10−1 222.44 14.35 0.41 % 200 0.01 % 0.60 144 × 1152 × 1152
9 2.0 × 107 2.2 × 10−1 265.49 16.36 0.41 % 200 0.06 % 0.66 144 × 1152 × 1152
10 3.0 × 107 2.7 × 10−1 346.20 19.33 0.24 % 200 0.05 % 0.58 192 × 1536 × 1536
11 5.0 × 107 3.5 × 10−1 469.78 23.02 0.33 % 200 0.24 % 0.69 192 × 1536 × 1536

Ek = 1.5 × 10−5, Γ = 2.0
12 2.6 × 107 7.6 × 10−2 56.74 2.22 0.27 % 200 0.30 % 0.37 144 × 576 × 576
13 3.0 × 107 8.2 × 10−2 88.80 3.46 0.17 % 200 0.32 % 0.46 144 × 576 × 576
14 3.3 × 107 8.6 × 10−2 112.77 4.57 0.30 % 200 0.05 % 0.52 144 × 576 × 576
15 3.6 × 107 9.0 × 10−2 136.28 5.75 0.23 % 200 0.34 % 0.57 144 × 576 × 576
16 4.0 × 107 9.5 × 10−2 162.20 7.31 0.24 % 200 0.35 % 0.47 192 × 768 × 768
17 4.6 × 107 1.0 × 10−1 206.85 9.71 0.36 % 300 0.36 % 0.53 192 × 768 × 768
18 5.0 × 107 1.1 × 10−1 234.42 11.13 0.40 % 200 0.34 % 0.57 192 × 768 × 768
19 6.0 × 107 1.2 × 10−1 296.50 14.34 0.69 % 200 0.20 % 0.63 192 × 768 × 768
20 7.0 × 107 1.3 × 10−1 349.33 16.64 0.46 % 200 0.02 % 0.69 192 × 768 × 768
21 1.0 × 108 1.5 × 10−1 466.20 20.97 0.20 % 200 0.38 % 0.60 256 × 1024 × 1024
22 2.0 × 108 2.1 × 10−1 734.67 28.68 0.28 % 200 0.36 % 0.77 256 × 1024 × 1024
23 3.0 × 108 2.6 × 10−1 952.62 34.59 0.31 % 200 0.31 % 0.90 256 × 1024 × 1024

Γ = 1.0
24 5.0 × 108 3.4 × 10−1 1305.93 42.98 0.31 % 200 0.32 % 0.93 384 × 512 × 512
25 7.0 × 108 4.0 × 10−1 1585.48 49.39 0.26 % 200 0.26 % 1.05 384 × 512 × 512

Ek = 5.0 × 10−6, Γ = 2.0
26 1.1 × 108 5.2 × 10−2 70.75 1.86 0.15 % 300 0.03 % 0.30 240 × 960 × 960
27 1.3 × 108 5.7 × 10−2 125.14 3.07 0.23 % 300 0.02 % 0.40 240 × 960 × 960
28 1.5 × 108 6.1 × 10−2 181.60 4.78 0.29 % 300 0.37 % 0.48 240 × 960 × 960
29 1.7 × 108 6.5 × 10−2 240.21 6.88 0.25 % 300 0.62 % 0.55 240 × 960 × 960
30 2.0 × 108 7.1 × 10−2 306.57 10.14 0.19 % 300 0.07 % 0.58 256 × 1024 × 1024
31 2.3 × 108 7.6 × 10−2 387.91 13.31 0.70 % 300 0.46 % 0.65 256 × 1024 × 1024
32 2.6 × 108 8.1 × 10−2 458.92 15.88 0.35 % 300 0.19 % 0.71 256 × 1024 × 1024
33 3.0 × 108 8.7 × 10−2 540.43 18.63 0.30 % 300 0.01 % 0.76 256 × 1024 × 1024
34 3.3 × 108 9.1 × 10−2 590.79 20.13 0.27 % 300 0.06 % 0.80 256 × 1024 × 1024
35 5.0 × 108 1.1 × 10−1 809.44 25.63 0.28 % 300 0.49 % 0.84 288 × 1152 × 1152
36 7.0 × 108 1.3 × 10−1 1025.23 30.94 0.37 % 300 0.07 % 0.96 288 × 1152 × 1152

Table 1. For caption see next page.
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No. Ra Roc Re Nu Err �tavg errh ΔV/η Nz × Nx × Ny

Γ = 1.0
37 1.0 × 109 1.6 × 10−1 1329.35 38.46 0.27 % 400 0.15 % 0.82 384 × 768 × 768
38 3.0 × 109 2.7 × 10−1 2765.88 69.03 0.50 % 400 0.20 % 1.26 384 × 768 × 768
49 5.0 × 109 3.5 × 10−1 3757.87 86.80 0.76 % 400 0.05 % 1.52 384 × 768 × 768
40 7.0 × 109 4.2 × 10−1 4450.86 98.53 0.51 % 200 0.53 % 1.34 512 × 960 × 960
41 1.0 × 1010 5.0 × 10−1 5521.25 115.18 0.51 % 300 0.12 % 1.52 512 × 960 × 960

Ek = 1.5 × 10−6, Γ = 1.0
42 6.0 × 108 3.7 × 10−2 127.68 2.16 0.10 % 300 0.25 % 0.41 288 × 576 × 576
43 6.3 × 108 3.8 × 10−2 147.28 2.48 0.14 % 300 0.32 % 0.44 288 × 576 × 576
44 7.3 × 108 4.1 × 10−2 206.14 3.79 0.31 % 300 0.18 % 0.52 288 × 576 × 576
45 8.3 × 108 4.3 × 10−2 302.36 5.73 0.25 % 300 0.28 % 0.63 288 × 576 × 576
46 9.3 × 108 4.6 × 10−2 393.01 8.06 0.56 % 200 0.25 % 0.73 288 × 576 × 576
47 1.1 × 109 5.0 × 10−2 548.44 12.16 0.40 % 300 0.42 % 0.63 384 × 768 × 768
48 1.3 × 109 5.4 × 10−2 708.88 16.24 0.86 % 300 0.07 % 0.71 384 × 768 × 768
49 1.6 × 109 6.0 × 10−2 895.37 20.54 0.36 % 300 0.75 % 0.80 384 × 768 × 768
50 2.0 × 109 6.7 × 10−2 1078.28 24.03 0.27 % 300 0.44 % 0.88 384 × 768 × 768
51 3.0 × 109 8.2 × 10−2 1466.82 30.94 0.22 % 200 0.31 % 1.04 384 × 768 × 768
52 5.0 × 109 1.1 × 10−1 2242.54 46.71 0.28 % 300 0.28 % 1.16 432 × 864 × 864
53 7.0 × 109 1.3 × 10−1 2938.62 60.83 0.30 % 400 0.29 % 1.13 512 × 1024 × 1024
54 1.0 × 1010 1.5 × 10−1 3839.60 77.58 0.50 % 400 0.10 % 1.32 512 × 1024 × 1024
55 3.0 × 1010 2.6 × 10−1 7488.58 135.00 0.70 % 300 0.04 % 1.99 512 × 1024 × 1024
56 5.0 × 1010 3.4 × 10−1 10167.53 170.47 0.60 % 300 0.34 % 2.41 512 × 1024 × 1024

Ek = 5.0 × 10−7, Γ = 1.0
57 3.0 × 109 2.7 × 10−2 250.34 2.88 0.12 % 300 0.36 % 0.52 384 × 768 × 768
58 3.3 × 109 2.9 × 10−2 320.51 3.80 0.22 % 300 0.39 % 0.58 384 × 768 × 768
59 3.6 × 109 3.0 × 10−2 403.55 5.03 0.46 % 300 0.14 % 0.65 384 × 768 × 768
60 4.0 × 109 3.2 × 10−2 520.24 6.93 0.31 % 300 0.44 % 0.66 432 × 864 × 864
61 4.3 × 109 3.3 × 10−2 615.26 8.58 0.49 % 300 0.76 % 0.71 432 × 864 × 864
62 5.0 × 109 3.5 × 10−2 838.34 12.61 0.29 % 300 0.29 % 0.82 432 × 864 × 864
63 6.3 × 109 4.0 × 10−2 1170.14 18.26 0.39 % 300 0.07 % 0.96 432 × 864 × 864
64 8.3 × 109 4.6 × 10−2 1520.73 23.20 0.74 % 300 0.41 % 1.09 432 × 864 × 864
65 1.0 × 1010 5.0 × 10−2 1763.12 26.38 0.49 % 300 0.27 % 1.00 512 × 1024 × 1024
66 1.3 × 1010 5.7 × 10−2 2183.46 32.17 0.55 % 300 0.12 % 1.12 512 × 1024 × 1024
67 3.0 × 1010 8.7 × 10−2 4689.48 71.52 0.53 % 300 0.04 % 1.70 512 × 1024 × 1024

Ek = 5.0 × 10−9, Γ = 0.125
68 5.0 × 1013 3.5 × 10−2 112920.11 507.45 0.70 % 600 0.38 % 2.28 2560 × 1280 × 1280

Table 1. Summary of the quantities in the present DNS of RRBC (the non-rotating cases are not shown here,
for which we refer to Zhu et al. 2018). All simulations are performed at Pr = 1. Here, Ra is the Rayleigh
number, Roc is the convective Rossby number, Re the Reynolds number, Ek the Ekman number, Γ = D/L
the aspect ratio, where D is the horizontal period and L the domain height. The averaged Nusselt number Nu
is calculated from the Nu values evaluated in five different ways: at the bottom and top plates, by volume
averaging, from the kinetic energy and thermal dissipation rates. The err denotes the maximum relative error
between each two of these values. The averaging time interval is �tavg (in the free-fall time units), and errh is
the relative error between Nu and the second half-averaging interval Nusselt number. The crudest space grid
resolution in the bulk is ΔV/η (maximum value), where ΔV = (ΔxΔyΔz)

1/3 is the mean grid width and η

is the mean Kolmogorov scale. The last column represents the grids mesh sizes used in the vertical (Nz) and
two horizontal (Nx, Ny) directions. The other data for Ek = 1.5 × 10−7, 5.0 × 10−8, 1.5 × 10−8, 5.0 × 10−9

are reported in Appendix A of Song et al. (2024).
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