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On the Smallest and Largest Zeros of
Müntz–Legendre Polynomials

Úlfar F. Stefánsson

Abstract. Müntz–Legendre polynomials Ln(Λ; x) associated with a sequence Λ = {λk} are obtained

by orthogonalizing the system (xλ0 , xλ1 , xλ2 , . . . ) in L2[0, 1] with respect to the Legendre weight. If

the λk’s are distinct, it is well known that Ln(Λ; x) has exactly n zeros ln,n < ln−1,n < · · · < l2,n < l1,n
on (0, 1).

First we prove the following global bound for the smallest zero,

exp

(

−4

n
∑

j=0

1

2λ j + 1

)

< ln,n.

An important consequence is that if the associated Müntz space is non-dense in L2[0, 1], then

inf
n

xn,n ≥ exp

(

−4

∞
∑

j=0

1

2λ j + 1

)

> 0,

so the elements Ln(Λ; x) have no zeros close to 0.

Furthermore, we determine the asymptotic behavior of the largest zeros; for k fixed,

lim
n→∞

| log lk,n|
n

∑

j=0

(2λ j + 1) =
( jk

2

) 2
,

where jk denotes the k-th zero of the Bessel function J0.

1 Introduction and Main Results

Müntz polynomials associated with a sequence Λ = {λk}∞k=0 are functions of the form

n
∑

k=0

ckxλk ,

and the corresponding Müntz space is defined by

M(Λ) := span{xλ0 , xλ1 , xλ2 , . . . }.
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If the λk’s are real and satisfy

(1.1) inf
k≥0

{λk} > −1/2 and λk 6= λ j , j 6= k,

then the celebrated Müntz Theorem [1, 2, 4] states that M(Λ) is dense in L2[0, 1] if

and only if

(1.2)

∞
∑

k=0

1

2λk + 1
= ∞.

If the constant functions are included (i.e., λ0 = 0) and infk≥1 λk > 0, (1.2) is also

equivalent to the denseness of M(Λ) in C[0, 1].

The n-th Müntz-Legendre polynomial Ln(Λ; x) is determined by the orthogonality

conditions

∫ 1

0

Ln(Λ; x)Lm(Λ; x)dx =
δn,m

(2λn + 1)
, n,m = 0, 1, 2, . . .

and is defined by

Ln(Λ; x) :=
1

2πi

∫

Γ

n−1
∏

k=0

t + λk + 1

t − λk

xt

t − λn

dt,

where the simple contour Γ surrounds all the zeros of the denominator of the in-

tegrand. If (1.1) is satisfied, then Ln(Λ; x) is indeed an element of the Müntz space

M(Λ), and the Residue Theorem shows that

Ln(Λ; x) =

n
∑

k=0

ck,nxλk , ck,n =

∏n−1
j=0 (λk + λ j + 1)
∏n

j=0
j 6=k

(λk − λ j)
.

It is well known ([3]) that if the λk’s are distinct, then Ln(Λ; x) has precisely n zeros

on (0, 1), and we denote them by

0 < ln,n < ln−1,n < · · · < l2,n < l1,n < 1.

The zeros of Ln and Ln+1 strictly interlace, i.e.,

(1.3) ln+1,n+1 < ln,n < ln,n+1 < ln−1,n < · · · < l1,n < l1,n+1.

In [2, E.8, §3.4] Borwein and Erdélyi give a global estimate for the zeros. If we let

λ(n)
min := min{λ0, . . . , λn} and λ(n)

max := max{λ0, . . . , λn}, then

(1.4) exp
(

−2
2n + 1

2λ(n)
min + 1

)

< ln,n < · · · < l1,n < exp
( − j2

1

2(2n + 1)(2λ(n)
max + 1)

)

,

where j1 is the smallest positive zeros of the Bessel function J0 of order 0 (see [6,10]).
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D. S. Lubinsky and E. B. Saff [5] determined the zero distribution of the Müntz

extremal polynomials Tn,p(Λ) that satisfy

‖Tn,p(Λ)‖Lp[0,1] = min
c0,...,cn−1

∥

∥

∥

∥

xλn −
n−1
∑

j=0

c jx
λ j

∥

∥

∥

∥

Lp[0,1]

.

Namely, if

lim
n→∞

λn

n
= α,

for some α > 0, then the normalized zero counting measure of Tn,p(Λ) converges

weakly to
α

π

tα−1

√
tα(1 − tα)

dt,

and if α = 0 or 1, the limiting measure is a Dirac delta at 0 or 1 respectively. Let-

ting p = 2 gives the Müntz–Legendre polynomials. The asymptotics of the spacing

between two consecutive zeros lk+1,n < lk,n was studied by the author in [9].

In [7] the author determined the asymptotic behavior of Ln(Λ; x) as n → ∞ uni-

formly for x ∈ (0, 1). The main tool was the following formula, which holds for all

real sequences Λ. For x ∈ (0, 1),

(1.5) Ln(Λ; x) =
1

π
√

x

∫ ∞

0

sin(Θn(t) − t log x)
√

λ∗
n

2 + t2

dt,

where

Θn(t) = 2

n−1
∑

j=0

arctan
λ∗

j

t
+ arctan

λ∗
n

t

and λ∗
k = λk + 1/2 for all k.

In [8] this formula was revisited and used to compute the endpoint limit asymp-

totics when x −→ 1−. The main result was the following. Suppose that Λ : −1/2 <
λ0 ≤ λ1 ≤ λ2 ≤ · · · satisfies the regularity condition

(1.6) lim
n→∞

Σn

2λn + 1
= ∞,

where

(1.7) Σn :=

n−1
∑

k=0

(2λk + 1) +
2λn + 1

2
.

Then uniformly for bounded y ≥ 0,

(1.8) lim
n→∞

Ln(e−y2/4Σn ) = lim
n→∞

Ln

(

1 − y2

4Σn

)

= J0(y),
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and the error term is O
(
√

(2λn + 1)/Σn

)

as n → ∞.

Using the identity arctan y = π/2 − arctan(1/y), it is easy to see that we can

alternatively write (1.5) in the form

(1.9) Ln (Λ; x) =
(−1)n

π
√

x

∫ ∞

0

cos
(

Φn(t) + t log x
)

√

λ∗
n

2 + t2

dt,

where

Φn(t) = 2

n−1
∑

j=0

arctan
t

λ∗
j

+ arctan
t

λ∗
n

.

This representation will be useful when considering x close to 0.

The main results are presented here. First we get a global bound for the smallest

zero.

Theorem 1.1 Let Λ = {λk}∞k=0 be a sequence of real numbers greater than −1/2.

Then

exp

(

−4

n−1
∑

j=0

1

2λ j + 1
− 2

1

2λn + 1

)

< ln,n.

Remark This considerably improves the lower bound in (1.4) as can be seen from

the inequality

4

n−1
∑

j=0

1

2λ j + 1
+ 2

1

2λn + 1
≤ 2

2n + 1

2λ(n)
min + 1

.

An important corollary is that for non-dense Müntz spaces, Ln(Λ; x) has no zeros

close to 0 (compare to [2, E.2, §6.2]).

Corollary 1.2 Let Λ = {λk}∞k=0 be a sequence of real numbers greater than −1/2

such that

T :=

∞
∑

k=0

1

2λk + 1
< ∞.

Then the smallest zero of Ln(Λ; x) for all n is greater than exp(−4T) > 0.

Next we obtain the asymptotic behavior of the largest zeros.

Theorem 1.3 Let Λ : −1/2 < λ0 < λ1 < λ2 < · · · be a sequence of real numbers

that satisfies (1.6). Then for fixed k ≥ 1,

lim
n→∞

| log lk,n|Σn =

(

jk

2

)2

,

where jk denotes the k-th positive zero of the Bessel function J0 and Σn was defined in

(1.7). The error term is O
(
√

(2λn + 1)/Σn

)

as n → ∞.

Remark Theorem 1.3 gives l1,n ∼ exp(− j2
1/4Σn) as n −→ ∞, which, in the

asymptotic sense, improves the upper bound in (1.4). We trivially have

2Σn ≤ (2n + 1)
(

2λ(n)
max + 1

)

.
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2 Proofs

Proof of Theorem 1.1 For each n we let λ∗
n := λn + 1/2 and

Tn :=

n−1
∑

k=0

1

λ∗
k

+
1

2λ∗
n

.

Now choose any Rn ≥ Tn, and let xn = e−2Rn so that xn ∈ (0, e−2Tn ]. We need to

show that Ln(Λ; xn) 6= 0.

According to (1.9), we can write

(2.1) Ln(Λ; xn) =
(−1)neRn

π

∫ ∞

0

cos pn(t)

(λ∗
n

2 + t2)1/2
dt,

where pn(t) = 2Rnt −Φn(t). The first two derivatives of pn are p ′
n(t) = 2Rn −Φ ′

n(t)

and p ′ ′
n (t) = −Φ ′ ′

n (t), where

Φ
′
n(t) = 2

n−1
∑

k=0

λ∗
k

λ∗
k

2 + t2
+

λ∗
n

λ∗
n

2 + t2

and

Φ
′ ′
n (t) = −2t

(

2

n−1
∑

k=0

λ∗
k

[

λ∗
k

2 + t2
]2

+
λ∗

n
[

λ∗
n

2 + t2
]2

)

.

Since Φ ′
n(0) = 2Tn, we therefore have p ′

n(0) = 2(Rn − Tn) ≥ 0 and p ′ ′
n (t) > 0 for

t > 0. It follows that pn is a strictly increasing function on [0,∞) that maps [0,∞)

onto [0,∞) (note that Φn(t) ≤ πn + π/2)

We can therefore use the substitution u = pn(t) in integral of (2.1), and this gives

(2.2)

∫ ∞

0

cos pn(t)
(

λ∗
n

2 + t2
)1/2

dt =

∫ ∞

0

cos u

qn(u)
du,

where qn(u) is determined by

qn(u) = (λ∗
n

2
+ t2)1/2 p ′

n(t).

Then qn(0) = 2λ∗
n(Rn − Tn) and since limt→∞ p ′

n(t) = 2Rn, we have

lim
u→∞

qn(u) = lim
t→∞

(λ∗
n

2
+ t2)1/2 p ′

n(t) = ∞.

We show that qn(u) is strictly increasing. The chain rule gives

p ′
n(t)q ′

n(u) =
d

dt

(

(λ∗
n

2
+ t2)1/2 p ′

n(t)
)

=
t p ′

n(t) + (λ∗
n

2 + t2)p ′ ′
n (t)

(λ∗
n

2 + t2)1/2
,

and since p ′
n(t), p ′ ′

n (t) > 0 for t > 0, it follows that q ′
n(u) > 0 for u > 0.

By a standard argument we can write (2.2) as an alternating series
∑∞

k=0(−1)kak

with ak > ak+1 > 0 and ak → 0, and the alternating series test shows that
∫∞

0
cos u
qn(u)

du 6= 0. The result follows.
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Before we prove Theorem 1.3, we need two lemmas. First we define the function

fn(y) := Ln

(

e−y2/4Σn
)

, y ≥ 0.

Then according to (1.8), uniformly for bounded y ≥ 0,

(2.3) fn(y) − J0(y) = O

(

√

2λn + 1

Σn

)

= o(1), n −→ ∞.

For each n and k = 1, 2, . . . , n, we can write the zeros of Ln(x) in the form

lk,n = e−r2
k,n/4Σn

for some 0 < r1,n < r2,n < · · · < rn,n. These are precisely the zeros of fn, i.e.,

(2.4) fn(rk,n) = 0, k = 1, 2 . . . , n.

Below, we let ‖ · ‖[0,y] denote the supremum norm over [0, y].

Lemma 2.1 For each n and y ≥ 0, ‖ f ′
n ‖[0,y] ≤ y

2
supk ‖ fk‖[0,y] < ∞.

Proof We recall the identity from [3, Corollary 2.6],

xL ′
n(x) = λnLn(x) +

n−1
∑

k=0

(2λk + 1)Lk(x).

It follows that

f ′
n (y) = − y

2Σn

e−y2/4Σn L ′
n(e−y2/4Σn )

= − y

2Σn

[

λnLn(e−y2/4Σn ) +

n−1
∑

k=0

(2λk + 1)Lk(e−y2/4Σn )

]

= − y

2Σn

[

λn fn(y) +

n−1
∑

k=0

(2λk + 1) fk

(

y

√

Σk

Σn

)]

.

(2.5)

Therefore, since 0 ≤ y
√

Σk/Σn ≤ y for all k = 0, 1, . . . , n,

| f ′
n (y)| ≤ y

2Σn

[

λn +

n−1
∑

k=0

(2λk + 1)

]

max
0≤k≤n

‖ fk‖[0,y] ≤
y

2
sup

k

‖ fk‖[0,y].

Since fk is continuous on [0, y] for each k and fn(t) → J0(t) uniformly for t bounded,

it follows from the inequality ‖ fk‖[0,y] ≤ ‖ J0‖[0,y] +‖ fk − J0‖[0,y] = 1 +‖ fk − J0‖[0,y]

that

sup
k

‖ fk‖[0,y] < ∞.

The result now follows from the trivial inequality t
2

supk ‖ fk‖[0,t] ≤ y
2

supk ‖ fk‖[0,y]

for each t ≤ y.
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Lemma 2.2 For each n and y ≥ 0, we have

‖ f ′ ′
n ‖[0,y] ≤

1

2

(

1 +
y2

2

)

sup
k

‖ fk‖[0,y] < ∞.

In particular, the family { f ′ ′
n } is uniformly bounded on bounded sets [0, y].

Proof Using the identity (2.5) for f ′
n (y), we obtain

f ′ ′
n (y) = − 1

2Σn

[

λn fn(y) +

n−1
∑

k=0

(2λk + 1) fk

(

y

√

Σk

Σn

)]

− y

2Σn

[

λn f ′
n (y) +

n−1
∑

k=0

(2λk + 1)

√

Σk

Σn

f ′
k

(

y

√

Σk

Σn

)]

=
f ′
n (y)

y
− y

2Σn

[

λn f ′
n (y) +

n−1
∑

k=0

(2λk + 1)

√

Σk

Σn

f ′
k

(

y

√

Σk

Σn

)]

If we let A := 1
2

supk ‖ fk‖[0,y], then since 0 ≤ y
√

Σk/Σn ≤ y for all n and k =

0, 1, . . . , n, Lemma 2.1 gives

∣

∣

∣

∣

f ′
k

(

y

√

Σk

Σn

)∣

∣

∣

∣

≤ y

2

√

Σk

Σn

sup
k

‖ fk‖[0,y
√

Σk/Σn]
≤ Ay.

It follows that

| f ′ ′
n (y)| ≤ A +

y

2
·
λn +

∑n−1
j=0 (2λ j + 1)

Σn

Ay ≤
(

1 +
y2

2

)

A.

The result now follows from the trivial inequality supk ‖ fk‖[0,t] ≤ supk ‖ fk‖[0,y] = 2A

for each t ≤ y.

Proof of Theorem 1.3 Let 0 < j1 < j2 < · · · denote the zeros of J0 on the positive

axis. According to the interlacing property (1.3), for fixed k, {rk,n}n is a decreasing

sequence bounded below by 0, and thus has a limit. Then from (2.3) it is clear that

for each k,

lim
n→∞

rk,n = jm

for some integer m = m(k) ≥ 1. By the intermediate value theorem, for n large

enough, fn has a zero close to each jk. Therefore, its smallest zero r1,n necessarily has

j1 as limit.

We need to show that r2,n does not approach j1 as well. Suppose to the contrary

that

lim
n→∞

r2,n = j1.

Then by the mean value theorem, there exists some cn ∈ (r1,n, r2,n) such that

(2.6) f ′
n (cn) = 0
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and of course by hypothesis cn → j1 as n → ∞.

Define a point an = j1 + δn, where the error δn is chosen so that

√

(2λn + 1)/Σn = o(δn) = o(1)

(say δn = log
(

(2λn + 1)/Σn

)

). Then, since fn(y) → J0(y) uniformly for bounded y

with error O((2λn + 1)/Σn), and J0( j1) = 0, we have for some ξn between j1 and an,

fn(an) = J0(an) + fn(an) − J0(an) = J ′0(ξn)(an − j1) + O

(

√

2λn + 1

Σn

)

= J ′0( j1)δn[1 + o(1)]

(2.7)

as n → ∞ (it is well known, see Olver [6, §7.6], that the zeros the Bessel functions

are simple, so J ′0(ξn) −→ J ′0( j1) 6= 0). On the other hand, using (2.3) again with

J0( j1) = 0 yields

(2.8) fn(an) = fn( j1) + f ′
n (νn)(an − j1) = O

(

√

2λn + 1

Σn

)

+ f ′
n (νn)δn.

for some νn between j1 and an. Expanding f ′ about the point cn from (2.6) gives

f ′
n (νn) = f ′ ′

n (ηn)(νn − cn)

for some ηn between νn and cn, and according to Lemma 2.2, since cn, νn → j1 as

n → ∞, we have f ′
n (νn) = o(1) as n → ∞. Therefore, (2.8) gives fn(an) = o(δn),

which contradicts (2.7). Hence limn→∞ r2,n 6= j1.

Since fn has a zero close to j2 for n large enough, it follows that r2,n → j2. Now we

can repeat the proof for r3,n and so on, and we have established that limn→∞ rk,n = jk

for each fixed k. The result now follows from −4Σn log lk,n = r2
k,n.

As for the error, a linear approximation yields

J0(rk,n) = J0(rk,n) − J0( jk) = J ′0(ξn)(rk,n − jk)

for some ξk,n between rk,n and jk, and thus since the zeros of J0 are simple, (2.3) and

(2.4) yield

rk,n − jk = O
(

J0(rk,n)
)

= O

(

√

2λn + 1

Σn

)

, n −→ ∞.
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