(C) Canadian Mathematical Society 2011

On the Smallest and Largest Zeros of Müntz-Legendre Polynomials

Úlfar F. Stefánsson

Abstract. Müntz-Legendre polynomials $L_{n}(\Lambda ; x)$ associated with a sequence $\Lambda=\left\{\lambda_{k}\right\}$ are obtained by orthogonalizing the system $\left(x^{\lambda_{0}}, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots\right)$ in $L_{2}[0,1]$ with respect to the Legendre weight. If the λ_{k} 's are distinct, it is well known that $L_{n}(\Lambda ; x)$ has exactly n zeros $l_{n, n}<l_{n-1, n}<\cdots<l_{2, n}<l_{1, n}$ on $(0,1)$.

First we prove the following global bound for the smallest zero,

$$
\exp \left(-4 \sum_{j=0}^{n} \frac{1}{2 \lambda_{j}+1}\right)<l_{n, n}
$$

An important consequence is that if the associated Müntz space is non-dense in $L_{2}[0,1]$, then

$$
\inf _{n} x_{n, n} \geq \exp \left(-4 \sum_{j=0}^{\infty} \frac{1}{2 \lambda_{j}+1}\right)>0
$$

so the elements $L_{n}(\Lambda ; x)$ have no zeros close to 0 .
Furthermore, we determine the asymptotic behavior of the largest zeros; for k fixed,

$$
\lim _{n \rightarrow \infty}\left|\log l_{k, n}\right| \sum_{j=0}^{n}\left(2 \lambda_{j}+1\right)=\left(\frac{j_{k}}{2}\right)^{2}
$$

where j_{k} denotes the k-th zero of the Bessel function J_{0}.

1 Introduction and Main Results

Müntz polynomials associated with a sequence $\Lambda=\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ are functions of the form

$$
\sum_{k=0}^{n} c_{k} x^{\lambda_{k}}
$$

and the corresponding Müntz space is defined by

$$
M(\Lambda):=\operatorname{span}\left\{x^{\lambda_{0}}, x^{\lambda_{1}}, x^{\lambda_{2}}, \ldots\right\}
$$

Received by the editors May 10, 2010.
Published electronically June 29, 2011.
Research supported in part by NSF grants DMS-0400446 and DMS-0700427, and the Graduate Committee of the School of Mathematics at Georgia Institute of Technology.

AMS subject classification: 42C05, 42C99, 41A60, 30B50.
Keywords: Müntz polynomials, Müntz-Legendre polynomials.

If the λ_{k} 's are real and satisfy

$$
\begin{equation*}
\inf _{k \geq 0}\left\{\lambda_{k}\right\}>-1 / 2 \quad \text { and } \quad \lambda_{k} \neq \lambda_{j}, \quad j \neq k \tag{1.1}
\end{equation*}
$$

then the celebrated Müntz Theorem [1, 2, 4] states that $M(\Lambda)$ is dense in $L_{2}[0,1]$ if and only if

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{1}{2 \lambda_{k}+1}=\infty \tag{1.2}
\end{equation*}
$$

If the constant functions are included (i.e., $\lambda_{0}=0$) and $\inf _{k \geq 1} \lambda_{k}>0$, (1.2) is also equivalent to the denseness of $M(\Lambda)$ in $C[0,1]$.

The n-th Müntz-Legendre polynomial $L_{n}(\Lambda ; x)$ is determined by the orthogonality conditions

$$
\int_{0}^{1} L_{n}(\Lambda ; x) L_{m}(\Lambda ; x) d x=\frac{\delta_{n, m}}{\left(2 \lambda_{n}+1\right)}, \quad n, m=0,1,2, \ldots
$$

and is defined by

$$
L_{n}(\Lambda ; x):=\frac{1}{2 \pi i} \int_{\Gamma} \prod_{k=0}^{n-1} \frac{t+\lambda_{k}+1}{t-\lambda_{k}} \frac{x^{t}}{t-\lambda_{n}} d t
$$

where the simple contour Γ surrounds all the zeros of the denominator of the integrand. If (1.1) is satisfied, then $L_{n}(\Lambda ; x)$ is indeed an element of the Müntz space $M(\Lambda)$, and the Residue Theorem shows that

$$
L_{n}(\Lambda ; x)=\sum_{k=0}^{n} c_{k, n} x^{\lambda_{k}}, \quad c_{k, n}=\frac{\prod_{j=0}^{n-1}\left(\lambda_{k}+\lambda_{j}+1\right)}{\prod_{\substack{j=0 \\ j \neq k}}^{n}\left(\lambda_{k}-\lambda_{j}\right)}
$$

It is well known ([3]) that if the λ_{k} 's are distinct, then $L_{n}(\Lambda ; x)$ has precisely n zeros on $(0,1)$, and we denote them by

$$
0<l_{n, n}<l_{n-1, n}<\cdots<l_{2, n}<l_{1, n}<1
$$

The zeros of L_{n} and L_{n+1} strictly interlace, i.e.,

$$
\begin{equation*}
l_{n+1, n+1}<l_{n, n}<l_{n, n+1}<l_{n-1, n}<\cdots<l_{1, n}<l_{1, n+1} \tag{1.3}
\end{equation*}
$$

In [2, E.8, $\S 3.4$] Borwein and Erdélyi give a global estimate for the zeros. If we let $\lambda_{\min }^{(n)}:=\min \left\{\lambda_{0}, \ldots, \lambda_{n}\right\}$ and $\lambda_{\max }^{(n)}:=\max \left\{\lambda_{0}, \ldots, \lambda_{n}\right\}$, then

$$
\begin{equation*}
\exp \left(-2 \frac{2 n+1}{2 \lambda_{\min }^{(n)}+1}\right)<l_{n, n}<\cdots<l_{1, n}<\exp \left(\frac{-j_{1}^{2}}{2(2 n+1)\left(2 \lambda_{\max }^{(n)}+1\right)}\right) \tag{1.4}
\end{equation*}
$$

where j_{1} is the smallest positive zeros of the Bessel function J_{0} of order 0 (see [6 10]).
D. S. Lubinsky and E. B. Saff [5] determined the zero distribution of the Müntz extremal polynomials $T_{n, p}(\Lambda)$ that satisfy

$$
\left\|T_{n, p}(\Lambda)\right\|_{L_{p}[0,1]}=\min _{c_{0}, \ldots, c_{n-1}}\left\|x^{\lambda_{n}}-\sum_{j=0}^{n-1} c_{j} x^{\lambda_{j}}\right\|_{L_{p}[0,1]}
$$

Namely, if

$$
\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n}=\alpha
$$

for some $\alpha>0$, then the normalized zero counting measure of $T_{n, p}(\Lambda)$ converges weakly to

$$
\frac{\alpha}{\pi} \frac{t^{\alpha-1}}{\sqrt{t^{\alpha}\left(1-t^{\alpha}\right)}} d t
$$

and if $\alpha=0$ or 1 , the limiting measure is a Dirac delta at 0 or 1 respectively. Letting $p=2$ gives the Müntz-Legendre polynomials. The asymptotics of the spacing between two consecutive zeros $l_{k+1, n}<l_{k, n}$ was studied by the author in [9].

In [7] the author determined the asymptotic behavior of $L_{n}(\Lambda ; x)$ as $n \rightarrow \infty$ uniformly for $x \in(0,1)$. The main tool was the following formula, which holds for all real sequences Λ. For $x \in(0,1)$,

$$
\begin{equation*}
L_{n}(\Lambda ; x)=\frac{1}{\pi \sqrt{x}} \int_{0}^{\infty} \frac{\sin \left(\Theta_{n}(t)-t \log x\right)}{\sqrt{\lambda_{n}^{* 2}+t^{2}}} d t \tag{1.5}
\end{equation*}
$$

where

$$
\Theta_{n}(t)=2 \sum_{j=0}^{n-1} \arctan \frac{\lambda_{j}^{*}}{t}+\arctan \frac{\lambda_{n}^{*}}{t}
$$

and $\lambda_{k}^{*}=\lambda_{k}+1 / 2$ for all k.
In [8] this formula was revisited and used to compute the endpoint limit asymptotics when $x \longrightarrow 1^{-}$. The main result was the following. Suppose that $\Lambda:-1 / 2<$ $\lambda_{0} \leq \lambda_{1} \leq \lambda_{2} \leq \cdots$ satisfies the regularity condition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\Sigma_{n}}{2 \lambda_{n}+1}=\infty \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Sigma_{n}:=\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right)+\frac{2 \lambda_{n}+1}{2} . \tag{1.7}
\end{equation*}
$$

Then uniformly for bounded $y \geq 0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}\left(e^{-y^{2} / 4 \Sigma_{n}}\right)=\lim _{n \rightarrow \infty} L_{n}\left(1-\frac{y^{2}}{4 \Sigma_{n}}\right)=J_{0}(y) \tag{1.8}
\end{equation*}
$$

and the error term is $\mathcal{O}\left(\sqrt{\left(2 \lambda_{n}+1\right) / \Sigma_{n}}\right)$ as $n \rightarrow \infty$.
Using the identity $\arctan y=\pi / 2-\arctan (1 / y)$, it is easy to see that we can alternatively write (1.5) in the form

$$
\begin{equation*}
L_{n}(\Lambda ; x)=\frac{(-1)^{n}}{\pi \sqrt{x}} \int_{0}^{\infty} \frac{\cos \left(\Phi_{n}(t)+t \log x\right)}{\sqrt{\lambda_{n}^{* 2}+t^{2}}} d t \tag{1.9}
\end{equation*}
$$

where

$$
\Phi_{n}(t)=2 \sum_{j=0}^{n-1} \arctan \frac{t}{\lambda_{j}^{*}}+\arctan \frac{t}{\lambda_{n}^{*}}
$$

This representation will be useful when considering x close to 0 .
The main results are presented here. First we get a global bound for the smallest zero.
Theorem 1.1 Let $\Lambda=\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ be a sequence of real numbers greater than $-1 / 2$. Then

$$
\exp \left(-4 \sum_{j=0}^{n-1} \frac{1}{2 \lambda_{j}+1}-2 \frac{1}{2 \lambda_{n}+1}\right)<l_{n, n}
$$

Remark This considerably improves the lower bound in (1.4) as can be seen from the inequality

$$
4 \sum_{j=0}^{n-1} \frac{1}{2 \lambda_{j}+1}+2 \frac{1}{2 \lambda_{n}+1} \leq 2 \frac{2 n+1}{2 \lambda_{\min }^{(n)}+1}
$$

An important corollary is that for non-dense Müntz spaces, $L_{n}(\Lambda ; x)$ has no zeros close to 0 (compare to [2, E.2, §6.2]).
Corollary 1.2 Let $\Lambda=\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ be a sequence of real numbers greater than $-1 / 2$ such that

$$
T:=\sum_{k=0}^{\infty} \frac{1}{2 \lambda_{k}+1}<\infty
$$

Then the smallest zero of $L_{n}(\Lambda ; x)$ for all n is greater than $\exp (-4 T)>0$.
Next we obtain the asymptotic behavior of the largest zeros.
Theorem 1.3 Let $\Lambda:-1 / 2<\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ be a sequence of real numbers that satisfies (1.6). Then for fixed $k \geq 1$,

$$
\lim _{n \rightarrow \infty}\left|\log l_{k, n}\right| \Sigma_{n}=\left(\frac{j_{k}}{2}\right)^{2}
$$

where j_{k} denotes the k-th positive zero of the Bessel function J_{0} and Σ_{n} was defined in (1.7). The error term is $\mathcal{O}\left(\sqrt{\left(2 \lambda_{n}+1\right) / \Sigma_{n}}\right)$ as $n \rightarrow \infty$.

Remark Theorem 1.3 gives $l_{1, n} \sim \exp \left(-j_{1}^{2} / 4 \Sigma_{n}\right)$ as $n \longrightarrow \infty$, which, in the asymptotic sense, improves the upper bound in (1.4). We trivially have

$$
2 \Sigma_{n} \leq(2 n+1)\left(2 \lambda_{\max }^{(n)}+1\right)
$$

2 Proofs

Proof of Theorem 1.1 For each n we let $\lambda_{n}^{*}:=\lambda_{n}+1 / 2$ and

$$
T_{n}:=\sum_{k=0}^{n-1} \frac{1}{\lambda_{k}^{*}}+\frac{1}{2 \lambda_{n}^{*}}
$$

Now choose any $R_{n} \geq T_{n}$, and let $x_{n}=e^{-2 R_{n}}$ so that $x_{n} \in\left(0, e^{-2 T_{n}}\right]$. We need to show that $L_{n}\left(\Lambda ; x_{n}\right) \neq 0$.

According to (1.9), we can write

$$
\begin{equation*}
L_{n}\left(\Lambda ; x_{n}\right)=\frac{(-1)^{n} e^{R_{n}}}{\pi} \int_{0}^{\infty} \frac{\cos p_{n}(t)}{\left(\lambda_{n}^{*^{2}}+t^{2}\right)^{1 / 2}} d t \tag{2.1}
\end{equation*}
$$

where $p_{n}(t)=2 R_{n} t-\Phi_{n}(t)$. The first two derivatives of p_{n} are $p_{n}^{\prime}(t)=2 R_{n}-\Phi_{n}^{\prime}(t)$ and $p_{n}^{\prime \prime}(t)=-\Phi_{n}^{\prime \prime}(t)$, where

$$
\Phi_{n}^{\prime}(t)=2 \sum_{k=0}^{n-1} \frac{\lambda_{k}^{*}}{\lambda_{k}^{* 2}+t^{2}}+\frac{\lambda_{n}^{*}}{\lambda_{n}^{* 2}+t^{2}}
$$

and

$$
\Phi_{n}^{\prime \prime}(t)=-2 t\left(2 \sum_{k=0}^{n-1} \frac{\lambda_{k}^{*}}{\left[\lambda_{k}^{* 2}+t^{2}\right]^{2}}+\frac{\lambda_{n}^{*}}{\left[\lambda_{n}^{*^{2}}+t^{2}\right]^{2}}\right)
$$

Since $\Phi_{n}^{\prime}(0)=2 T_{n}$, we therefore have $p_{n}^{\prime}(0)=2\left(R_{n}-T_{n}\right) \geq 0$ and $p_{n}^{\prime \prime}(t)>0$ for $t>0$. It follows that p_{n} is a strictly increasing function on $[0, \infty)$ that maps $[0, \infty)$ onto $[0, \infty)\left(\right.$ note that $\left.\Phi_{n}(t) \leq \pi n+\pi / 2\right)$

We can therefore use the substitution $u=p_{n}(t)$ in integral of (2.1), and this gives

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos p_{n}(t)}{\left(\lambda_{n}^{* 2}+t^{2}\right)^{1 / 2}} d t=\int_{0}^{\infty} \frac{\cos u}{q_{n}(u)} d u \tag{2.2}
\end{equation*}
$$

where $q_{n}(u)$ is determined by

$$
q_{n}(u)=\left(\lambda_{n}^{* 2}+t^{2}\right)^{1 / 2} p_{n}^{\prime}(t)
$$

Then $q_{n}(0)=2 \lambda_{n}^{*}\left(R_{n}-T_{n}\right)$ and since $\lim _{t \rightarrow \infty} p_{n}^{\prime}(t)=2 R_{n}$, we have

$$
\lim _{u \rightarrow \infty} q_{n}(u)=\lim _{t \rightarrow \infty}\left(\lambda_{n}^{* 2}+t^{2}\right)^{1 / 2} p_{n}^{\prime}(t)=\infty
$$

We show that $q_{n}(u)$ is strictly increasing. The chain rule gives

$$
p_{n}^{\prime}(t) q_{n}^{\prime}(u)=\frac{d}{d t}\left(\left(\lambda_{n}^{* 2}+t^{2}\right)^{1 / 2} p_{n}^{\prime}(t)\right)=\frac{t p_{n}^{\prime}(t)+\left(\lambda_{n}^{* 2}+t^{2}\right) p_{n}^{\prime \prime}(t)}{\left(\lambda_{n}^{* 2}+t^{2}\right)^{1 / 2}}
$$

and since $p_{n}^{\prime}(t), p_{n}^{\prime \prime}(t)>0$ for $t>0$, it follows that $q_{n}^{\prime}(u)>0$ for $u>0$.
By a standard argument we can write (2.2) as an alternating series $\sum_{k=0}^{\infty}(-1)^{k} a_{k}$ with $a_{k}>a_{k+1}>0$ and $a_{k} \rightarrow 0$, and the alternating series test shows that $\int_{0}^{\infty} \frac{\cos u}{q_{n}(u)} d u \neq 0$. The result follows.

Before we prove Theorem 1.3 , we need two lemmas. First we define the function

$$
f_{n}(y):=L_{n}\left(e^{-y^{2} / 4 \Sigma_{n}}\right), \quad y \geq 0
$$

Then according to (1.8), uniformly for bounded $y \geq 0$,

$$
\begin{equation*}
f_{n}(y)-J_{0}(y)=\mathcal{O}\left(\sqrt{\frac{2 \lambda_{n}+1}{\Sigma_{n}}}\right)=o(1), \quad n \longrightarrow \infty \tag{2.3}
\end{equation*}
$$

For each n and $k=1,2, \ldots, n$, we can write the zeros of $L_{n}(x)$ in the form

$$
l_{k, n}=e^{-r_{k, n}^{2} / 4 \Sigma_{n}}
$$

for some $0<r_{1, n}<r_{2, n}<\cdots<r_{n, n}$. These are precisely the zeros of f_{n}, i.e.,

$$
\begin{equation*}
f_{n}\left(r_{k, n}\right)=0, \quad k=1,2 \ldots, n \tag{2.4}
\end{equation*}
$$

Below, we let $\|\cdot\|_{[0, y]}$ denote the supremum norm over [0, y].
Lemma 2.1 For each n and $y \geq 0,\left\|f_{n}^{\prime}\right\|_{[0, y]} \leq \frac{y}{2} \sup _{k}\left\|f_{k}\right\|_{[0, y]}<\infty$.
Proof We recall the identity from [3, Corollary 2.6],

$$
x L_{n}^{\prime}(x)=\lambda_{n} L_{n}(x)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) L_{k}(x) .
$$

It follows that

$$
\begin{align*}
f_{n}^{\prime}(y) & =-\frac{y}{2 \Sigma_{n}} e^{-y^{2} / 4 \Sigma_{n}} L_{n}^{\prime}\left(e^{-y^{2} / 4 \Sigma_{n}}\right) \tag{2.5}\\
& =-\frac{y}{2 \Sigma_{n}}\left[\lambda_{n} L_{n}\left(e^{-y^{2} / 4 \Sigma_{n}}\right)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) L_{k}\left(e^{-y^{2} / 4 \Sigma_{n}}\right)\right] \\
& =-\frac{y}{2 \Sigma_{n}}\left[\lambda_{n} f_{n}(y)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) f_{k}\left(y \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}}\right)\right] .
\end{align*}
$$

Therefore, since $0 \leq y \sqrt{\Sigma_{k} / \Sigma_{n}} \leq y$ for all $k=0,1, \ldots, n$,

$$
\left|f_{n}^{\prime}(y)\right| \leq \frac{y}{2 \Sigma_{n}}\left[\lambda_{n}+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right)\right] \max _{0 \leq k \leq n}\left\|f_{k}\right\|_{[0, y]} \leq \frac{y}{2} \sup _{k}\left\|f_{k}\right\|_{[0, y]}
$$

Since f_{k} is continuous on $[0, y]$ for each k and $f_{n}(t) \rightarrow J_{0}(t)$ uniformly for t bounded, it follows from the inequality $\left\|f_{k}\right\|_{[0, y]} \leq\left\|J_{0}\right\|_{[0, y]}+\left\|f_{k}-J_{0}\right\|_{[0, y]}=1+\left\|f_{k}-J_{0}\right\|_{[0, y]}$ that

$$
\sup _{k}\left\|f_{k}\right\|_{[0, y]}<\infty
$$

The result now follows from the trivial inequality $\frac{t}{2} \sup _{k}\left\|f_{k}\right\|_{[0, t]} \leq \frac{y}{2} \sup _{k}\left\|f_{k}\right\|_{[0, y]}$ for each $t \leq y$.

Lemma 2.2 For each n and $y \geq 0$, we have

$$
\left\|f_{n}^{\prime \prime}\right\|_{[0, y]} \leq \frac{1}{2}\left(1+\frac{y^{2}}{2}\right) \sup _{k}\left\|f_{k}\right\|_{[0, y]}<\infty
$$

In particular, the family $\left\{f_{n}^{\prime \prime}\right\}$ is uniformly bounded on bounded sets $[0, y]$.
Proof Using the identity (2.5) for $f_{n}^{\prime}(y)$, we obtain

$$
\begin{aligned}
f_{n}^{\prime \prime}(y)= & -\frac{1}{2 \Sigma_{n}}\left[\lambda_{n} f_{n}(y)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) f_{k}\left(y \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}}\right)\right] \\
& -\frac{y}{2 \Sigma_{n}}\left[\lambda_{n} f_{n}^{\prime}(y)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}} f_{k}^{\prime}\left(y \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}}\right)\right] \\
= & \frac{f_{n}^{\prime}(y)}{y}-\frac{y}{2 \Sigma_{n}}\left[\lambda_{n} f_{n}^{\prime}(y)+\sum_{k=0}^{n-1}\left(2 \lambda_{k}+1\right) \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}} f_{k}^{\prime}\left(y \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}}\right)\right]
\end{aligned}
$$

If we let $A:=\frac{1}{2} \sup _{k}\left\|f_{k}\right\|_{[0, y]}$, then since $0 \leq y \sqrt{\Sigma_{k} / \Sigma_{n}} \leq y$ for all n and $k=$ $0,1, \ldots, n$, Lemma 2.1 gives

$$
\left|f_{k}^{\prime}\left(y \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}}\right)\right| \leq \frac{y}{2} \sqrt{\frac{\Sigma_{k}}{\Sigma_{n}}} \sup _{k}\left\|f_{k}\right\|_{\left[0, y \sqrt{\left.\Sigma_{k} / \Sigma_{n}\right]}\right.} \leq A y .
$$

It follows that

$$
\left|f_{n}^{\prime \prime}(y)\right| \leq A+\frac{y}{2} \cdot \frac{\lambda_{n}+\sum_{j=0}^{n-1}\left(2 \lambda_{j}+1\right)}{\Sigma_{n}} A y \leq\left(1+\frac{y^{2}}{2}\right) A
$$

The result now follows from the trivial inequality $\sup _{k}\left\|f_{k}\right\|_{[0, t]} \leq \sup _{k}\left\|f_{k}\right\|_{[0, y]}=2 A$ for each $t \leq y$.

Proof of Theorem 1.3 Let $0<j_{1}<j_{2}<\cdots$ denote the zeros of J_{0} on the positive axis. According to the interlacing property (1.3), for fixed $k,\left\{r_{k, n}\right\}_{n}$ is a decreasing sequence bounded below by 0 , and thus has a limit. Then from (2.3) it is clear that for each k,

$$
\lim _{n \rightarrow \infty} r_{k, n}=j_{m}
$$

for some integer $m=m(k) \geq 1$. By the intermediate value theorem, for n large enough, f_{n} has a zero close to each j_{k}. Therefore, its smallest zero $r_{1, n}$ necessarily has j_{1} as limit.

We need to show that $r_{2, n}$ does not approach j_{1} as well. Suppose to the contrary that

$$
\lim _{n \rightarrow \infty} r_{2, n}=j_{1}
$$

Then by the mean value theorem, there exists some $c_{n} \in\left(r_{1, n}, r_{2, n}\right)$ such that

$$
\begin{equation*}
f_{n}^{\prime}\left(c_{n}\right)=0 \tag{2.6}
\end{equation*}
$$

and of course by hypothesis $c_{n} \rightarrow j_{1}$ as $n \rightarrow \infty$.
Define a point $a_{n}=j_{1}+\delta_{n}$, where the error δ_{n} is chosen so that

$$
\sqrt{\left(2 \lambda_{n}+1\right) / \Sigma_{n}}=o\left(\delta_{n}\right)=o(1)
$$

(say $\left.\delta_{n}=\log \left(\left(2 \lambda_{n}+1\right) / \Sigma_{n}\right)\right)$. Then, since $f_{n}(y) \rightarrow J_{0}(y)$ uniformly for bounded y with error $\mathcal{O}\left(\left(2 \lambda_{n}+1\right) / \Sigma_{n}\right)$, and $J_{0}\left(j_{1}\right)=0$, we have for some ξ_{n} between j_{1} and a_{n},

$$
\begin{align*}
f_{n}\left(a_{n}\right) & =J_{0}\left(a_{n}\right)+f_{n}\left(a_{n}\right)-J_{0}\left(a_{n}\right)=J_{0}^{\prime}\left(\xi_{n}\right)\left(a_{n}-j_{1}\right)+\mathcal{O}\left(\sqrt{\frac{2 \lambda_{n}+1}{\Sigma_{n}}}\right) \tag{2.7}\\
& =J_{0}^{\prime}\left(j_{1}\right) \delta_{n}[1+o(1)]
\end{align*}
$$

as $n \rightarrow \infty$ (it is well known, see Olver [6, §7.6], that the zeros the Bessel functions are simple, so $\left.J_{0}^{\prime}\left(\xi_{n}\right) \longrightarrow J_{0}^{\prime}\left(j_{1}\right) \neq 0\right)$. On the other hand, using (2.3) again with $J_{0}\left(j_{1}\right)=0$ yields

$$
\begin{equation*}
f_{n}\left(a_{n}\right)=f_{n}\left(j_{1}\right)+f_{n}^{\prime}\left(\nu_{n}\right)\left(a_{n}-j_{1}\right)=\mathcal{O}\left(\sqrt{\frac{2 \lambda_{n}+1}{\Sigma_{n}}}\right)+f_{n}^{\prime}\left(\nu_{n}\right) \delta_{n} \tag{2.8}
\end{equation*}
$$

for some ν_{n} between j_{1} and a_{n}. Expanding f^{\prime} about the point c_{n} from (2.6) gives

$$
f_{n}^{\prime}\left(\nu_{n}\right)=f_{n}^{\prime \prime}\left(\eta_{n}\right)\left(\nu_{n}-c_{n}\right)
$$

for some η_{n} between ν_{n} and c_{n}, and according to Lemma 2.2, since $c_{n}, \nu_{n} \rightarrow j_{1}$ as $n \rightarrow \infty$, we have $f_{n}^{\prime}\left(\nu_{n}\right)=o(1)$ as $n \rightarrow \infty$. Therefore, (2.8) gives $f_{n}\left(a_{n}\right)=o\left(\delta_{n}\right)$, which contradicts (2.7). Hence $\lim _{n \rightarrow \infty} r_{2, n} \neq j_{1}$.

Since f_{n} has a zero close to j_{2} for n large enough, it follows that $r_{2, n} \rightarrow j_{2}$. Now we can repeat the proof for $r_{3, n}$ and so on, and we have established that $\lim _{n \rightarrow \infty} r_{k, n}=j_{k}$ for each fixed k. The result now follows from $-4 \Sigma_{n} \log l_{k, n}=r_{k, n}^{2}$.

As for the error, a linear approximation yields

$$
J_{0}\left(r_{k, n}\right)=J_{0}\left(r_{k, n}\right)-J_{0}\left(j_{k}\right)=J_{0}^{\prime}\left(\xi_{n}\right)\left(r_{k, n}-j_{k}\right)
$$

for some $\xi_{k, n}$ between $r_{k, n}$ and j_{k}, and thus since the zeros of J_{0} are simple, (2.3) and (2.4) yield

$$
r_{k, n}-j_{k}=\mathcal{O}\left(J_{0}\left(r_{k, n}\right)\right)=\mathcal{O}\left(\sqrt{\frac{2 \lambda_{n}+1}{\Sigma_{n}}}\right), \quad n \longrightarrow \infty
$$

Acknowledgment I would like to thank my research advisor, Professor Doron S. Lubinsky, for his support and guidance.

References

[1] J. M. Almira, Müntz type theorems I. Surv. Approx. Theory 3(2007), 152-194.
[2] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities. Graduate Texts in Mathematics, 161, Springer-Verlag, New York, 1995.
[3] P. Borwein, T. Erdélyi, and J. Zhang, Müntz systems and Müntz-Legendre polynomials. Trans. Amer. Math. Soc. 342(1994), no. 2, 523-542. http://dx.doi.org/10.2307/2154639
[4] V. I. Gurariy and W. Lusky, Geometry of Müntz spaces and related questions. Lecture Notes in Mathematics, 1870, Springer-Verlag, Berlin, 2005.
[5] D. S. Lubinsky and E. B. Saff, Zero distribution of Müntz extremal polynomials in $L_{p}[0,1]$. Proc. Amer. Math. Soc. 135(2007), no. 2, 427-435. http://dx.doi.org/10.1090/S0002-9939-06-08694-1
[6] F. W. J. Olver, Asymptotics and special functions. A K Peters, Wellesley, MA, 1997.
[7] Ú. F. Stefánsson, Asymptotic behavior of Müntz orthogonal polynomials. Constr. Approx. 32(2010), no. 2, 193-220. http://dx.doi.org/10.1007/s00365-009-9059-x
[8] , Endpoint asymptotics for Müntz-Legendre polynomials. Acta. Math. Hungar. 130(2011), no. 4, 372-381. http://dx.doi.org/10.1007/s10474-010-0013-y
[9] , Zero spacing of Müntz orthogonal polynomials. Comput. Methods Funct. Theory. 11(2011), no. 1, 45-57
[10] G. Szegö, Orthogonal polynomials. American Mathematical Society, Colloquium Publications, 23, American Mathematical Society, Providence, RI, 1975.

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
e-mail: ustefans@math.gatech.edu

