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Abstract. In this paper we construct examples of commutative rings of difference operators with
matrix coefficients from representation theory of quantum groups, generalizing the results of our
previous paper [ES] to theq-deformed case. A generalized Baker–Akhiezer function	 is realized
as a matrix character of a Verma module and is a common eigenfunction for a commutative ring of
difference operators.

In particular, we obtain the following result in Macdonald theory: at integer values of the Mac-
donald parameterk, there exist difference operators commuting with Macdonald operators which are
not polynomials of Macdonald operators. This result generalizes an analogous result of Chalyh and
Veselov for the caseq = 1, to arbitraryq. As a by-product, we prove a generalized Weyl character
formula for Macdonald polynomials (= Conjecture 8.2 from [FV]), the duality for the	-function,
and the existence of shift operators.
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1. Introduction

Let N be a positive integer. LetDN
q be the algebra over the fieldC (q) generated

by the field of rational functionsC (q;X1; : : : ;XN ) and commuting operators
T�1

1 ; : : : ; T�1
N , with commutation relations

Ti � f(q;X1; : : : ;Xi; : : : ;XN ) = f(q;X1; : : : ; qXi; : : : ;XN ) � Ti:

This algebra is called the algebra ofq-difference operators inN variables with
rational coefficients. Elements of this algebra are called difference operators.

LetV be a finite-dimensional vector space overC . Introduce the algebraDN
q (V )

of difference operators with matrix coefficients

DN
q (V ) = DN

q 
 End(V ):

Let g be a simple finite-dimensional Lie algebra overC of rankr, and letUqg be
the corresponding quantum group. In [EK], to any finite dimensional representation
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126 PAVEL ETINGOF AND KONSTANTIN STYRKAS

U ofUqgwas assigned a family of commuting difference operatorsDc parametrized
by Weyl group invariant trigonometric polynomialsc on the Cartan subalgebrah
of g. These operators are constructed as follows.

Let M� be the Verma module overUqg with highest weight� and highest
weight vectorv�. Let U [0] be the zero weight subspace ofU . For anyu 2 U [0],
define the intertwining operator�u

�:M� ! M� 
 U by the condition�u
�v� =

v� 
 u+
P
wi 
 ui, wherewi are homogeneous vectors of weights�i < �. This

operator is defined for generic�. For any weight�, let ProjjM�[�]
:M� !M� be the

homogeneous projector to the subspaceM�[�] of weight�: Let ~ �(X1; : : : ;Xr)
be the function with values in End(U [0]) such that for anyu 2 U [0]

~ �(X1; : : : ;Xr)u =
X
�

X�1
1 ; : : : ;X�r

r TrjM�
(ProjjM�[�]

��u
� � ProjjM�[�]

):

LetP be the weight lattice of'.

PROPOSITION 1.1. [EK]For any Weyl group invariant functionc(�) onh� of the
form

c(�) =
X
�2P

c�q
2h�;�i; c� 2 C (q); (1.1)

there exists a unique difference operatorDc 2 Dr
q(U [0]) such that

Dc
~ � = c(�+ �) ~ �:

For any root� of g, let k� = maxfnjU [n�] 6= 0g; whereU [�] is the subspace
of weight� in U . LetR(U) be the ring of functions onh� of the form (1.1) such
that for any positive root� of g

c

�
��

n�

2

�
= c

�
�+

n�

2

�
; n = 1; : : : ; k�;

wheneverh�; �i = 0: The main result of this paper is the following theorem,
proved in Chapter 4 of this paper.

THEOREM 1.2.There exists an injective homomorphism�:R(U) ! Dr
q(U [0])

such that for any Weyl group invariant elementc 2 R one has�(c) = Dc. For any
c 2 R(U), the operator�(c) is defined by the equation

�(c) ~ � = c(�+ �) ~ �:

We will denote�(c) byDc for any� 2 R.
In the case wheng = slN (typeAN�1), we can choose representationU to be

SkNV , whereV is the fundamental representation, in which case the spaceU [0]
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ALGEBRAIC INTEGRABILITY OF MACDONALD OPERATORS AND REPRESENTATIONS 127

is 1-dimensional. Then the operatorsDc for symmetric functionsc are conjugate
to Macdonald operators, corresponding tot = qk+1: Namely, if cl are elementary
symmetric functions, thenfDclg are simultaneously conjugate to

Ml =
X

I�1;:::;N;jIj=l

Y
i2I;j =2I

qk+1Xi � q
�k�1Xj

Xi �Xj

Y
i2I

T 2
i ;

(in suitable coordinates). In this case, the numbersk� are all equal tok; so we will
denote the algebraR(U) byRk. From Theorem 1.2 we get (See Chapter 5):

THEOREM 1.3.For any positive integerk, there exists an injective homomorphism
�:Rk ! DN

q such that�(cl) =Ml, l = 1; : : : ; N . The function~ � is a common
eigenfunction of the operators�(c); c 2 Rk with eigenvaluec(�+ �).

Note that Theorem 1.3 is a special property of Macdonald’s operators at integer
values ofk. If k is not an integer, one can show that the centralizer ofM1; : : : ;MN

in DN
q reduces to the polynomial algebra ofM1; : : : ;MN . We call this special

property at integer values ofk ‘algebraic integrability of Macdonald operators’,
by analogy with the case differential operators which was treated in [CV1, CV2,
VSC, ES]. In this sense, the results of this paper are precisely aq-deformation of
the results of [ES].

As a by-product, we obtain several results in Macdonald’s theory. Namely, we
prove the partial Weyl group symmetry of the~ -function, a generalized Weyl
character formula for Macdonald’s polynomials (which coincides with Conjecture
8.2 in [FV]), an explicit formula for the~ -function in terms of shift operators, and
symmetry of the~ -function with respect to the interchange�$ x.

The paper is organized as follows. In Section 2 we recall basic facts about
representations of quantum groups and intertwining operators. In Section 3 we
introduce the	-function as matrix trace of an intertwining operator, and prove
its properties. In Section 4 we explain how to construct a commutative ring of
difference operators from the	-function. In Section 5 we review some facts from
Macdonald theory for root systemAn and explain how to obtain them from our
construction. In Appendix we show how our technique works in the simplest
example.

2. Quantum groups and their representations

Notation.Letg be a simple (finite-dimensional) complex Lie algebra of rankr with
fixed diagonalizable Cartan matrixA = (aij); i; j = 1; : : : ; r; and letd1; : : : ; dr
be positive relatively prime integers such that the matrixB = (bij) = (diaij)
is symmetric. We denote its Cartan subalgebra byh: Let �i 2 h�; i = 1; : : : ; r
denote simple roots,R be the corresponding root system,R+ andR� be the sets
of positive and negative roots, respectively.
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128 PAVEL ETINGOF AND KONSTANTIN STYRKAS

The invariant formh�; �i onh� is defined byh�i; �ji = diaij : Let�1; : : : ;�r 2
h� be fundamental weights, i.e.h�i; �ji = �ij ; i; j = 1; : : : ; r: Put� =

Pr
i=1�i:

Denote

Q =
X

Z�i;Q+ =
X

Z+�i; P =
X

Z�i; P+ =
X

Z+�i:

For�; � 2 P we write� � � if �� � 2 Q+:
LetW be the Weyl group ofg. The Weyl group generatorssi act onh� by simple

root reflections

si � � = �� 2
h�i; �i

h�i; �ii
�i:

We also introduce a shifted action of Weyl group by

w� � � = w(�+ �)� �:

For w 2 W let l(w) denote the length ofw; i.e. the number of generators in a
reduced decompositionw = si1� ; : : : ; �sil :

Quantum groups.The quantum groupUqg; associated to a simple Lie algebrag; is
a Hopf algebra overC (q) with generatorsEi; Fi;Ki; i = 1; : : : ; r and relations:

KiKj = KjKi; KiEj = q
aij
i EjKi; KiFj = q

�aij
i FjKi;

EiFj � FjEi = �ij
Ki �K

�1
i

qi � q
�1
i

;

1�aijX
k=0

(�1)k
"

1� aij
k

#
qi

E
1�aij�k
i EjE

k
i = 0; i 6= j;

1�aijX
k=0

(�1)k
"

1� aij
k

#
qi

F
1�aij�k
i FjF

k
i = 0; i 6= j;

whereqi = qdi and we used notation"
n

k

#
q

=
[n]q!

[k]q![n� k]q!
; [n]q! = [1]q � [2]q� ; : : : ; �[n]q; [n]q =

qn � q�n

q � q�1 :

Comultiplication�; antipodeS and counit" in Uqg are given by

�(Ei) = Ei 
 1+Ki 
Ei; �(Fi) = Fi 
K
�1
i + 1
 Fi;

�(Ki) = Ki 
Ki:
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ALGEBRAIC INTEGRABILITY OF MACDONALD OPERATORS AND REPRESENTATIONS 129

S(Ei) = �K
�1
i Ei; S(Fi) = �FiKi; S(Ki) = K�1

i

"(Ei) = "(Fi) = 0; �(Ki) = 1:

We define aC -algebra involution! of Uqg by

!(Ei) = �Fi; !(Fi) = �Ei; !(Ki) = Ki; !(q) = q�1:

We have a decomposition of vector spacesUqg = U� 
 U0 
 U+; whereU�

(resp.U+) is the subalgebra generated byFi (resp.Ei), andU0 is generated by
Ki;K

�1
i ; i = 1; : : : ; r:

Verma modules.For any� 2 h� we can introduce Verma moduleM� overUqg;
i.e.U�-free module with a single generatorv� and relations

Eiv� = 0; Kiv� = qh�i;�iv�:

Remark.Here and below we work over the fieldF = C (fqa ; a 2 C g). In this
setting,qh�;�i is a functionh� ! F .

We have the decomposition

M� =
M
�2Q+

M�[�� �];

of M� into direct sum of weight subspacesM�[�� �]; where we say that a vector
v has weight� 2 h� if

Kiv = qh�i;�iv:

The restricted dual moduleM�
� is aUqg+-module with a lowest weight vector

v��� such thathv���; v�i = 1: By definition we have

hgv�; vi = hv�; S(g)vi; v 2M�; v
� 2M�

� :

Introduce a symmetric formF onM� defined by

F (g1v�; g2v�) = h!(g1)v
�
��; g2v�i; g1; g2 2 U�:

The weight subspacesare pairwise orthogonal with respect to this form. The restric-
tion of F to weight subspacesM��� is proportional to the quantum Shapovalov
formF ; introduced in [CK]:

F�(�; �) = C�q
�h�;�iF�(�; �);

for some constantsC�:
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130 PAVEL ETINGOF AND KONSTANTIN STYRKAS

Fix a basisg�i 2 U
�[�]: Let F� = (F�)ij ; i; j = 1;2; : : : ;dimM�[� � �];

denote the matrix of the restriction of formF to M�[� � �] with respect to the
basisg�i v� of M�[� � �]: A variation of the quantum determinant formula [CK]
asserts that

detF� = C
Y

�2R+

Y
n2N

�
1� q�2h�;�+�i+nh�;�i

�Par(��n�)
;

where Par is the generalized Kostant partition function, andC is a constant, depend-
ing on the choice of basisg�i :

This determinant is a linear combination of termsq�2h�;�i; where�’s belong to
a finite subsetL � Q; with some coefficients fromC (q): Motivated by this fact,
we introduce:

DEFINITION. Expressions of the form
P

�2L a�q
�2h�;�i, a� 2 C (q), will be

calledq-polynomials with supportL and coefficientsa�:

Verma modules are reducible when the formF is degenerate, i.e. detF� = 0
for some�: This happens when� satisfies one of the Kac-Kazhdan equations:

h�; �+ �i =
n

2
h�; �i; n = 1;2; : : : : (2.1)

For� generic from Kac-Kazhdan hyperplanes,M� contains a unique submodule
M1

�; isomorphic toM��n�:

Intertwining operators. Let U be an irreducible finite-dimensionalUqg-module
with non-trivial zero weight subspaceU [0]: For u 2 U let �u

�:M� ! M� 
 U
be an intertwining operator such thatv� ! v� 
 u+ higher order terms, where
‘higher order terms’ mean terms of the formv��� 
 u�; � > 0:

If M� is irreducible, then�u
� exists and is unique for anyu 2 U [0]: Indeed,

we have a uniqueU+-intertwiner 
:M�
� ! U; such that
v��� = u: Since

Hom(M�
� ; U)

�= M��
� 
 U �= M� 
 U; it corresponds to a singular (i.e.U+-

invariant) vector� 2 M� 
 U: We now construct�u
� by putting�u

�v� = � and
extending�u

� to the wholeM� by the intertwining property.
For our purposes we need an explicit form for that singular vector.

PROPOSITION 2.1.For any (homogeneous) basisfg�i g of U�

� =
X
�

0@X
i;j

�
F�1
�

�
ij
g�i v� 
 !(g

�
j )u

1A ; (2.2)

is a singular vector inM� 
 U:
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ALGEBRAIC INTEGRABILITY OF MACDONALD OPERATORS AND REPRESENTATIONS 131

Note that sinceU has a highest weight, the summation is over the finite set of
�’s such thatU [�] 6= 0:

Proof. We check that the corresponding element� 2 Hom(M�
� ; U) defined as

the compositionM�
� !M�

� 
M� 
 U ! U is aU+-intertwiner. We have:

�
�
!(g�nv

�
��)

�
=
X
�

0@X
ij

�
F�1
�

�
ij
h!(g�n)v

�
��; g

�
i v�i!(g

�
j )u

1A
=
X
i;j

�
F�1
�

�
ij
h!(g�n)v

�
��; g

�
i v�i!(g

�
j )u

=
X
j

 X
i

�
F�1
�

�
ij

(F�)ni

!
!(g�j )u

=
X
j

�jn!(g
�
j )u = !(g�n)u: 2

Recall that in the classical case (i.e.q = 1) matrix elements of the inverse matrix
F�1
� were rational functions of� with at most simple poles on the Kac-Kazhdan

hyperplanes given by (2.1). (see [ES]). A similar argument, also involving Jantzen
filtration, proves that the same is true in the quantum case. Therefore, expression
(2.2) for the singular vector� is a ratio of twoq-polynomials, with at most simple
singularities on a finite collection of Kac-Kazhdan hyperplanes.

If we multiply theq-rational expression (2.2) by the least common denominator
~�(�);we will get a well-defined for all�’s formula for a singular vector~� 2M�
U:
We are now going to show that in fact the least common denominator may only
contain factors

��n(�) = 1� q�2h�;�+�i+nh�;�i;

corresponding ton; � such thatU [n�] 6= 0: Indeed, suppose that~�(�) contained a
factor��n(�); butU [n�] = 0:

Consider� generic from the hyperplaneh�; � + �i = n
2 h�; �i: ThenM�

contains a unique maximal submoduleM1
�
�= M��n�; generated by the singular

vectorv��n�: Since the first term~�(�)v� 
 u in the expression for~� turns into
zero on our hyperplane, the singular vector must have the form

~� = v��n� 
 ~u+ higher order terms:

The intertwining property implies that~u 2 U [n�]; and by assumption~u = 0:
Therefore,~� is zero for� generic from the hyperplane, and by Bezout theorem is
divisible by��n: This shows that~�(�) was not the least common denominator –
contradiction.
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132 PAVEL ETINGOF AND KONSTANTIN STYRKAS

Denotek� = maxfnjU [n�] 6= 0g;

L� =

8<:�j� = X
�2R+

m��; 0� m� � k� for all � 2 R+

9=; :
We conclude this section with the following:

PROPOSITION 2.2.If U is an irreducible finite-dimensionalUqg-module with
highest weight�; the singular vector� 2M�
U;given by(2:2), can be represented
as

� =

P
l Sl(�)~glv� 
 ulQ

�2R+
Qk�
m=1

�
1� q�2h�;�+�i+mh�;�i

� ;
wheregl 2 U�; ul 2 U; andq-polynomialsSl(�) have supports, contained inL�:

Proof. We already proved that the least common denominator for the expression
for � may only contain factors��n(�); n = 1; : : : ; k�:

The statement about the support of the polynomialsSl(�) follows from the fact
that the support of the numerator must lie within the convex hull of the support of
the denominator, which in this case is exactlyL�: 2

3. Matrix Trace, the 	-function and its properties

We now fix an irreducibleUqg-moduleU with highest weight� and nontrivial zero
weight subspace. We use the notation

k� = maxfnjU [n�] 6= 0g; � =
X
�2R+

k� � � 2 Q+;

��n(�) = 1� q�2h�;�+�i+nh�;�i; �(�) =
Y

�2R+

k�Y
n=1

��n(�);

L� =

8<:� 2 Q+j� =
X
�2R+

m��; 0� m� � k� for all � 2 R+

9=; :
As in [ES], define a new intertwining operator

~�u
� = �(�)�u

�:M� !M� 
 U:

From Proposition 2.2 it follows that~�u
� is well-defined even when� belongs to

Kac-Kazhdan hyperplanes, where�u
� did not always exist.

Introduce an End(U [0])-valued function	(�; x); �; x 2 h�; by

	(�; x)u = Tr jM�
(~�u

�e
x):
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PROPOSITION 3.1.The function	(�; x) defined above has the form

	(�; x) = eh�;xi
X
�2L�

q�2h�;�+�iP�(x);

whereP�(x) 2 End(U [0]) andP�(x) is invertible for genericx:
If h�; �+ �i = n

2 h�; �i for some� 2 R+; n = 1;2; : : : ; k� then

	(�; x) = 	(�� n�; x)Bn�(�): (3.1)

for some (possibly infinite) sum

Bn�(�) =
X
�2Q+

q�2h�;�iB�
n�; B�

n� 2 End(U [0]):

(In fact, the matrix elements ofBn�(�)’s are ratios ofq-polynomials.)

Remark.If we takeU to be a trivial module, then the	-function becomes the
usual character of the Verma module. Therefore, we can regard the	-function as
a generalized (matrix-valued) character of the Verma moduleM�:

Proof of Proposition 3.1.

Tr jM�

�
~�u
�e

x
�
= eh�;xi

X
�2Q+

e�h�;xiB�(�)u;

where ‘partial traces’B�(�) 2 End(U [0]); corresponding to weight subspaces
M�[�� �]; are defined by

B�(�)u = Tr
�
ProjM�[���]

� ~�u
� � ProjM�[���]

�
:

By Proposition 2.2,B�(�) are End(U [0])-valuedq-polynomials with supportL�: If
we letx!1 in such a way thath�; xi ! +1; � 2 R+ (this just means that we
are keeping only the highest weight terms of the series), we will get asymptotically

	(�; x) � eh�;xi�(�) � 1:

ThereforeP�(x) � 1; andP�(x) is invertible for genericx:
We now prove the second property.
If � is generic from hyperplaneh�; �+�i = n

2 h�; �i; thenM� is reducible and
contains a unique submoduleM1

� generated by singular vectorv��n�: It is clear
that for such� there are no order� terms in�u

�v� unless� > n�: In other words,
~�u
� mapsM� intoM1

� 
 U; and

~�u
�v� = v��n� 
 u

0 + higher order terms;

comp4052.tex; 13/10/1996; 12:15; v.7; p.9

https://doi.org/10.1023/A:1000498420849 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000498420849


134 PAVEL ETINGOF AND KONSTANTIN STYRKAS

~�u
�v��n� = v��n� 
 u

00 + higher order terms:

Clearly, bothu0 andu00 depend linearly onu: More precisely,

u00 = Bn�(�)u: (3.3)

Therefore we have

�(�� n�)~�u
�jM1

�

�= ~�u00

��n�:

Taking the traces of the operators from the last equation and using (3.3), we get

�(�� n�)	(�; x) = 	(�� n�; x)Bn�(�):

Since�(� � n�) is invertible in the ‘Laurent series’ completion ofC [P]; we can
introduce

Bn�(�) =
Bn�(�)

�(�� n�)
=
X
�2Q+

q2h�;�iB�
n�

and (3.1) follows. Proposition 3.1 is proved. 2

We prove that property (3.1) of the	-function determines it uniquely up to multi-
plication by a factor, depending only onx:

PROPOSITION 3.2.Suppose we have anEnd(U [0])-valued function

	0(�; x) = eh�;xi
X
�2L

q�2h�;�iQ�(x);

whereL � Q+ andQ�(x) 2 End(U [0]); satisfying condition(3:1). Then theL
contains at least one weight� > �:

Proof. (cf. [ES]). Let us rewrite the condition (3.1). We have:

e(n=2)h�;xi
X
�2Q

q�2h�;�+(n�=2)iP�(x)

= e�(n=2)h�;xi
X
�2Q

q�2h�;��(n�=2)iP�(x)
X
�2Q

q�2h�;�iB�
n�:

For every� 2 Q consider the set

Z�(�) = �+ Z�= f� 2 Qj� = �+m� for somem 2 Zg:
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Comparing coefficients forqh�;�i; we get forn = 1;2; : : : ; k�:

X
�2Z�(�)

0@enh�;xiq�nh�;�iP�(x)�
X
�2Q

q�nh�;�iP���(x)B
�
n�

1A = 0:

This is a system of linear equations on unknown functionsP�(x): Note that the
summation over� is finite, sinceP��� = 0 if � � � =2 Q+: The matrix of this
system has a block-upper-triangular form, blocks corresponding to subsetsZ�(�)
for different �: The determinant of this matrix is an entire function ofx; and
asymptotically whenh�; xi ! +1; � 2 R+

LHS �
X

�2Z�(�)

enh�;xiq�nh�;�iP�(x):

Therefore, asymptotically the determinant of the matrix of this system is equal to a
Vandermonde-type determinant, which is nonzero. It follows that the determinant
of the system of equations is nonzero for genericx:

Suppose� is such that not allP�(x) are identically zero (i.e. we have a non-
trivial solution of the system of equations). Then for such� we need to have
Card

�
Z�(�)

�
> k� for all �:

Below we will prove the following:

LEMMA 3.3. LetS = fv1; : : : ; vmg be a system of pairwise noncollinear vectors
in R

n ; assume that allvi lie in the halfspacehn; vii > 0 for some vectorn 2 Rn :
LetB be a closed bounded convex polytope inR

n ; such that the origin0 is a
vertex ofB; and moreoverB n 0 lies in the halfspacehn; xi < 0:

Suppose that for anyx 2 B; vi 2 S we can draw a line segmentI throughx;
parallel tovi and of length at leastjvij; such thatI � B:

ThenB � B0; where the polytopeB0 is defined by

B0 =

(
�

kX
i=1

sivij0� si � 1

)
:

Let L be the convex hull of the setL; S = �+; v� = k��: Taken from the
positive Weyl alcove, so that it is not orthogonal to any edge ofL; and let�0 be the
vertex ofL such that the producthn; �0i is maximal. ThenB = L � �0 satisfies
all the conditions of Lemma 3.3, and we conclude thatL contains all vectors of the
form

� = �0�
X

�2�+

s��; 0� s� � k�:

SinceL contains only positive weights, we see in particular that

�0�� = �0�
X

�2�+

k�� � 0:
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Being a vertex ofL; the weight�0 also belongs to the (discrete) setL; which
completes the proof of Proposition 3.2. 2

Proof of Lemma 3.3.We use induction onn:

Base of induction: n=2.Note that the polygonB has exactly two (opposite) edges,
parallel tov1; both of length at leastjv1j: It can be easily seen that the polygon�B;
defined by

�B = fx 2 Bjx+ v1 2 Bg;

satisfies the condition of the Lemma for the family of vectors�S = fv2; : : : ; vmg:
We can therefore use induction onm to prove the statement, which is obvious for
m = 1: The technical details are left to the reader.

Induction step. Let n � 3: Consider orthogonal projections of our data in the
directionsu from the hyperplanehu;ni = 0: ProjectionsB0; B0

0 of B;B0 are
convex closed(n � 1)-dimensional polytopes, lying in the halfspacehn; xi < 0;
the projectionsv0i of vi lie in the halfhyperplanehn; v0ii > 0: For genericu; vectors
v0i will be pairwise noncollinear, and by induction hypothesis we will conclude that
B0

0 � B
0: By continuity, this is true for allu:

Suppose now that there exists a pointx such thatx 2 B0; x =2 B: Consider
a (generic) hyperplane separatingx from B: Its intersection with the hyperplane
hu;ni = 0 has codimension 2, and therefore is nonzero. Takeu from this intersec-
tion; then for projectionx0 of x we will havex0 2 B0

0; x
0 =2 B0 – contradiction.

Therefore, we have proven the induction step.
Lemma 3.3 is proven. 2

COROLLARY 3.4.The 	-function, satisfying(3:1), is unique up to a factor,
depending onx:

Proof. If we have another function	0(�; x) with highest coefficientP 0
�(x);

satisfying (3.1), then the function

�(�; x) = 	0(�; x) � P 0
�(x)

�
P�(x)

��1
	(�; x);

will still satisfy (3.1), but its support will only contain weights� < �: By Propo-
sition 3.2,�(�; x) � 0; and the statement follows. 2

Remark. We use this opportunity to correct some errors in our paper [ES].
1. Corollary 5.3 in [ES], which is used to prove the uniqueness of the clas-

sical -function, is incorrect (a counterexample is the functioneh�;xiq(�), where
q is any polynomial vanishing on the hyperplanes involved in (4–11)). The mis-
take is that the polynomialq1(�) introduced in the proof does not have to satisfy
any invariance condition, so�1(�; x) does not have to satisfy (4–11). The statement
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and the proof of Corollary 5.3 are valid only if�(�; x) = eh�;xiQ(�; x) with
degQ =

P
� n�, which still implies the uniqueness property (Corollary 5.4).

2. Corollary 5.3 is implicitly used in the proof of Theorem 6.1. The theorem is
correct, but the proof has to be changed. Namely, one should prove the following

PROPOSITION.Any End(U [0])-valued function�(�; x) = eh�;xiQ(�; x), satis-
fying (4–11), can be represented as�(�; x) = D (�; x) for a unique differential
operatorD with coefficients, depending onx but not on�.

This can be easily proved by induction (cf. [CV], and also Proposition 4.1
below). Theorem 6.1 is the special case of this Proposition.

3. We would also like to point out a misprint in the definition of��� in Section 3
of [ES]; it should read��� = maxn; fn 2 NjK(� � n�) 6= 0g = maxnfn 2
Njn� 6 �g.

4. Existence of difference operators

Introduce a family of difference operatorsT�; corresponding to weights� 2 P;
acting onh�; by

T�(x) = x+� logq2; x 2 h
�:

They naturally act on functions onh�; for example, forf(x) = eh�;xi we have

(T�f)(x) = eh�;x+� logq2i = q2h�;�i eh�;xi = q2h�;�if(x):

PROPOSITION 4.1.Any function�(�; x); satisfying(3:1), which has the form

� = eh�;xiP (�; x);

for someq-polynomialP (�; x); can be represented as

�(�; x) = D	(�; x);

for a unique difference operatorD with depending onx coefficients.
Proof. Uniqueness is obvious, since otherwise the	-function would be anni-

hilated by a nontrivial difference operator for all�; which is impossible. (See, for
example, [EK]).

To prove existence ofD we use induction on the support ofP (�; x): Consider
the family of all finite subsetsL � Q+ such that if� 2 L; � 2 Q+ and� < �;
then also� 2 L:

We prove that if our statement is true for allq-polynomialsP (�; x) whose
support is strictly contained inL; then it is also true forq-polynomials with support
L:
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138 PAVEL ETINGOF AND KONSTANTIN STYRKAS

If L does not contain weights� > � then by Proposition 3.2 we haveP (�; x) �
0; and the operatorD � 0.

Suppose there is a� 2 L such that� > �: Consider the set of all such�’s and
let � be a maximal element from this set.

Consider the function

�0(�; x) = �(�; x)� P�(x)T���	(�; x):

It satisfies (3.1) and has support strictly contained inL: By induction hypothesis
we can represent�0 as

�0(�; x) = D0	(�; x):

The operator

D = P�(x)T��� +D0;

satisfies the required properties. 2

We now prove a simple technical

LEMMA 4.2. Let aq-polynomialc(�) be represented as

c(�) =
X

�2P=Q

c�(�);

wherec�(�) areq-polynomials with support in the coset� +Q:
Suppose for somen; � we have that

c

�
�+

n�

2

�
= c

�
��

n�

2

�
; (4.1)

wheneverh�; �i = 0: Then(4:1) is also satisfied for eachc�(�):
Proof. Property (4.1) is equivalent to divisibility byq2h�;�i � 1 of the q-

polynomial

~c(�) = c

�
�+

n�

2

�
� c

�
��

n�

2

�
:

On the other hand, one can see that

~c(�) =
X

�2P=Q

~c�(�);

where

~c�(�) = c�

�
�+

n�

2

�
� c�

�
��

n�

2

�
:

Clearly,~c(�) is divisible byq2h�;�i � 1 if and only if all ~c�(�)’s are divisible by
q2h�;�i � 1; and the Lemma follows. 2
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THEOREM 4.3.For anyq-polynomialc(�) such that for any� 2 R+

c

�
�+

n�

2

�
= c

�
��

n�

2

�
; n = 1;2; : : : ; k�; (4.2)

wheneverh�; �i = 0; there exists a difference operatorDc with coefficients in
End(U [0]) such that

Dc	(�; x) = 	(�; x)c(� + �):

The correspondencec(�)! Dc is a homomorphism of rings.

Remark.We putc(�+�) on the right since in that form it admits generalization
to the matrix case (see Theorem 4.4). Of course, for scalarq-polynomialc(�) we
could write it in a more traditional formDc	(�; x) = c(�+ �)	(�; x):

Proof. By Lemma 4.2, it suffices to prove the theorem forc�(�) of the form

c(�) = q2h�0;�i
X
�2Q+

c�q
�2h�;�i;

for some�0 2 P: Consider the function

�(�; x) = T��0	(�; x)c(� + �):

It satisfies (3.1), and it has the form

�(�; x) = eh�;xi
X
�2Q+

q�h�;�iQ�(x):

By Proposition 4.1 it can be represented as

�(�; x) = D	(�; x);

for some difference operatorD: PutDc = T�0D: Then we have

Dc	(�; x) = T�0D	(�; x) = T�0�(�; x)

= T�0T��0	(�; x)c(� + �) = 	(�; x)c(�+ �);

We now prove the homomorphism property. Suppose we have two polynomials
c(�) andc0(�): It is easily checked that operatorDcc0 �DcDc0 annihilates the	-
function for any�; therefore it has to be identically zero. Hence our correspondence
is a homomorphism of rings. 2

We have big supply of (scalar)q-polynomials, satisfying (4.2), arising from the
algebra of Weyl group invariantq-polynomials, which is freely generated by the
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Casimir elementsc1; : : : ; cr: This give usn algebraically independent difference
operatorsD1; : : : ;Dr:However, there exist otherq-polynomials, with this property.
For instance, any polynomial divisible by

c0(�) =
Y

�2R+

k�Y
n=�k�

�
q2h�;�i+nh�;�i � 1

�
;

also satisfies (4.2). It gives rise to a difference operator, commuting with all those
generated by the Casimir elements, but not necessarily lying in the ring generated
by them. This procedure gives examples of what we called algebraically integrable
commutative rings of difference operators.

Theorem 4.3 can be slightly generalized to the matrix case.

THEOREM 4.4.For anyEnd(U [0])-valuedq-polynomialC(�) such that

C

�
�+

n�

2

�
Bn�(�) = Bn�(�)C

�
��

n�

2

�
; � 2 R+; n = 1; : : : ; k�;

wheneverh�; �i = 0; there exists a unique difference operatorDC with coefficients
in End(U [0]); such that

DC�(�; x) = 	(�; x)C(�+ �):

The correspondence�:C(�) 7! DC is a homomorphism of rings.
Proof. The argument used in proof of Theorem 4.3 in the obvious way extends

to the matrix case. 2

Remark.OperatorsD1; : : : ;Dr act on	-function as scalars, and therefore
commute with all operatorsDC constructed as above. In fact, one can show that
the centralizer of the subring generated by operatorsD1; : : : ;Dr in Dr

q(U [0])
coincides with the image of�: We do not include the proof of this statement here.

In the next section we explain how our construction is related to Macdonald
theory.

5. Root systemAn and Macdonald theory

Consider a special case of our construction forg = slN ; U = Uk = SkNV , where
V is the fundamental representation. It is well-known that the zero weight subspace
U [0] is one-dimensional, and we can regard	(�; x) as a scalar-valued function.
Note also that in this casek� = k for all � 2 R+; and� = k

P
�2R+ � = 2k�:

We havedi = 1; and thereforeqi = q for all i = 1; : : : ; r:
We will use the notation

[n] =
qn � q�n

q � q�1 ; [n]+ =
q2n � 1
q2� 1

; [n]� =
1� q�2n

1� q�2 :
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We first prove an important property of partial traces

B�(�) = Tr
�
ProjM�[���]

� ~�u
� � ProjM�[���]

�
;

introduced in Section 3.

PROPOSITION 5.1.Given any� 2 R+; n = 1; : : : ; k; we have for all� 2 Q

B�(�) = q�hn�;�i � B��n�(�� n�); (5.1)

wheneverh�; � + �i = n:

COROLLARY 5.2.For � 2 R+; n = 1; : : : ; k; the function	(�; x) satisfies

	

�
�+

n�

2
; x

�
= q�nh�;�i	

�
��

n�

2
; x

�
:

wheneverh�; �i = n:

Proof of Proposition5.1. For givenn; � it is sufficient to prove a special case of
(5.1), corresponding to� = n� :

Bn�(�) = q�hn�;�i � B0(�� n�) = q�hn�;�i�(�� n�): (5.2)

Indeed, let� be such thath�; � + �i = n: Then the image of~�u
� is contained in

M��n� 
 U: From (5.2) we see that

~�u
�jM��n�

= q�hn�;�i � ~�u
��n�

and the more general formula (5.1) follows. We now use induction on the height
of root� to prove formula (5.2), and thus Proposition 5.1.

Base of induction.Consider the case when� = �i is a simple root. Let� be
generic in the hyperplaneh�i; � + �i = n: ThenM� contains a unique nonzero
proper submoduleM1

�; generated by the singular vectorv��n�i = F n
i v�: One can

check that

~�u
�v� =

(q�1� q)n

[n]+!

0@ kY
m=n+1

��im (�)

1A
�

0@ Y
� 6=�i

kY
m=1

��m(�)

1A v��n� 
En
i u+ t:o:w;

where t.o.w. denotes ‘terms of other weights’ (in the first component).
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It follows that

Bn�i(�) =
(q�1� q)n

[n]+!

0@ kY
m=n+1

(1� q�2(n�m))

1A
�

0@ Y
� 6=�i

kY
m=1

��m(�)

1AF n
i E

n
i :

It is known thatF n
i E

n
i acts as multiplication by[k+n]![k�n]! in U [0]: Since

(q�1� q)n

[n]+!

0@ kY
m=n+1

(1� q�2(n�m))

1A [k + n]!
[k � n]!

= q�2kn
kY

m=1

�
1� q2(n+m)

�
;

for � from the hyperplaneh�i; �+ �i = n we have

Bn�i(�) = q�2kn
kY

m=1

�
1� q2(n+k)

�0@ Y
� 6=�i

kY
m=1

��m(�)

1A
= q�2kn

 
kY

m=1

��im (�� n�i)

!0@ Y
 6=�i

kY
m=1

�m(�� n�i)

1A
= q�nh�i;�i�(�� n�i):

Induction step.Suppose (5.1) is true for all roots� such that height� < height�:
We are going to prove that (5.2) is true also for�:

We first show thatBn�(�) is divisible by factors��m(��n�) for all � 6= �;m =
1; : : : ; k: It suffices to prove thatBn�(�) vanishes wheneverh�; ��n�+�i = m:

Consider two cases:

(1) If s�(�) 2 R+, put = s�(�): Thenh; �+ �i = h�; �� n�+ �i = m:
If � is generic from hyperplaneh; � + �i = m; then the image of~�u

� is
contained inM��m :Sincen��m =2 Q+, there will be no terms contributing
to Bn�(�) = Tr jM�[��n�]

~�u
�; andBn�(�) = 0 generically (and, therefore,

identically) in the hyperplaneh; �+ �i = m:
(2) If s�(�) =2 R+, put = �s�(�) 2 R+: Then� = � + ; and we can assume

the induction hypothesis true for� and:
We have:

h; �+ �i = �h�; �� n�+ �i = �m;
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h�; �+m + �i = h�; � � n�+ �i+ nh�; �i +mh; �i

= m+ n�m = n:

Therefore,

Bn�(�) = qhm;�iBn�+m(�+m)

= qhm�n�;�iB(n+m)(�+m � n�):

Also,

h�; �+m � n� + �i = n+m� n = m;

so the image of~�u
� is contained inM��(m+n)� ; and

B(n+m)(�+m � n�) = 0;

becausem� � (m + n)� =2 Q+ and there are no terms contributing to
B(n+m)(�+m � n�):

We have proved thatBn�(�) vanishes on the required hyperplanes, and is
therefore divisible by all the required factors. Thus, in the hyperplaneh�; �+�i= n
we get

Bn�(�) = C(�)
Y
� 6=�

kY
j=1

��n(�� n�);

for someq-polynomialC(�): It is easy to see by comparing highest terms thatC(�)
is constant on the hyperplaneh�; � + �i = n: To compute this constant, take�
generic such thath�; �+�i = h�; �+�i = n:Then automaticallyh; �+��n�i =
n: We have:

	(�; x) = q�hn�;�i	(�� n�; x) = q�hn�;�iq�hn;�i	(�� n� � n; x):

But��n��n = ��n� does not lie on any Kac-Kazhdan hyperplanes, therefore
	(�� n�; x) 6= 0; and

C(�) = q�hn�;�iq�hn;�i = q�nh�;�i:

Proposition 5.1 is now proved. 2

Let � be a dominant integral weight, andV� is the irreducibleUqg-module with
highest weight�.

PROPOSITION 5.3 (Generalized Weyl formula).The operator~�u
�:M� !M�


U descends to a homomorphismV� ! V� 
 U . The function

~p�(x) = TrjV�(
~�u
� ex);
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is expressed in terms of the functions	(�; x) by

qh�;�i~p�(x) =
X
w2W

(�1)l(w)qh�;w
��i	(w��; x): (5.3)

Proof. The operator~�u
� defines an operatorM� ! V� 
 U . This operator has

to factor throughV� because it lands in a finite dimensional representation. Thus,
~�u
� in fact defines an operatorV� ! V� 
 U .
Recall that for� 2 P++ we have a resolution

0 V�  M0
�  M1

�  M2
�  � � � ;

where

M0
� =M�; M i

� =
M

l(w)=i

Mw��:

For matrix traces we have as for usual characters

~p�(x) = TrjV�(
~�u
� ex) =

X
i

(�1)i TrjM i
�
(~�u

� ex):

When� is generic from hyperplaneh�i; �+ �i = n
2 h�i; �ii; n > k; thenM�

contains a submoduleM1
�
�= M��n�i ; generated by a singular vectorv��n�i =

F n
i v�: SinceM�[�� n�i] is one-dimensional, we can write

~�u
�v��n�i = v��n�i 
 u

00 + � � � :

Then we will have~�u
�jM1

�
= ~�u00

��n�i
: To computeu00 we use the formula

~�u
�v� =

kX
m=0

(q�1� q)m

[m]+!

0@ kY
l=m+1

��il (�)

1A
�

0@ Y
� 6=�i

kY
l=1

��l (�)

1AFm
i v� 
E

m
i u+ � � � ;
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where we retained only terms, which will contribute to the expression foru00:
Applying �(F n

i ) to the RHS, and collecting terms involvingv��n�i ; we deduce
that

u00 =
kX

m=0

"
n

m

#
(q�1� q)m

[m]+!

0@ kY
l=m+1

��il (�)

1A
�

0@ Y
� 6=�i

kY
l=1

��l (�)

1AFm
i K

n�m
i Em

i u

=
kX

m=0

(�1)mqm�k

"
n

m

#
(q�1� q)k

[m]+!
[n�m� 1]�!
[n� k � 1]�!

�

0@ Y
� 6=�i

kY
l=1

��l (�)

1A q2m(n�m)Fm
i E

m
i u:

The operatorFm
i E

m
i acts inU [0] as multiplication by[k+m]!

[k�m]! :

Also, we need to use the identity
kX

m=0

(�1)m
[n]!

[m]![n�m]!
[n�m� 1]!

[m]![n� k � 1]!
[k +m]!
[k �m]!

= (�1)k
[n+ k]!
[n]!

:

It can be interpreted as equality of two polynomials inz = q2n of degreek: To
prove this identity it suffices to check it forn = 0; : : : ; k; when there is only one
nonzero term in the LHS of the equation.

After easy transformations, we conclude that

u00 = q�2kn

 
kY

m=1

(1� q�2(n+m))

!0@ Y
� 6=�i

kY
m=1

��m(�)

1Au
= q�2kn

 
kY

m=1

��im (�� n�i)

!0@ Y
 6=�i

kY
m=1

�m(�� n�i)

1Au
= q�nh�i;�i�(�� n�i)u:

It follows that the restriction of~�u
� to the submoduleM1

�
�=M��n�i coincides with

q�nh�i;�i ~�u
��n�i

for�generic from hyperplaneh�i; �+�i = n
2 h�i; �ii:Therefore,

it is true for all� from that hyperplane. Even more generally, for� 2 P++ we have
qh�;�i ~�u

�jMw��
= qh�;w

��i ~�u
w��: Thus

qh�;�i TrjM i(~�u
� ex) =

X
l(w)=i

qh�;�i TrjMw��
(~�u

� ex)

=
X

l(w)=i

qh�;w
��i	

�
w��; x

�
:
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Therefore

qh�;�i~p�(x) =
X
w2W

(�1)l(w)qh�;w
��i	

�
w�(�); x

�
: 2

Introduce a normalized matrix trace by

 (�; x) =
qh�;���i	(�� �; x)Q

�2R+
Qk
i=1(q

i eh�;xi=2i � q�i e�h�;xi=2i)
:

Condition (3.1) can be rewritten for the function (�; x) as

 

�
�+

n�

2

�
=  

�
��

n�

2

�
; (5.4)

for all � 2 R+; n = 1; : : : ; k and for all� such thath�; �i = 0: Combining(5:3)
with results in[EK], we get:

COROLLARY (Macdonald polynomials).Macdonald polynomials are equal to

p�(x) =
X
w2W

(�1)l(w) (w(� + (k + 1)�); x): (5.5)

up to a factor

PROPOSITION 5.4 (Macdonald operators).The function (�; x) is a common
eigenfunction for Macdonald operators, corresponding tot = qk+1 :

Mi =
X
w2W

w

0@ Y
h�;�ii=1

qk+1 eh�;xi=2� q�k�1 e�h�;xi=2

eh�;xi=2� e�h�;xi=2
T�i

1A ; i = 1; : : : ; r:

The corresponding eigenvalues areW -invariant q-polynomials ci(�) =P
w2W qh�;w�ii:

Mi (�; x) = ci(�) (�; x):

Proof. We already know that the	-function is the common eigenfunction for a
family of commuting difference operators, corresponding toc(�); satisfying (4.2).
It is shown in [EK] by using central elements inUqg; that for the	-function nor-
malized as above, the operators, corresponding to elementary symmetric functions
ci(�); are exactly Macdonald operators. 2

Now we study relations between -functions for different values ofk: We use
notation k(�; x) for the -function constructed from representationUk:
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THEOREM 5.5 (Shift operators).There exist difference operatorsGk such that

 k+1(�; x) = Gk k(�; x):

These operators areW invariant, and their action in the basis of Macdonald
polynomials is given by the formula

Gkpk;�(x) = pk+1;���(x); �� � 2 P+; Gkpk;� = 0; �� � =2 P+:

Remark.Shift operators in theq-deformed case were introduced by Cherednik,
[Ch1].

Proof. The argument from the proof of Proposition 4.1 can be used to prove
that any function, satisfying (5.4), can be represented as

�(�; x) = D k(�; x);

for some difference operatorD:Applying this to the function k+1(�; x);we prove
the existence of an operatorGk such that

 k+1(�; x) = Gk k(�; x):

From the generalized Weyl formula we get

Gkpk;� =
X
w2W

(�1)l(w)Gk k(w(�+ (k + 1)�); x)

=
X
w2W

(�1)l(w) k+1(w(�+ (k + 1)�); x) = pk;���(x):

If ��� is not dominant then the right-hand side of the last formula is zero by (5.4).
We see thatGk maps Macdonald polynomials toW -invariant functions. This

implies thatGk is itselfW -invariant. 2

Remark. We saw that shift operators relate eigenfunctions for Macdonald
operators, corresponding to different (integral) values of parameterk: One can
write it in the form

GkM
(k)
i =M

(k+1)
i Gk: (5.6)

One can check thatGk analytically depends onk; therefore one can extend equality
(5.6) to the case of arbitraryk: This implies the existence of shift operators in the
general case, which is proven in [Ch1] using representation theory of double affine
Hecke algebras.
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Denote

�k(x) =
Y

�2R+

kY
i=�k

�
qi eh�;xi=2� q�i e�h�;xi=2

�
:

THEOREM 5.6 (Duality). The function'k(�; x) = �k(x) k(�; x) is symmetric
with respect to transformationqh�;�i $ eh�;xi:

Proof. The idea of the proof is the same as in [VSC]. First we prove that'k
as a function ofx satisfies condition (4.2), and then duality will follow from the
uniqueness property.

We already know that k is the eigenfunction for the Macdonald operators.
Therefore,'k(�; x) is the eigenfunction for the operators, obtained from Mac-
donald operators by conjugation by�k(x): Such an operator, corresponding to a
minuscule weight�; is alsoW -invariant and has the form

fM� =
X
w2W

f�(wx)Tw(�);

where

f�(x) =
Y

h�;�i=1

q�k eh�;xi=2� qk e�h�;xi=2

eh�;xi=2� e�h�;xi=2
:

Fix a root� and denoteW� = fw 2 W jh�;w�i = 1g: Let x be such that
h�; xi = 0: The �-function does not have singularities along that hyperplane.
Collecting all the singular terms in the equation

fM�'k(�; x) = c�(�)'k(�; x);

which occur forw 2W such thath�;w�i = �1; we obtainX
w2W�

f�(wx)Tw(�)'k(�; x)

+
X

w2W�

f�(s�wx)T(s�w)(�)'k(�; x) = 0: (5.7)

Whenx belongs to hyperplaneh�; xi = 0 we have

w

0@ Y
h�;�i=1

q�k�1 eh�;xi=2� qk+1 e�h�;xi=2

eh�;xi=2� e�h�;xi=2

1A
= �(s�w)

0@ Y
h�;�i=1

q�k eh�;xi=2� qk e�h�;xi=2

eh�;xi=2� e�h�;xi=2

1A ;
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therefore (5.7) simplifies to

X
w2W�

f�(wx)

�
'k

�
�; xw +

�

2

�
� 'k

�
�; xw �

�

2

��
= 0;

where

xw = x+ w(�)? = x+w(�) �
�

2
;

also belongs to hyperplaneh�; xwi = 0: It follows that

'k

�
�; x+

�

2

�
� 'k

�
�; x�

�

2

�
= 0;

identically whenh�; xi = 0; i.e. that condition (5.4) is satisfied forn = 1: Taking
n-th power of operatorsfM�; and repeating the same argument, we can prove that
it is satisfied forn = 1; : : : ; k:

From the obvious modification of the theorem about uniqueness of the	-
function, we conclude that the function'k(�; x) transforms into itself when we
interchangeqh�;�i $ eh�;xi: 2

Remark.This duality result is closely related to the symmetry of the difference
Fourier pairing defined recently by Cherednik [Ch2].

Appendix. Example: g = sl2

In this case we have only one root�; and we can make identifications

eh�;xi $ e�x; eh�;xi $ e2x; qh�;�i $ q�:

OperatorsT; T�1 act on a functionf(x) by

(Tf)(x) = f(x+ 1); (T�1f)(x) = f(x� 1):

Casek = 0. This is the simplest example, corresponding to the caseU - trivial
representation. In that case

~�u
�v� = �u

�v� = v� 
 u;

	(�; x) =
e�x

1� e�2x =
e(�+1)x

ex � e�x
;

 0(�; x) =
e�x

ex � e�x
:
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Formula (5.5) is the usual Weyl formula

char V� =
e(�+1)x � e�(�+1)x

ex � e�x
:

The operator, corresponding toW -invariant polynomialc1(�) = q� + q��; is
the Macdonald operator

M1 =
q ex � q�1 e�x

ex � e�x
T +

q e�x � q�1 ex

e�x � ex
T�1

and we have

M1 1(�; x) = c1(�) 1(�; x):

Condition (4.2) gives no restriction onc(�); and we can setc0(�) = q�: The
corresponding operatorM0;whose existence is predicted by Theorem 4.1, is equal
to

M0 =
q ex � q�1 e�x

ex � e�x
T

andM1 =M0 +M
�1
0 .

Casek = 1. LetU now be the 3-dimensional representation. We have:

�u
�v� = v� 
 u�

q � q�1

1� q�2�Fv� 
Eu;

~�u
�v� = (1� q�2�)v� 
 u� (q � q

�1)Fv� 
Eu;

	(�; x) =
e�x

1� e�2x

 
1� q�2� � (q2� q�2)

e�2x

1� q�2 e�2x

!

=
e�x

1� e�2x

 
1� q2 e�2x

1� q�2 e�2x � q
�2�

!
;

 1(�; x) =
e�x

ex � e�x

 
q�

q ex � q�1 e�x
�

q��

q�1 ex � q e�x

!
:

It is easy to check that indeed

	(0; x) = q�2	(�2; x);  1(1; x) =  1(�1; x):

Function 1(�; x) is related to 0(�; x) by

 1(�; x) = G0 0(�; x);
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where the shift operatorG0 is equal to

G0 =
1

ex � e�x

�
T � T�1

�
:

The Macdonald operatorM1 is equal to

M1 =
q2 ex � q�2 e�x

ex � e�x
T +

q2 e�x � q�2 ex

e�x � ex
T�1;

M1 1(�; x) = c1(�) 1(�; x):

The operatorM0; corresponding to the eigenvaluec0(�) = q3� � [3]qq�; is equal
to

M0 =
q4 ex � q�4 e�x

q ex � q�1 e�x
q3 ex � q�3 e�x

ex � e�x
T 3� [3]q

q ex � q�1 e�x

q�1 ex � q e�x
T:

Classical limit q ! 1. Set� = log(q): We have the expansion

 1(�; x) = 2" �  (0)1 (�; x) +O("2);

where

 
(0)
1 (�; x) =

e�x�
ex � e�x

�2
 
��

ex + e�x

ex � e�x

!
:

is the -function for the classical case (cf. [ES]). The difference operators become

M1 = 2+ "2(D2 + 4) +O("3);

M0 = �2+ "2(3D2 + 8) + 4"3(D3 + 1) +O("4);

where commuting differential operatorsD2;D3 are equal

D2 =
@2

@x2 + 4
ex + e�x

ex � e�x
@

@x
;

D3 =
@3

@x3 + 6

 
ex + e�x

ex � e�x

!
@2

@x2 +

�
11+

12
(ex � e�x)2

�
@

@x

+6

 
e3x � 3 ex � 3 e�x + e�3x

(ex � e�x)3

!
:
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