BULL. AUSTRAL. MATH. SOC. Vol. 39 (1989) [259-264]

EVERY CHAOTIC INTERVAL MAP HAS A SCRAMBLED SET IN THE RECURRENT SET

BAU-SEN DU

Let I denote a compact real interval and let $f \in C^0(I, I)$. In this note we show that if f is chaotic in the sense of Li and Yorke, then there is an uncountable perfect δ -scrambled set S for f in the recurrent set of f. Furthermore, the ω -limit set of every $x \in S$ under f contains S and contains infinitely many periodic points of f with arbitrarily large periods.

1. INTRODUCTION

Let I denote a compact interval on the real line and let f be a continuous map from I into itself. For every positive integer n, let f^n denote the n th iterate of $f: f^1 = f$ and $f^n = f \circ f^{n-1}$ for n > 1. Let x_0 be a point of I. x_0 is called a periodic point of f if $f^m(x_0) = x_0$ for some positive integer m and the smallest such positive integer m is called the period of x_0 (under f). x_0 is called a recurrent point of f if for every open neighbourhood V of x_0 , $f^k(x_0) \in V$ for some positive integer k. The set of all recurrent points of f is called the recurrent set of f and is denoted by R(f). The set of all limit points of the set $\{x_0, f(x_0), f^2(x_0), \ldots\} = \{f^n(x_0) \mid n \ge 0\}$ is called the ω -limit set of x_0 under f and is denoted by $\omega_f(x_0)$. If f has a periodic point of period not an integral power of 2, then we say that f is chaotic in the sense of Li and Yorke ([3, 6, 8, 11, 16]). Note that this is slightly different from the definition used in [14, 15] and [18]. It is well-known ([2, 4, 5, 8-15, 18, 19]) that if f is chaotic in the sense of Li and yorke, then there exist a positive real number δ and an uncountable perfect set S (called a δ -scrambled set of f) in I such that the following hold:

(1) For any two distinct points x and y in S,

$$\liminf_{n \to \infty} |f^n(x) - f^n(y)| = 0,$$

$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| \ge \delta.$$

(2) For any point x in S and any periodic point p of f,

$$\limsup_{n\to\infty}|f^n(x)-f^n(p)|\geq \delta/2.$$

Received 21 June 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

259

In this note we extend the ideas of Auslander and Yorke [1], and Osikawa and Oono [11] to show that if f is chaotic in the sense of Li and Yorke, then the δ -scrambled set S mentioned above can be chosen in the recurrent set R(f) of f. To be more precise, we prove the following result (see also [11]).

THEOREM. If $f \in C^0(I, I)$ is chaotic in the sense of Li and Yorke, then there exist a positive real number δ and an uncountable perfect set S (called a δ -scrambled set of f) in R(f) such that the following hold:

- (i) For every $x \in S$, the ω -limit set of x under f contains S and contains infinitely many periodic points of f with arbitrarily large periods (see also [17]).
- (ii) For any two distinct points x and y in S,

$$\lim_{n\to\infty} \inf_{y\to\infty} |f^n(x) - f^n(y)| = 0,$$

$$\lim_{n\to\infty} \sup_{y\to\infty} |f^n(x) - f^n(y)| \ge \delta.$$

(iii) For any point x in S and any periodic point p of f,

$$\limsup_{n\to\infty}|f^n(x)-f^n(p)|\geq \delta/2.$$

(iv) For any positive number ε , there are infinitely many periodic points p of f such that, for every $x \in S$,

$$\liminf_{n\to\infty}|f^n(x)-p|<\varepsilon.$$

2. PROOF OF THE THEOREM

We first recall some terminology from symbolic dynamics. Let $\Sigma_2 = \{a \mid a = (a_0, a_1, a_2, \cdots), a_k = 0 \text{ or } 1 \text{ for all } k \geq 0\}$. A metric for Σ_2 is given by putting $d((a_0, a_1, a_2, \cdots), (b_0, b_1, b_2, \cdots)) = \Sigma |a_k - b_k|/2^k$. Let $\sigma: \Sigma_2 \to \Sigma_2$ be the shift map $\sigma((a_0, a_1, a_2, \cdots)) = (a_1, a_2, \cdots)$, that is $(\sigma(a))_k = a_{k+1}$ for all $k \geq 0$ if $a = (a_0, a_1, a_2, \cdots)$. Then (Σ_2, d) is a compact metric space and σ is a continuous, onto, two to one map. The pair (Σ_2, σ) is called the one-sided shift map on two symbols. In the following, we omit parentheses and commas in writing the elements of Σ_2 . We call $[a_0 |a_1| \cdots |a_{k-1}] = \{\omega \in \Sigma_2 | \omega = \omega_0 \omega_1 \omega_2 \cdots$ and $\omega_j = a_j$ for $0 \leq j \leq k-1\}$ a k-cylinder in Σ_2 . We note that there are uncountably many elements $\omega \in \Sigma_2$ (called transitive elements) such that for every cylinder set Q in Σ_2 , $\sigma^m \omega \in Q$ for infinitely many positive integers m.

Let $g \in C^0(I, I)$. Assume that there are two disjoint closed subintervals I_0, I_1 of I such that $g(I_0) \cap g(I_1) \supseteq I_0 \cup I_1$. Let $Z = I_0 \cup I_1$. For all $a_k = 0$ or 1, $k \ge 0$, we define $I(a_0a_1 \dots a_k)$ inductively by putting $I(0) = I_0$, $I(1) = I_1$, and letting $I(a_0a_1 \dots a_{k+1})$ be a closed subinterval of $I(a_0a_1 \dots a_k)$ such that $g(I(a_0a_1 \dots a_{k+1})) = I(a_1a_2 \dots a_{k+1})$. For every $a = a_0a_1a_2 \dots \in \Sigma_2$, let $I(a) = \bigcap_k I(a_0a_1 \dots a_k)$. Then I(a) is either a compact interval or consists of one point and $g(I(a)) = I(\sigma a)$. Let Z^* be the union of I(a) for all $a \in \Sigma_2$ and let B be the set of all $b \in \Sigma_2$ with I(b) consisting of one point. It is easy to see that Z^* is a nonempty compact subset of Z with $g(Z^*) = Z^*$. Let $h: Z^* \to \Sigma_2$ be defined by putting $h(z) = a = a_0a_1a_2 \dots$ for $z \in Z^*$, where $a_n = k$ if $g^n(z) \in I_k$, $n \ge 0$. Note that the map h defined above is the same as the map $\tau: Z^* \to \Sigma_2$ defined by putting $\tau(z) = a$ for every $z \in I(a) \subset Z^*$. Now we can state the following result (see also [1]).

LEMMA 1. Let g, Z^* , and h be defined as above. Then the following hold.

- (a) h is continuous and onto.
- (b) g is semiconjugate through h to σ on Z^* , that is $hg = \sigma h$ on Z^* .

(c) If $z \in Z^*$, h(z) = a, and $\overline{\{g^n(z) \mid n \ge 0\}}$ contains a periodic point of g with period m, then $\overline{\{\sigma^n(a) \mid n \ge 0\}}$ contains a periodic point of σ with period dividing m. In particular, h sends periodic points of g in Z^* into periodic points of σ .

(d) If $a \in \Sigma_2$ is a periodic point of σ with period m, then I(a) contains a periodic point of g with period m. Furthermore, if $a \notin B$, then at least one endpoint of I(a)is a periodic point of g with period m or 2m. Consequently, for every positive integer m, g has at least as many periodic points of period m as the shift map σ in Σ_2 .

(e) h sends recurrent points of g in Z^* into recurrent points of σ .

(f) If $a \in \Sigma_2$ is a recurrent point of σ , then I(a) contains a recurrent point of g. Furthermore, if $a \notin B$, then at least one endpoint of I(a) is a recurrent point of g.

(g) Assume that $b \in \Sigma_2 - B$ is not transitive for σ . Then there is an endpoint y of I(b) such that if $I(\sigma^n b)$ is a nondegenerate closed interval for some positive integer n, then $g^n(y)$ is an endpoint of $I(\sigma^n b)$.

(h) For every transitive element $b \in \Sigma_2$ of σ , the ω -limit set of x_b under g for every $x_b \in I(b)$ contains all elements of I(c) with $c \in B$ and contains at least one endpoint of I(a) for every point $a \in \Sigma_2 - B$. In particular, if $b \in \Sigma_2$ is transitive for σ , then the ω -limit set $\omega_g(x_b)$ of x_b under g for every $x_b \in I(b)$ contains infinitely many periodic points of g. Consequently, there are uncountably many points in Z^* which are not asymptotically periodic.

PROOF: We give a proof of (h) only. The other proofs are easy and are omitted. Let a be a transitive element of σ in B with $I(a) = \{x_a\}$. Let $c \in B$ and $I(c) = \{x_c\}$. Then, for $\varepsilon > 0$, there is a positive integer m such that $I(c_0c_1 \cdots c_k) \subseteq (x_c - \varepsilon, x_c + \varepsilon)$ for all $k \ge m$. Since a is transitive, $\sigma^n a \in [c_0 \mid c_1 \mid \cdots \mid c_m]$ for infinitely many positive integers n. Hence, $g^n(x_a) \in g^n(I(a)) = I(\sigma^n a) \subset I(c_0c_1 \cdots c_m) \subseteq (x_c - \varepsilon, x_c + \varepsilon)$ for infinitely many positive integers n. This shows that $x_c \in \omega_g(x_a)$.

Now let $c \notin B$ and I(c) = [y, z] with y < z. Since I(a) consists only of the point x_a and I(c) = [y, z] is a nondegenerate interval, we see that $I(\sigma^n a) = g^n(I(a)) \neq I(c)$ for all $n \ge 0$. Hence, $\sigma^n a \ne c$ for all $n \ge 0$. By a similar argument to that above, we see that, for any $\varepsilon > 0$, $g^n(x_a) \in g^n(I(a)) = I(\sigma^n a) \subseteq (y - \varepsilon, z + \varepsilon) - [y, z] = (y - \varepsilon, y) \cup (z, z + \varepsilon)$ for infinitely many positive integers n. Consequently, $y \in \omega_g(x_a)$ or $z \in \omega_g(x_a)$.

In the following, we use a method introduced in [11]. We first let the map ϕ from Σ_2 into Z^{*} be defined as in [11] by the following five steps:

- Step 1 For a such that I(a) consists of a point x_a , let $\phi(a) = x_a$.
- Step 2 If $\phi(a)$ is defined for a, let $\phi(\sigma(a)) = g(\phi(a))$.
- Step 3 If $\phi(\sigma(a))$ is defined for a, let $\phi(a) \in I(a)$ be defined such that $g(\phi(a)) = \phi(\sigma(a))$.
- Step 4 If ϕ is not yet defined on $\sigma^k(a)$ for all integers $k \ge 0$ and no $\sigma^k(a)$ is a periodic point of σ , let $\phi(a)$ be chosen as an arbitrary point in I(a).
- Step 5 If ϕ is not yet defined on $\sigma^k(a)$ for all integers $k \ge 0$ and a is a periodic point of σ with period $n \ge 1$, let $\phi(a)$ be chosen as an arbitrary point in I(a) such that $g^n(\phi(a)) = \phi(a)$ (such $\phi(a)$ exists since $g^n(I(a)) =$ $I(\sigma^n(a)) = I(a)$).

Since, for every $a \in \Sigma_2$, we have $\phi(a) \in I(a)$, it is clear that ϕ is one-toone, and from the construction of ϕ , $g\phi = \phi\sigma$ on Σ_2 . Note that if $a \in \Sigma_2$ is a periodic point of σ , then $\phi(a)$ is a periodic point of g, and vice versa. From now on, we let $a = a_0 a_1 a_2 \cdots \in \Sigma_2$ be any transitive point such that I(a) consists of one point. For any point $b = b_0 b_1 b_2 \cdots \in \Sigma_2$, define $\omega_b \in \Sigma_2$ by putting $\omega_b = a_0 b_0 a_0 a_1 b_0 b_1 a_0 a_1 a_2 b_0 b_1 b_2 \cdots a_0 a_1 a_2 \cdots a_k b_0 b_1 b_2 \cdots b_k \cdots$ and let $T = \{\phi(\omega_b) \mid b \in \Sigma_2 \text{ and } I(\omega_b) \text{ consists of one point }$. Then T is an uncountable Borel set. We now show that g behaves chaotically on T.

Let $b = b_0 b_1 b_2 \dots \in \Sigma_2$ and $c = c_0 c_1 c_2 \dots \in \Sigma_2$ with $b \neq c$. Then there exists a least integer $k \geq 0$ such that $b_k \neq c_k$. Since a is transitive, $g^m(\phi(\omega_b)) \in I(b_k)$ and $g^m(\phi(\omega_c)) \in I(c_k)$ for infinitely many m. Therefore, $\limsup_{n \to \infty} |g^n(\phi(\omega_b)) - g^n(\phi(\omega_c))| \geq \operatorname{dist}(I_0, I_1)$.

On the other hand, $\{\sigma^{n(n+1)}(\omega_b), \sigma^{n(n+1)}(\omega_c)\} \subseteq [a_0 \mid a_1 \mid \cdots \mid a_n]$ for all $n \geq 1$ and $\phi([a_0 \mid a_1 \mid \cdots \mid a_n]) \subseteq I(a_0 a_1 \cdots a_n)$ converges to the set I(a) which consists of one point. So, $\liminf_{n \to \infty} |g^n(\phi(\omega_b)) - g^n(\phi(\omega_c))| = 0$.

Now let p be any periodic point of g with period k. Since a is transitive, there are infinitely many integers m and n such that $a_m = a_{m+1} = \cdots = a_{m+k+1} = 0$ and $a_n = a_{n+1} = \cdots = a_{n+k+1} = 1$. Consequently, $\limsup_{n \to \infty} |g^n(\phi(\omega_b)) - g^n(p)| \ge \operatorname{dist}(I_0, I_1)/2$.

263

Finally, for any $\varepsilon > 0$, since $I(a) = \{\phi(a)\}$, there is a cylinder Q such that the length of the smallest interval V containing $\phi(Q)$ is less than ε . Since Q contains infinitely many periodic points of σ , $\phi(Q) \subseteq V$ contains infinitely many periodic points p of g. Since a is transitive, we see that, for every $x \in T$, $g^n(x) \in V$ for infinitely many $n \ge 1$. Consequently, we have, for every $x \in T$,

$$\liminf_{n\to\infty}|g^n(x)-p|<\epsilon.$$

It is well-known [7] that every uncountable Borel set contains a perfect set. Let S denote any such perfect set in T. From what we have proved above, together with Lemma 1, we obtain immediately the following result.

LEMMA 2. Let $g \in C^0(I, I)$. Assume that there exist two disjoint closed subintervals I_0 , I_1 of I such that $g(I_0) \cap g(I_1) \supseteq I_0 \cup I_1$. Let $\delta = \text{dist}(I_0, I_1)$. Then there exists an uncountable perfect set S (called a δ -scrambled set of g) in R(g) such that the following hold.

- (i) For every $x \in S$, the ω -limit set of x under g contains S and contains infinitely many periodic points of g with arbitrarily large periods.
- (ii) For any two distinct points x and y in S,

$$\begin{split} \liminf_{n\to\infty} |g^n(x) - g^n(y)| &= 0,\\ \limsup_{n\to\infty} |g^n(x) - g^n(y)| &\geq \delta. \end{split}$$

(iii) For any point x in S and any periodic point p of g,

$$\limsup_{n\to\infty}|g^n(x)-g^n(p)|\geq \delta/2.$$

(iv) For any positive number ε , there are infinitely many periodic points p of g such that, for every $x \in S$,

$$\liminf_{n\to\infty}|g^n(x)-p|<\varepsilon.$$

Now we can prove the theorem. Assume that f has a periodic point of period $2^{m}(2n+1)$. Then $f^{2^{m}}$ has a periodic point of period 2n+1. By Sharkovskii's theorem [16], the map $g = f^{2^{m+1}}$ has a periodic point of period 3. Without loss of generality, we may assume that x < y < z, g(x) = y, g(y) = z and g(z) = x. So, there is a point $w \in (y, z)$ such that g(w) = y. Let $I_0 = [x, y]$ and $I_1 = [w, z]$. Then it is easy to see that $g^3(I_0) \cap g^3(I_1) \supseteq I_0 \cup I_1$. The theorem now follows easily from Lemma 2 since R(f) = R(g). This completes the proof of the theorem.

B.-S. Du

References

- J. Auslander and J.A. Yorke, 'Interval maps, factors of maps, and chaos', Tôhoku Math. J. 32 (1980), 177-188.
- [2] A.M. Bruckner and Thakyin Hu, 'On scrambled sets for chaotic functions', Trans. Amer. Math. Soc. 301 (1987), 289-297.
- [3] G.J. Butler and G. Pianigiani, 'Periodic points and chaotic functions in the unit interval', Bull. Austral. Math. Soc. 18 (1978), 255-265.
- [4] T. Gedeon, 'There are no chaotic mappings with residual scrambled sets', Bull. Austral. Math. Soc. 36 (1987), 411-416.
- [5] I. Kan, 'A chaotic function possessing a scrambled set with positive Lebesgue measure', Proc. Amer. Math. Soc. 92 (1984), 45-49.
- [6] P.E. Kloeden, 'Chaotic difference equations are dense', Bull. Austral. Math. Soc. 15 (1976), 371-379.
- [7] K. Kuratowski, Topologie I (PWN Polish Scientific Publishers, Warsaw, 1968). p. 387.
- [8] T.-Y. Li and J.A. Yorke, 'Period three implies chaos', Amer. Math. Monthly 82 (1975), 985-992.
- [9] M. Misiurewicz, 'Chaos almost everywhere', Lect. Notes in Math. 1163. pp. 125-130 (Springer-Verlag).
- [10] I. Mizera, 'Continuous chaotic functions of an interval have generically small scrambled sets', Bull. Austral. Math. Soc. 37 (1988), 89-92.
- M. Osikawa and Y. Oono, 'Chaos in C⁰-endomorphism of interval', Publ. Res. Inst. Math. Sci. 17 (1981), 165-177.
- [12] J. Smital, 'A chaotic function with some extremal properties', Proc. Amer. Math. Soc. 87 (1983), 54-56.
- [13] J. Smital, 'A chaotic function with scrambled set of positive Lebesgue measure', Proc. Amer. Math. Soc. 92 (1984), 50-54.
- [14] J. Smital, 'Chaotic functions with zero topological entropy', Trans. Amer. Math. Soc. 297 (1986), 269-282.
- [15] J. Smital and K. Jankova, 'A characterization of chaos', Bull. Austral. Math. Soc. 34 (1986), 283-292.
- [16] A.N. Sharkovskii, 'Coexistence of cycles of a continuous mapping of the real line into itself', (Russian), Ukrain. Mat. Zh. 16 (1964), 61-71.
- [17] A.N. Sharkovskii, 'Behavior of a mapping in the neighbourhood of an attracting set', (Russian), Ukrain. Mat. Zh. 18 (1966), 60-83. (English), AMS Trans. (2) 97 (1970), 227-258.
- [18] J.-C. Xiong, 'A chaotic map with topological entropy 0', Acta Math. Sci. 6 (1986), 439-443.
- [19] Z.-L. Zhou, 'A note on the Li-Yorke theorem', Kexue Tongbao (English Ed.) 31 (1986), 649-651.

Institute of Mathematics Academia Sinica Taipei, Taiwan 11529 Republic of China