EVERY CHAOTIC INTERVAL MAP HAS A SCRAMBLED SET IN THE RECURRENT SET

Bau-Sen Du

Abstract

Let I denote a compact real interval and let $f \in C^{0}(I, I)$. In this note we show that if f is chaotic in the sense of Li and Yorke, then there is an uncountable perfect δ-scrambled set S for f in the recurrent set of f. Furthermore, the ω-limit set of every $\boldsymbol{x} \in S$ under f contains S and contains infinitely many periodic points of f with arbitrarily large periods.

1. Introduction

Let I denote a compact interval on the real line and let f be a continuous map from I into itself. For every positive integer n, let f^{n} denote the nth iterate of $f: f^{1}=f$ and $f^{n}=f \circ f^{n-1}$ for $n>1$. Let x_{0} be a point of $I . x_{0}$ is called a periodic point of f if $f^{m}\left(x_{0}\right)=x_{0}$ for some positive integer m and the smallest such positive integer m is called the period of x_{0} (under f). x_{0} is called a recurrent point of f if for every open neighbourhood V of $x_{0}, f^{k}\left(x_{0}\right) \in V$ for some positive integer k. The set of all recurrent points of f is called the recurrent set of f and is denoted by $R(f)$. The set of all limit points of the set $\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \ldots\right\}=\left\{f^{n}\left(x_{0}\right) \mid n \geqq 0\right\}$ is called the ω-limit set of x_{0} under f and is denoted by $\omega_{f}\left(x_{0}\right)$. If f has a periodic point of period not an integral power of 2 , then we say that f is chaotic in the sense of Li and Yorke $([3,6,8,11,16])$. Note that this is slightly different from the definition used in [14, 15] and [18]. It is well-known ($[2,4,5,8-15,18,19]$) that if f is chaotic in the sense of Li and Yorke, then there exist a positive real number δ and an uncountable perfect set S (called a δ-scrambled set of f) in I such that the following hold:
(1) For any two distinct points x and y in S,

$$
\begin{array}{r}
\liminf _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right|=0 \\
\limsup _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right| \geqq \delta .
\end{array}
$$

(2) For any point x in S and any periodic point p of f,

$$
\limsup _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(p)\right| \geqq \delta / 2
$$

[^0]In this note we extend the ideas of Auslander and Yorke [1], and Osikawa and Oono [11] to show that if f is chaotic in the sense of Li and Yorke, then the δ-scrambled set S mentioned above can be chosen in the recurrent set $R(f)$ of f. To be more precise, we prove the following result (see also [11]).

Theorem. If $f \in C^{0}(I, I)$ is chaotic in the sense of Li and Yorke, then there exist a positive real number δ and an uncountable perfect set S (called a δ-scrambled set of f) in $R(f)$ such that the following hold:
(i) For every $x \in S$, the ω-limit set of x under f contains S and contains infinitely many periodic points of f with arbitrarily large periods (see also [17]).
(ii) For any two distinct points x and y in S,

$$
\begin{gathered}
\liminf _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right|=0 \\
\limsup _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(y)\right| \geqq \delta .
\end{gathered}
$$

(iii) For any point x in S and any periodic point p of f,

$$
\limsup _{n \rightarrow \infty}\left|f^{n}(x)-f^{n}(p)\right| \geqq \delta / 2
$$

(iv) For any positive number ε, there are infinitely many periodic points p of f such that, for every $x \in S$,

$$
\liminf _{n \rightarrow \infty}\left|f^{n}(x)-p\right|<\varepsilon
$$

2. Proof of the theorem

We first recall some terminology from symbolic dynamics. Let $\Sigma_{2}=\{a \mid a=$ $\left(a_{0}, a_{1}, a_{2}, \cdots\right), a_{k}=0$ or 1 for all $\left.k \geqq 0\right\}$. A metric for Σ_{2} is given by putting $d\left(\left(a_{0}, a_{1}, a_{2}, \cdots\right),\left(b_{0}, b_{1}, b_{2}, \cdots\right)\right)=\Sigma\left|a_{k}-b_{k}\right| / 2^{k}$. Let $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ be the shift $\operatorname{map} \sigma\left(\left(a_{0}, a_{1}, a_{2}, \cdots\right)\right)=\left(a_{1}, a_{2}, \cdots\right)$, that is $(\sigma(a))_{k}=a_{k+1}$ for all $k \geqq 0$ if $a=\left(a_{0}, a_{1}, a_{2}, \cdots\right)$. Then $\left(\Sigma_{2}, d\right)$ is a compact metric space and σ is a continuous, onto, two to one map. The pair $\left(\Sigma_{2}, \sigma\right)$ is called the one-sided shift map on two symbols. In the following, we omit parentheses and commas in writing the elements of $\Sigma_{\mathbf{2}}$. We call $\left[a_{0}\left|a_{1}\right| \cdots \mid a_{k-1}\right]=\left\{\omega \in \Sigma_{2} \mid \omega=\omega_{0} \omega_{1} \omega_{2} \cdots\right.$ and $\omega_{j}=a_{j}$ for $\left.0 \leqq j \leqq k-1\right\}$ a k-cylinder in Σ_{2}. We note that there are uncountably many elements $\omega \in \Sigma_{2}$ (called transitive elements) such that for every cylinder set Q in $\Sigma_{2}, \sigma^{m} \omega \in Q$ for infinitely many positive integers m.

Let $g \in C^{0}(I, I)$. Assume that there are two disjoint closed subintervals I_{0}, I_{1} of I such that $g\left(I_{0}\right) \cap g\left(I_{1}\right) \supseteq I_{0} \cup I_{1}$. Let $Z=I_{0} \cup I_{1}$. For all $a_{k}=0$ or 1 ,
$k \geqq 0$, we define $I\left(a_{0} a_{1} \ldots a_{k}\right)$ inductively by putting $I(0)=I_{0}, I(1)=I_{1}$, and letting $I\left(a_{0} a_{1} \cdots a_{k+1}\right)$ be a closed subinterval of $I\left(a_{0} a_{1} \cdots a_{k}\right)$ such that $g\left(I\left(a_{0} a_{1} \cdots a_{k+1}\right)\right)=$ $I\left(a_{1} a_{2} \cdots a_{k+1}\right)$. For every $a=a_{0} a_{1} a_{2} \cdots \in \Sigma_{2}$, let $I(a)=\bigcap_{k} I\left(a_{0} a_{1} \cdots a_{k}\right)$. Then $I(a)$ is either a compact interval or consists of one point and $g(I(a))=I(\sigma a)$. Let Z^{*} be the union of $I(a)$ for all $a \in \Sigma_{2}$ and let B be the set of all $b \in \Sigma_{2}$ with $I(b)$ consisting of one point. It is easy to see that Z^{*} is a nonempty compact subset of Z with $g\left(Z^{*}\right)=Z^{*}$. Let $h: Z^{*} \rightarrow \Sigma_{2}$ be defined by putting $h(z)=a=a_{0} a_{1} a_{2} \cdots$ for $z \in Z^{*}$, where $a_{n}=k$ if $g^{n}(z) \in I_{k}, n \geqq 0$. Note that the map h defined above is the same as the map $\tau: Z^{*} \rightarrow \Sigma_{2}$ defined by putting $\tau(z)=a$ for every $z \in I(a) \subset Z^{*}$. Now we can state the following result (see also [1]).

Lemma 1. Let g, Z^{*}, and h be defined as above. Then the following hold.
(a) h is continuous and onto.
(b) g is semiconjugate through h to σ on Z^{*}, that is $h g=\sigma h$ on Z^{*}.
(c) If $z \in Z^{*}, h(z)=a$, and $\overline{\left\{g^{n}(z) \mid n \geqq 0\right\}}$ contains a periodic point of g with period m, then $\overline{\left\{\sigma^{n}(a) \mid n \geqq 0\right\}}$ contains a periodic point of σ with period dividing m. In particular, h sends periodic points of g in Z^{*} into periodic points of σ.
(d) If $a \in \Sigma_{2}$ is a periodic point of σ with period m, then $I(a)$ contains a periodic point of g with period m. Furthermore, if $a \notin B$, then at least one endpoint of $I(a)$ is a periodic point of g with period m or $2 m$. Consequently, for every positive integer m, g has at least as many periodic points of period m as the shift map σ in Σ_{2}.
(e) h sends recurrent points of g in Z^{*} into recurrent points of σ.
(f) If $a \in \Sigma_{2}$ is a recurrent point of σ, then $I(a)$ contains a recurrent point of g. Furthermore, if $a \notin B$, then at least one endpoint of $I(a)$ is a recurrent point of g.
(g) Assume that $b \in \Sigma_{2}-B$ is not transitive for σ. Then there is an endpoint y of $I(b)$ such that if $I\left(\sigma^{n} b\right)$ is a nondegenerate closed interval for some positive integer n, then $g^{n}(y)$ is an endpoint of $I\left(\sigma^{n} b\right)$.
(h) For every transitive element $b \in \Sigma_{2}$ of σ, the ω-limit set of x_{b} under g for every $x_{b} \in I(b)$ contains all elements of $I(c)$ with $c \in B$ and contains at least one endpoint of $I(a)$ for every point $a \in \Sigma_{2}-B$. In particular, if $b \in \Sigma_{2}$ is transitive for σ, then the ω-limit set $\omega_{g}\left(x_{b}\right)$ of x_{b} under g for every $x_{b} \in I(b)$ contains infinitely many periodic points of g. Consequently, there are uncountably many points in Z^{*} which are not asymptotically periodic.

Proof: We give a proof of (h) only. The other proofs are easy and are omitted. Let a be a transitive element of σ in B with $I(a)=\left\{x_{a}\right\}$. Let $c \in B$ and $I(c)=\left\{x_{c}\right\}$. Then, for $\varepsilon>0$, there is a positive integer m such that $I\left(c_{0} c_{1} \cdots c_{k}\right) \subseteq\left(x_{c}-\varepsilon, x_{c}+\varepsilon\right)$ for all $k \geqq m$. Since a is transitive, $\sigma^{n} a \in\left[c_{0}\left|c_{1}\right| \cdots \mid c_{m}\right]$ for infinitely many positive integers n. Hence, $g^{n}\left(x_{a}\right) \in g^{n}(I(a))=I\left(\sigma^{n} a\right) \subset I\left(c_{0} c_{1} \cdots c_{m}\right) \subseteq\left(x_{c}-\varepsilon, x_{c}+\varepsilon\right)$ for
infinitely many positive integers n. This shows that $x_{c} \in \omega_{g}\left(x_{a}\right)$.
Now let $c \notin B$ and $I(c)=[y, z]$ with $y<z$. Since $I(a)$ consists only of the point x_{a} and $I(c)=[y, z]$ is a nondegenerate interval, we see that $I\left(\sigma^{n} a\right)=g^{n}(I(a)) \neq I(c)$ for all $n \geqq 0$. Hence, $\sigma^{\boldsymbol{n}} a \neq c$ for all $n \geqq 0$. By a similar argument to that above, we see that, for any $\varepsilon>0, g^{n}\left(x_{a}\right) \in g^{n}(I(a))=I\left(\sigma^{n} a\right) \subseteq(y-\varepsilon, z+\varepsilon)-[y, z]=$ $(y-\varepsilon, y) \cup(z, z+\varepsilon)$ for infinitely many positive integers n. Consequently, $y \in \omega_{g}\left(x_{a}\right)$ or $z \in \omega_{g}\left(x_{a}\right)$.

In the following, we use a method introduced in [11]. We first let the map ϕ from Σ_{2} into Z^{*} be defined as in [11] by the following five steps:

Step 1 For a such that $I(a)$ consists of a point x_{a}, let $\phi(a)=x_{a}$.
Step 2 If $\phi(a)$ is defined for a, let $\phi(\sigma(a))=g(\phi(a))$.
Step 3 If $\phi(\sigma(a))$ is defined for a, let $\phi(a) \in I(a)$ be defined such that $g(\phi(a))=$ $\phi(\sigma(a))$.
Step 4 If ϕ is not yet defined on $\sigma^{k}(a)$ for all integers $k \geqq 0$ and no $\sigma^{k}(a)$ is a periodic point of σ, let $\phi(a)$ be chosen as an arbitrary point in $I(a)$.
Step 5 If ϕ is not yet defined on $\sigma^{k}(a)$ for all integers $k \geqq 0$ and a is a periodic point of σ with period $n \geqq 1$, let $\phi(a)$ be chosen as an arbitrary point in $I(a)$ such that $g^{n}(\phi(a))=\phi(a)$ (such $\phi(a)$ exists since $g^{n}(I(a))=$ $\left.I\left(\sigma^{n}(a)\right)=I(a)\right)$.

Since, for every $a \in \Sigma_{2}$, we have $\phi(a) \in I(a)$, it is clear that ϕ is one-toone, and from the construction of $\phi, g \phi=\phi \sigma$ on Σ_{2}. Note that if $a \in \Sigma_{2}$ is a periodic point of σ, then $\phi(a)$ is a periodic point of g, and vice versa. From now on, we let $a=a_{0} a_{1} a_{2} \cdots \in \Sigma_{2}$ be any transitive point such that $I(a)$ consists of one point. For any point $b=b_{0} b_{1} b_{2} \cdots \in \Sigma_{2}$, define $\omega_{b} \in \Sigma_{2}$ by putting $\omega_{b}=a_{0} b_{0} a_{0} a_{1} b_{0} b_{1} a_{0} a_{1} a_{2} b_{0} b_{1} b_{2} \cdots a_{0} a_{1} a_{2} \cdots a_{k} b_{0} b_{1} b_{2} \cdots b_{k} \cdots$ and let $T=\left\{\phi\left(\omega_{b}\right) \mid\right.$ $b \in \Sigma_{2}$ and $I\left(\omega_{b}\right)$ consists of one point $\}$. Then T is an uncountable Borel set. We now show that g behaves chaotically on T.

Let $b=b_{0} b_{1} b_{2} \cdots \in \Sigma_{2}$ and $c=c_{0} c_{1} c_{2} \cdots \in \Sigma_{2}$ with $b \neq c$. Then there exists a least integer $k \geqq 0$ such that $b_{k} \neq c_{k}$. Since a is transitive, $g^{m}\left(\phi\left(\omega_{b}\right)\right) \in I\left(b_{k}\right)$ and $g^{m}\left(\phi\left(\omega_{c}\right)\right) \in I\left(c_{k}\right)$ for infinitely many m. Therefore, $\limsup _{n \rightarrow \infty}\left|g^{n}\left(\phi\left(\omega_{b}\right)\right)-g^{n}\left(\phi\left(\omega_{c}\right)\right)\right| \geqq$ $\operatorname{dist}\left(I_{0}, I_{1}\right)$.

On the other hand, $\left\{\sigma^{n(n+1)}\left(\omega_{b}\right), \sigma^{n(n+1)}\left(\omega_{c}\right)\right\} \subseteq\left[a_{0}\left|a_{1}\right| \cdots \mid a_{n}\right]$ for all $n \geqq 1$ and $\phi\left(\left[a_{0}\left|a_{1}\right| \cdots \mid a_{n}\right]\right) \subseteq I\left(a_{0} a_{1} \cdots a_{n}\right)$ converges to the set $I(a)$ which consists of one point. So, $\liminf _{n \rightarrow \infty}\left|g^{n}\left(\phi\left(\omega_{b}\right)\right)-g^{n}\left(\phi\left(\omega_{c}\right)\right)\right|=0$.

Now let p be any periodic point of g with period k. Since a is transitive, there are infinitely many integers m and n such that $a_{m}=a_{m+1}=\cdots=a_{m+k+1}=0$ and $a_{n}=$ $a_{n+1}=\cdots=a_{n+k+1}=1$. Consequently, $\limsup _{n \rightarrow \infty}\left|g^{n}\left(\phi\left(\omega_{b}\right)\right)-g^{n}(p)\right| \geqq \operatorname{dist}\left(I_{0}, I_{1}\right) / 2$.

Finally, for any $\varepsilon>0$, since $I(a)=\{\phi(a)\}$, there is a cylinder Q such that the length of the smallest interval V containing $\phi(Q)$ is less than ε. Since Q contains infinitely many periodic points of $\sigma, \phi(Q) \subseteq V$ contains infinitely many periodic points p of g. Since a is transitive, we see that, for every $x \in T, g^{n}(x) \in V$ for infinitely many $n \geqq 1$. Consequently, we have, for every $x \in T$,

$$
\liminf _{n \rightarrow \infty}\left|g^{n}(x)-p\right|<\varepsilon
$$

It is well-known [7] that every uncountable Borel set contains a perfect set. Let S denote any such perfect set in T. From what we have proved above, together with Lemma 1 , we obtain immediately the following result.

Lemma 2. Let $g \in C^{0}(I, I)$. Assume that there exist two disjoint closed subintervals I_{0}, I_{1} of I such that $g\left(I_{0}\right) \cap g\left(I_{1}\right) \supseteq I_{0} \cup I_{1}$. Let $\delta=\operatorname{dist}\left(I_{0}, I_{1}\right)$. Then there exists an uncountable perfect set S (called a δ-scrambled set of g) in $R(g)$ such that the following hold.
(i) For every $x \in S$, the ω-limit set of x under g contains S and contains infinitely many periodic points of g with arbitrarily large periods.
(ii) For any two distinct points x and y in S,

$$
\begin{array}{r}
\liminf _{n \rightarrow \infty}\left|g^{n}(x)-g^{n}(y)\right|=0 \\
\limsup _{n \rightarrow \infty}\left|g^{n}(x)-g^{n}(y)\right| \geqq \delta
\end{array}
$$

(iii) For any point x in S and any periodic point p of g,

$$
\limsup _{n \rightarrow \infty}\left|g^{n}(x)-g^{n}(p)\right| \geqq \delta / 2
$$

(iv) For any positive number ε, there are infinitely many periodic points p of g such that, for every $x \in S$,

$$
\liminf _{n \rightarrow \infty}\left|g^{n}(x)-p\right|<\varepsilon
$$

Now we can prove the theorem. Assume that f has a periodic point of period $2^{m}(2 n+1)$. Then $f^{2^{m}}$ has a periodic point of period $2 n+1$. By Sharkovskii's theorem [16], the map $g=f^{2^{m+1}}$ has a periodic point of period 3. Without loss of generality, we may assume that $x<y<z, g(x)=y, g(y)=z$ and $g(z)=x$. So, there is a point $w \in(y, z)$ such that $g(w)=y$. Let $I_{0}=[x, y]$ and $I_{1}=[w, z]$. Then it is easy to see that $g^{3}\left(I_{0}\right) \cap g^{3}\left(I_{1}\right) \supseteq I_{0} \cup I_{1}$. The theorem now follows easily from Lemma 2 since $R(f)=R(g)$. This completes the proof of the theorem.

References

[1] J. Auslander and J.A. Yorke, 'Interval maps, factors of maps, and chaos', Tôhoku Math. J. 32 (1980), 177-188.
[2] A.M. Bruckner and Thakyin Hu , 'On scrambled sets for chaotic functions', Trans. Amer. Math. Soc. 301 (1987), 289-297.
[3] G.J. Butler and G. Pianigiani, 'Periodic points and chaotic functions in the unit interval', Bull. Austral. Math. Soc. 18 (1978), 255-265.
[4] T. Gedeon, 'There are no chaotic mappings with residual scrambled sets', Bull. Austral. Math. Soc. 36 (1987), 411-416.
[5] I. Kan, 'A chaotic function possessing a scrambled set with positive Lebesgue measure', Proc. Amer. Math. Soc. 92 (1984), 45-49.
[8] P.E. Kloeden, 'Chaotic difference equations are dense', Bull. Austral. Math. Soc. 15 (1976), 371-379.
[7] K. Kuratowski, Topologie I (PWN - Polish Scientific Publishers, Warsaw, 1968). p. 387.
[8] T.-Y. Li and J.A. Yorke, 'Period three implies chaos', Amer. Math. Monthly 82 (1975), 985-992.
[8] M. Misiurewicz, 'Chaos almost everywhere', Lect. Notes in Math. 1163. pp. 125-130 (SpringerVerlag).
[10] I. Mizera, 'Continuous chaotic functions of an interval have generically small scrambled sets', Bull. Austral. Math. Soc. 37 (1988), 89-92.
[11] M. Osikawa and Y. Oono, 'Chaos in C^{0}-endomorphism of interval', Publ. Res. Inst. Math. Sci. 17 (1981), 165-177.
[12] J. Smital, 'A chaotic function with some extremal properties', Proc. Amer. Math. Soc. 87 (1983), 54-56.
[13] J. Smital, 'A chaotic function with scrambled set of positive Lebesgue measure', Proc. Amer. Math. Soc. 92 (1984), 50-54.
[14] J. Smital, 'Chaotic functions with zero topological entropy', Trans. Amer. Math. Soc. 207 (1986), 269-282.
[15] J. Smital and K. Jankova, 'A characterization of chaos', Bull. Austral. Math. Soc. 34 (1986), 283-292.
[16] A.N. Sharkovskii, 'Coexistence of cycles of a continuous mapping of the real line into itself, (Russian), Ukrain. Mat. Zh. 16 (1964), 61-71.
[17] A.N. Sharkovskii, 'Behavior of a mapping in the neighbourhood of an attracting set', (Russian), Ukrain. Mat. Zh. 18 (1966), 60-83. (English), AMS Trans. (2) 97 (1970), 227-258.
[18] J.-C. Xiong, 'A chaotic map with topological entropy 0', Acta Math. Sci. 6 (1986), 439-443.
[19] Z.-L. Zhou, 'A note on the Li-Yorke theorem', Kexue Tongbao (English Ed.) 31 (1986), 649-651.

[^1]
[^0]: Received 21 June 1988
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

[^1]: Institute of Mathematics
 Academia Sinica
 Taipei, Taiwan 11529
 Republic of China

