OUTLINE OF AN INTRODUCTION
TO MATHEMATICAL LOGIC I

Abraham Robinson

1. Preliminary Remarks. This is the first of (presumably)
three articles on the subject mentioned in the title. The exposi-
tion is based on a course of fifteen lectures which formed part of
the Edmonton (1957) Seminar of the Canadian Mathematical Con-
gress. Limitations of space (and, originally, of time) compelus
to be selective in two directions. First, while we shall refer to
other branches of logic in passing, we shall be concerned prin-
cipally with the two fundamental calculi - of propositions and of
predicates (of the first order). Thus, except for a number of
modern developments which are included here, our exposition
will be similar in scope, though not in detail, to the first and
third chapters of the well-known ""Principles of Mathematical
Logic'" by D. Hilbert and W. Ackermann (English translation,
Chelsea, New York, 1950) and this was in fact the recommended
text for the Edmonton course. However, there exists a growing
number of other good introductions to the field and some of these
will be listed later.

Secondly, we shall not prove all the stated theorems in
detail. However, by proving a selected number of our assertions,
we shall endeavour to ensure (in most cases) that the reader will
have no difficulty in working out detailed proofs for himself.

Modern Mathematical Logic (to give just one of its possible
definitions) is the study of the laws of thought by means of the
methods, including the symbolism, of Mathematics. As such it
is not in any way in conflict with Classical (Aristotelian) Logic,
but it is demenstrably more comprehensive than the latter.
However, the historical aspects of the subject will not be con-
sidered here.

2. The Calculus of Propositions. Truth functions. What-
ever the absolute character of the laws of thought, we cannot
close our eyes to the fact that they appear to us in the first ins-
tance in our own subjective thinking. It is therefore only natural
that we include, to begin with, some concrete examples from
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ordinary life. Thus, consider the following sentences.

A. All bears are tame.

B. Not all bears are tame.

C. Mountain climbing is more enjoyable than attending
lectures.

D. Some of the members of a recent mathematical
convention spent more time outdoors than indoors.

E. Mountain climbing, etc. (seeC) and some of the
members, etc. (see D).

Comparing B with A, we see that the truth or falsehood of
B depends only on the truth or falsehood of A (if A is true then B
is false; if A is false then B is true). Similarly, the truth or
falsehood (briefly, the truth value) of E depends only on the truth
values of C and D. In neither case is this connection affected by
the correctness, or otherwise, of the sentencesin question.

The Calculus of Propositions is concerned with the inter-
relation of the truth values of propositions (sentences, statements)
which may be taken from everyday life, or from Mathematics, or
from any other subject. A moment's reflection shows that, in
view of the fact that this interrelation is supposed to involve only
the truth values of the sentences concerned, we may develop our
theory simply in terms of functions whose domain and range are
truth values, i.e. the two values T (truth) or F (falsehood). This
leads to the

DEFINITION. A truth function

q = £py, .« - 4 py)s n2l

is a function whose arguments range over the elements of the
two-element set V = {T, F¢ and which takes the values in the
same set.

Thus, a truth function of n variables p), . . . , pp, is
defined completely by assigning truth values, T or F, to the func-
tion for given truth values of the arguments. Since there are
just 2™ different n - tuples of truth values for the arguments, it
follows that there are just 22" different truth functions of n va-
riables. In particular, there are just four different truth func-
tions for n = 1. They are given by the following tables.
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p|T| F p|T| F p|T| F p|T | F
FlF f(p)‘T'F f(p)lF T

f(p) ] T| T f(p)

In the third case we adopt a convention which is customary
in Mathematics, and write f(p) = p, even though there is strictly
speaking a difference between a variable and a function which
takes the same values as the variable throughout, The first and
second case are written as f(p) = T and f(p) = F, with the quali-
fication "for all p'" whenever there is room for a misunderstand-
ing. Finally the fourth function is denoted by~p (read "non-p"
or '"‘not-p"). It expresses the connection between A and B in the
set of concrete examples given above.

The number of truth functions increases rapidly with in-
creasing n. For n = 2, it is customary to specify the truth func-
tions by a standard type of truth tables as follows. The truth

table

q
T F
T Vi1 Vi
P , where Vik stands
F Vaoi Vyp for Tor F

refers to the truth function

(T,T)=V,; KT, F)=V;, £{F, T)=V,; £F, F)=V,y,.
A number of important truth functions are given below.

The first one expresses the connection between C and D on one

hand, and E on the other, in our set of concrete examples.

2.1. Conjunction, symbol pA g, read ''p and q".

q
T F
T T . F
P
F F F
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2.2. Disjunction, symbol pVq, read "p or q"

2.3. Implication, symbol p>q, read '"p ply q"

q
¥

H
H 13 3

2.4. Biconditional or equivalence, symbol p= q, read ''p equi-
valent to o'

2.5. Incompatibility or Sheffer stroke, symbol p | q, read 'p
incompatible with q''.

q
T F

T F T
F T T

The symbols which we have introduced in connection with
the above truth functions, i.e.~,A,V,2,= , \ are called pro-
positional connectives. It will be seen that the nomenclature
adopted for 2.1, 2.4, 2.5, above is in agreement with everyday
language. While the conjunction "or' has more than one possible
interpretation, that given in 2.2 above is at least as acceptable
as any other. However, whether the term '"implication' in its
common meaning is interpreted correctly by truth table 2.3 is
open to question. Suffice it to say here that, in any case, these

44

https://doi.org/10.4153/CMB-1958-007-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-007-0

terms are inessential for the development of the theory as such.
Also, it should be noted that the "implication' discussed here is
by no means a consequence relation, although we shall see later
it is connected with such a relation.

3. Formulae. If in any truth function of n variables, q =
f(py, - . . py) we substitute trauth functions, gy, . . . , gy of
ky, . . ., k, variables respectively, then we obtain again a
truth function,

_ 1 1 n n
q= f(g1 NG - TR pkl), e gn(pl, .. pkn))

where it is understood that some of the g;'s and some of the ar-
guments may coincide. Strictly speaking, the operation of subs-
titution which is familiar in Algebra and Analysis is an operation
from functions to functions, which can itself be made the subject
of a logical analysis. However, we shall assume here that the
meaning of this operation is intuitively clear and shall call the
result a compound truth function, or briefly, a formula. Thus
the reader will have no difficulty in interpreting the meaning of
the formulae (vp)V g, ~ (pVQg), (wp)D(qV(rAs) ), etc. Moreover,
it is customary to replace (~p) Vq by~ pVq on the understanding
that the connective of negation,~ , always applies only to the
variable or bracketed expression following it immediately. Other
bracket conventions will be given later. A formula which is
identically true, i.e. which takes the value T for all assignments
of truth values to the variables contained in it is called a tauto-

logy.

We introduce a binary relation between formulae, callea
equivalence, as follows. We write X”&2Y, where X and Y are
formulae (read X equivalent to Y and do not confuse with the
biconditional truth function introduced under 2.4 above), if Xand
Y take equal truth values for equal truth values of their arguments,
i.e. if X and Y yield identical truth functions. It is understood
that X and Y need not contain the same variables (e.g. p8pA
(g~ q)). If Xis a tautology then we write X”2T, while if X is
identically false we write X~ F. This is in keeping with our pre-
vious notation if we interpret T(F) as the truth function (of an
arbitrary number of variables) which is identically true (false).
The relation & is transitive, reflexive and symmetrical and is
thus rightly called equivalence. The substitution of equivalent
formulae for the variables of a given formula yields equivalent
formulae. It is not difficult to compute the truth function which

45

https://doi.org/10.4153/CMB-1958-007-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1958-007-0

is represented by a given formula. A convenient layout for the
required computation is given below.

(1)

P

M

We wish to calculate the truth function represented by the
formula (p>q) > ((rVp)=> (rVqg)).

(2)|(3)
q T
T| T
T| F
F| T
F| F
T| T
T| F
F| T
F| F

(4)=(1)=(2)

P>q

HHAa A

(5)=(3)v(1)

rVp

MM AAAA3

(6)=(3)V(2)

rV gq

A

Thus, the formula in question is a tautology.

(7)=(5)=(6)

{rvp)e(rVq)

HAaHdAM a4

(8)=(4)=(7)

(p>q)>
((rvp)>
(rvq))

HHHAdHAA

The reader will have no difficulty in verifying that the fol-

lowing equivalences hold for arbitrary formulae X, Y, Z.

pVqgVr stands for (pvq)Vr as well as for pV(qVr).

WWWwWWwWwwwww
O 0O U W

XAYRYAX
XVY=R YV X
(XAYIN ZXA(IN Z)
(XVY)V Z=& XV(YV Z)
XV(YAZ)RZ (XVY)A(XV Z)
XA(YVZ)= (XAY)V(XAZ)
~(~X)2 X
~(XAYIRS ~XVA Y
~(XVY)x ~XAVY.

3.1 and 3.2 above show that the conjunction and disjunction
obey the commutative law and 3.3 and 3.4 establish that they

satisfy also the associative law.
omit brackets in consecutive conjunctions or disjunctions (e.g.

It is therefore customary to

3.5 and 3.6

represent distributive laws while 3.8 and 3.9 are known as ''de
Morgan's formulae'.
order of negation and conjunction {(disjunction) subject to the
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change of the original conjunction (disjunction) into a disjunction
(conjunction).

Normal forms. A formula is said to be in disjunctive nor-
mal form (or, simply, a disjunctive normal formula), if it is a
disjunction or conjunctions of variables, and (or) of their nega-
tions. Thus

(PAQA~T) V(PA~PA Q)V v T
is in disjunctive normal form, while

pPA(qV (pAr~T)) , ~(rVvp)
are not in disjunctive normal form.

Similarly a formula is said to be in conjunctive normal
form if it is a conjunction of disjunctions of variables and (or) of
their negations, e.g. (pvgqV~r)A (pVY~pV QA ~r.

The parts of a disjunctive normal formula which are sepa-
rated by the sign of disjunction are called its disjuncts. There
is a corresponding definition for the conjuncts of a conjunctive
normal formula.

4.1. THEOREM. Let X be a conjunctive normal formula.
In order that X be a tautology, it is necessary and sufficient that
in each of the conjuncts of X at least one variable appear both
with and without the sign of negation prefixed to it.

The condition is necessary. For if a conjunction is a tau-
tology, then each of its conjuncts must be a tautology. Let X1 pe
a conjunct of X, and suppose that X~ does not contain any variable
together with its negation. Then to every variable p which occurs
in X1 without the sign of negation, we ass1%n the truth value F,
while to every variable which appears in X" with the sign of
negation we assign the truth value T. This yields the truth value
F for X" and hence for X, which is contrary to the assumption
that X is a tautology. This proves that the condition is necessary.

The condition is also sufficient. For suppose that it is
satisfied and cons1der any assignments of truth values to the va-
riables of X. Let X! be any conjunct of X. By assumption, x!
contains at least one variable, p 'say, together with its negation,
~p. It follows that if T is assigned to p then T is assigned also
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to pY~p and hence to Xl; while if F is assigned to p, thean is
assigned to~ p and hence also to pV~p and, further, to X*. It
follows that T is assigned also to the entire formula X. This
completes the proof of the theorem.

The reader will have no difficulty in formulating a similar
test which decides whether or not a given disjunctive normal for-

mula is identically false.

Next we prove:

4.2. THEOREM. To every truth function f(py, . . . , py)
there exists a conjunctive normal formula X of the variables
Py - -+ Py such that
f(pl, « e ey pn)/\N/X

Proof. We first dispose of the possibility that f is identi-
cally true. In that case we define X simply by

(p1Ver)) A (PV~PIA - . o Alp Vp))

Now any truth function f(p,, . . . , pn) is determined by
the specification of the truth value F or T for given truth values

of Py» - -+ » Py - Thisis exemplified by the following scheme:
pl , pz { p3 , ¢ lpn , f(Ply « e e ;Pn)
T ’ F ‘ F T l F

There are just 2" rows such as this, which we may arrange
in an arbitrary but definite order. Consider the rth row, 12 r
< 2", Corresponding to it, we define the disjunction Xy, which
is of the form

(~) pl V(N)pzv. .« o V(~v) Py

In this expression, the terms (~s) are understood to mean
that ~s appears before any p) if T is assigned to Py in the rt
row, while ~ does not appear before p, if F is assigned to py in
that row. We now define X as the conjunction of all X_ (taken in
an arbitrary order) such that F is assigned to f(p., . , p.)in
the r*" row. We have already disposed of the trulfh functions
which are identically true so that we may assume that X is not
empty. Now consider any row in which the truth value F is
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assigned to {f(py, . . ., pn). Then F is assigned also to the
corresponding X, for this distribution of truth values, and the
same therefore applies to X. On the other hand, suppose that in
the rih row, f{py, . . . , py) obtains the truth value T. Consider
any row other than the rth row, the sth row say. Then for some
Py the truth value of p; in the sth row is different from the truth
value of p, in the rth row. Hence p, appears in X without (with)
the sign of negation according as it appears in X, with (without)
that sign. Now the truth value assigned to X, for the distribution
of truth values given in the rth row is F. It follows that the truth
value assigned to py in the rth row makes X true and that X, is
not included in X. It follows that the entire X obtains the value

T for the assignment of truth values of the rP row. This com-
pletes the proof of the theorem.

We have the corollary that every truth function can be re-
presented by (i.e., is equivalent to) a formula which contains
only the connectives of negation, disjunction, and conjunction.
Moreover by one of de Morgan's laws one may eliminate the con-
junction by representing it in terms of disjunction and negation.
Indeed, by 3.7 and 3.8

4.3. XAY R ~(~XV ~Y)
for all formulae X and Y. Similarly, we obtain the equivalence
4.4, XVY®R ~(~XA ~Y)
by means of which we may eliminate the disjunction while re-
taining conjunction and negation. But even a single connective
suffices to represent all truth functions in view of the equivalences
4.5. ~X = X l X
a6, xvyme (x| x| |

which can be verified without difficulty.

We may also take note of the following equivalences for
future reference

4.7. XDY = ~XVY
4.8. X=2Y & (XoY)A(Y>X)
4.9. X| Y & ~XAY).
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We have shown that to every formula, there exists an equi-
valent formula in conjunctive normal form. We shall now give a
procedure for obtaining such a normal formula from the given
forimula without the use of truth tables. Instead of expoundingthe
procedure in abstract we give a single example.

Let the formula X be given by
(~{pA(qVrr))) V.

We first shift the signs of negation until they apply only to
the individual variables, by the use of 3.7, 3.8, and 3.9, so

X (~pV (~gATr))Vt.

Next, in view of the commutative and associative laws of disjunc-
tion

X2 ~pVtV (~qAr)
and finally, applying one of the distributive laws,
XX (~pVtVr~gIA (~pVEV D).

We note that the conjunctive normal formula which repre-
sents X is not unique since we have equally well in the case just
considered, e.g. '

X2 (~pVEV ~ g) A (~PVEVT)A (sVAS).

There is a corresponding procedure for reducing any given
formula to one in disjunctive normal form.

Combining the procedure just described with Theorem 4.1,
we obtain an alternative test for deciding whether a given formula
is a tautology. Given X we first find a conjunctive normal formula
X! such that X~ X! and we then check whether the conditions of
4.1 are satisfied. The difference between this and the earlier
procedure (by truth values) is that we now argue dirtfctly from
the external '"shape' of X! while at the same time X~ is obtained
from X by a purely formal transformation.
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5. Review_c_>_f the concept 9_f§ formula. Earlier, we looked
upon a formula as a compound truth function obtained by applying
operations of substitution to single truth functions. This point of
view can be justified with perfect rigour, but the following alter-
native approach throws some light on other aspects of our calculus.

We begin with a set P of objects called '"propositional vari-
ables'", P = {p, q, r, ...; where P is supposed infinite and may
or may not be countable. Next we define a set F of objects called
"formulae' inductively as follows:

1. All variables are formulae.
.2. If Xis a formula then ~ (X) is a formula.

3, If X, Y are formulae, then (X)V (Y), (X)A(Y),
(X)2 (Y), (X)= (Y), and (X)]| (Y) are formulae.

o Ov 0

It is then understood that F contains only elements which
can be shown to be such of the (repeated) applications of 5.1 -
5.3. The brackets are inserted automatically but in some cases
they are unnecessary and in others they can be omitted by agree-
ment, as before. However, in its fully bracketed form, every
formula is obtained by a unique sequence of operations corres-
ponding to 5.1, 5.2, or 5.3. The variables which are used inthe
definition of a formula are said to be contained in the formula.
Only a finite number of variables are contained in each formula.

C0n51der the set of all formulae which contain no variables
other than Pl’ <« . p,. Foragiven assignment of truthvalues
topy . . ., p,, We then define truth values for the rema1n1ng
formulae of the set inductively as follows:

5.4. p1, . . ., p, take the given truth values.

5.5. If X has already been assigned the truth value T (or
alternatively F) then~s(X) is assigned the truth value F (or, in
the alternative case, T).

5.6. If truth values have already been assigned to formulae
X and Y then the truth values of (X)V(Y), (X)A(Y), etc. are de-
termined from the corresponding truth tables in Section 2.

In this way, every formula X which contains only the vari-
ables py, . . . , P, is made to correspond to a truth function,
and this is the same truth function that is obtained from X if we
regard this formula as the result of successive substitutions.
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It follows that the notions of equivalence and of tautology apply
equally to the formulae just defined. For this reason we may,

if we so desire, dispense with the connectives of conjunction,
implication, biconditional, and incompatibility, and consider only
formulae which are built up by means of negation and disjunction.

At this point we ought to investigate in more detail the
notion of a symbol, e.g. of the symbol for a propositional vari-
able. Is the symbol for the propositional variable p (i.e. 'p') to
be regarded as an entity which is distinct from p? We leave it
to the reader to ponder this question.

6. The calculus of deduction. So far the reader will have
discovered no trace of the traditional approach to Logic, which
is to some extent also that of the working mathematician and
which regards Logic as '"the science of drawing necessary con-
clusions'. The mathematician is in fact accustomed to a pro-
cedure by which he derives conclusions, or 'theorems', from
initial postulates or axioms. Thus, informally speaking, the
theorems in question are satisfied in a particular mathematical
structure only if the given axioms are satisfied in it. Since in
Logic we do not wish to confine ourselves immediately to the
consideration of particular (mathematical) structures, it is
natural to introduce a deductive system in which the '"theorems"
to be derived are such as to apply to all structures. In other
words, we shall consider a deductive system in which the pro-
vable theorems are precisely the tautologies. Although this
would appear to differ considerably from the approach used in
Mathematics, the gap can be bridged without difficulty as we
shall show in due course.

The deductive system which we are going to describe is
that of Whitehead and Russell (in Principia Mathematica) as mo-
dified by Bernays.

Formulae will be defined as in the preceding section, when
only the connectives~ andV are used. Other connectives will be
regarded as abbreviations, as follows: p> q is an abbreviation
for ~pVq, pAqis an abbreviation for ~ (~pV ~q), p=q is an
abbreviation for (p>q) A (qop) and p | q is an abbreviation for
~(pAq).

The theorems of our system are obtained by the use of the

following rules.
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6.1. The following are theorems:

(1) ~ (pVp) VP

(2)~pV(pVaq)

(3) ~(PVqV(qVp)

(4) ~(~pVqV(~(rVp)V(rVq)).

The same formulae are, in abbreviated notation,

(1) (pVplop

(2) p=>(pVq)

(3) (pvaq)=2(qVp)

(4) (p2 q)> ((rVp)2(rVq)).

We use the same numbering as before, i.e. (1) - (4) -
since from our point of view corresponding expressions, e.g.
~(pVp)Vp and (pVp)o p are supposed to denote the same formula.

(1) to (4) are known as the axioms of the system.

6.2. By substituting a formula for one of the variables in
a given theorem (whenever the Vanable occurs in that theorem)
we obtain a theorem.

6.3. If Xand~XVY (in abbreviated notation, X>Y) are
theorems, then Y is a theorem. This is the rule of modus ponens.

We now regard it as our task to produce theorems by the
use of rules 6.1. - 6.3. As for 6.2., we shall use the symbol
(Y) to indicate the result of the substitution of the formula X
?_r the variable p in the formula Y. If Y does not contain p then
we deﬁnel(- (Y) as Y. Thus any substitution can be applied toany
formula.

Similarly, we write MP(X, Z) for the result, (i.e. Y) of
applying the rule 6.3. to two formulae X and Z where Z is of the
form X2Y. If Z is not of this form then we agree to regard X
itself as the result of the operation. In this way any application
of 6.2. and 6.3. to theorems already obtained yields a theorem.

For example, let us substitute ~r for r in (4), so

~r (4) = (5) (po>q)>o((~rV p)> (~rVq))
r
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and this is, in abbreviated notation

(5) (po2q)2((r=p)> (r> q)).

Similarly, the following are all theorems

%(2) = (6) p>(pVp)

%’3 (5) = (1) ((pPVP)2 @) > ((x> (pVP))> (r>q))
% (7 = (8) ((pVp)2p)>((r=>(pvp))> (r>p))
E@ = (9 ((evp)I>p)2 ((p> (pVP)) > (P> P))

MP ((1), (9)) = (10) (p= (pVp))> (p=p)
MP ((6), (10)) = (11) p=p

and this is, more explicitly (11) ~pVp.

Of the theorems cbhtained so far, (5) and (11) are of par-
ticular interest.

Instead of continuing the derivation of our theorems inde-
finitely, we shall now ask ourselves some basic questions con-
cerning the character of our deductive calculus.

(To be continued)
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