
OUTLINE OF AN INTRODUCTION 
TO MATHEMATICAL LOGIC I 

Abraham Robinson 

1. P re l iminary Remarks . This is the f i rs t of (presumably) 
three a r t ic les on the subject mentioned in the t i t le . The exposi­
tion is based on a course of fifteen lec tures which formed par t of 
the Edmonton (1957) Seminar of the Canadian Mathematical Con­
g r e s s . Limitations of space (and, originally, of time) compel us 
to be selective in two direct ions . F i r s t , while we shall refer to 
other branches of logic in passing, we shall be concerned pr in ­
cipally with the two fundamental calculi - of propositions and of 
predicates (of the first o rder ) . Thus, except for a number of 
modern developments which a re included h e r e , our exposition 
will be s imilar in scope, though not in detai l , to the f i rs t and 
third chapters of the well-known "Principles of Mathematical 
Logic" by D. Hilbert and W. Ackermann (English t ransla t ion, 
Chelsea, New York, 1950) and this was in fact the recommended 
text for the Edmonton course . However, there exists a growing 
number of other good introductions to the field and some of these 
will be l isted l a te r . 

Secondly, we shall not prove all the stated theorems in 
detai l . However, by proving a selected number of our a s se r t i ons , 
we shall endeavour to ensure (in most cases) that the reader will 
have no difficulty in working out detailed proofs for himself. 

Modern Mathematical Logic (to give just one of its possible 
definitions) is the study of the laws of thought by means of the 
methods, including the symbolism, of Mathematics . As such it 
is not in any way in conflict with Classical (Aristotelian) Logic, 
but it is demonstrably more comprehensive than the la t te r . 
However, the his tor ical aspects of the subject will not be con­
sidered h e r e . 

2. The Calculus of Proposi t ions . Truth functions. What­
ever the absolute character of the laws of thought, we cannot 
close our eyes to the fact that they appear to us in the first i n s ­
tance in our own subjective thinking. It is therefore only natural 
that we include, to begin with, some concrete examples from 
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ordinary life. Thus , consider the following sentences . 

A. All bea r s a re t ame . 
B. Not all bea r s a re t ame . 
C. Mountain climbing is more enjoyable than attending 

l ec tu r e s . 
D. Some of the m e m b e r s of a recent mathemat ica l 

convention spent more t ime outdoors than indoors . 
E. Mountain climbing, e tc . (seeC) and some of the 

m e m b e r s , e tc . (see D). 

Comparing B with A, we see that the truth or falsehood of 
B depends only on the truth or falsehood of A (if A is t rue then B 
is false; if A is false then B is t rue ) . Similar ly, the truth or 
falsehood (briefly, the truth value) of E depends only on the t ru th 
values of C and D. In neither case is this connection affected by 
the c o r r e c t n e s s , or o therwise , of the sentencesin question. 

The Calculus of Proposi t ions is concerned with the in te r ­
relation of the truth values of proposit ions (sentences , s tatements) 
which may be taken from everyday life, or from Mathemat ics , or 
from any other subject. A moment ' s reflection shows that , in 
view of the fact that this in terre la t ion is supposed tç> involve only 
the truth values of the sentences concerned, we may develop our 
theory simply in t e r m s of functions whose domain and range a r e 
t ru th values , i . e . the two values T (truth) or F (falsehood). This 
leads to the 

DEFINITION. A truth function 

q = f ( P l , , . . , p n ) , n ^ l 

is a function whose arguments range over the elements of the 
two-element set V = \T, Fj and which takes the values in the 
same set . 

Thus , a truth function of n var iables p ^ , . . . , p n , is 
defined completely by assigning t ruth va lues , T or F , to the func­
tion for given truth values of the a rguments . Since there a r e 
just 2 n different n - tuples of t ruth values for the a rguments , it 
follows that there a re just 2^ n different t ru th functions of n va­
r i ab les . In pa r t i cu la r , there a r e just four different truth func­
tions for n = 1. They a r e given by the following tab les . 
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p 

f(p> 

T 

T 

F 

T 

P 

f(p) 

T 

F 

F 

F 

p T F 

o) T F 

p T F 

P) F T 

In the t h i r d c a s e we adopt a convent ion which is c u s t o m a r y 
in M a t h e m a t i c s , and w r i t e f(p) = p , even though t h e r e is s t r ict ly-
speak ing a d i f f e rence be tween a v a r i a b l e and a funct ion which 
t a k e s the s a m e v a l u e s a s the v a r i a b l e t h r o u g h o u t . The f i r s t and 
second c a s e a r e w r i t t e n a s f(p) = T and f(p) = F , with the q u a l i ­
f ica t ion "for a l l p " w h e n e v e r t h e r e is r o o m for a m i s u n d e r s t a n d ­
ing . F i n a l l y the four th function is denoted b y ^ p ( r e a d " n o n - p n 

or , f n o t - p n ) . It e x p r e s s e s the connec t ion be tween A and B in the 
s e t of c o n c r e t e e x a m p l e s given a b o v e . 

The n u m b e r of t r u t h funct ions i n c r e a s e s r a p i d l y with i n ­
c r e a s i n g n . F o r n = 2 , it i s c u s t o m a r y to specify the t r u t h func ­
t i o n s by a s t a n d a r d type of t r u t h t a b l e s a s fo l lows . The t r u t h 
t a b l e 

T 

F 

T 

V l l 

V 2 1 

F 

V 1 2 

V 2 2 

w h e r e Vik s t a n d s 

r e f e r s t o the t r u t h function 

f ( T , T ) = V n f fT, F) = V 1 2 f ( F , T) = V 2 1 f ( F , F) 22 

A n u m b e r of i m p o r t a n t t r u t h funct ions a r e g iven be low. 
The f i r s t one e x p r e s s e s the connec t ion be tween C and D on one 
h a n d , and E on the o t h e r , in our se t of c o n c r e t e e x a m p l e s . 

2 . 1. Conjunct ion , symbol p A q, r e a d "p and q". 

q 
T F 

T T F 

F F F 
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2 . 2 . Disjunction, symbol pVq, read np or qn 

q 
1 T F 

T T T 

F T F 

2 . 3 . Implication, symbol pz> q, read l!p ply qfl 

q 

T F 

T T F 

F T T 

2 .4 . Biconditional or equivalence, symbol p s q , read "p equi­
valent to a" 

q 
| T F 

T T F 

F F T 

2 . 5 . Incompatibility or Sheffer s t roke , symbol p 
incompatible with qM. 

q 

q, read Mp 

T F 

T F T 

F I T T 

The symbols which we have introduced in connection with 
the above truth functions , i. e. rv/ , A , V ,^ ,= , \ a re called p r o -
positional connectives. It will be seen that the nomenclature 
adopted for 2 . 1 , 2 . 4 , 2 . 5 , above is in agreement with everyday 
language. While the conjunction "or" has more than one possible 
interpretat ion, that given in 2.2 above is at least as acceptable 
as any other . However, whether the t e r m "implication" in i ts 
common meaning is in terpreted correc t ly by t ruth table 2. 3 is 
open to question. Suffice it to say here that, in any case , these 
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t e r m s a re inessential for the development of the theory as such. 
Also, it should be noted that the "implication" discussed here is 
by no means a consequence relat ion, although we shall see la ter 
it is connected with such a relat ion. 

3* Formulae . If in any truth function of n va r iab les , q = 
f(Pl> • • • Pn) w e substitute truth functions, g^, . . . , gn of 
k^, . . . , k n var iables respect ively, then we obtain again à 
t ruth function, 

q= f(gx vfP!* • • • . Pfe )*'•• • • 8n<Pi* • • ' Pkn>) 

where it is understood that some of the g^!s and some of the a r ­
guments may coincide. Strictly speaking, the operation of subs­
titution which is familiar in Algebra and Analysis is an operation 
from functions to functions, which can itself be made the subject 
of a logical analys is . However, we shall assume here that the 
meaning of this operation is intuitively clear and shall call the 
resul t a compound truth function, or briefly, a formula. Thus 
the reader will have no difficulty in interpret ing the meaning of 
the formulae (<^p) V q, **> (pVq), (^p)o (qV(r A s) ), e tc . Moreover , 
it is customary to replace (~p) Vq by~pVq on the understanding 
that the connective of negation,^-» , always applies only to the 
variable or bracketed expression following it immediately. Other 
bracket conventions will be given l a te r . A formula which is 
identically t rue , i . e . which takes the value T for all assignments 
of t ruth values to the var iables contained in it is called a tauto­
logy. 

We introduce a binary relat ion between formulae, called 
equivalence, as follows. We write X^^Y, where X and Y are 
formulae (read X equivalent to Y and do not confuse with the 
biconditional truth function introduced under 2.4 above), if X and 
Y take equal truth values for equal truth values of their a rguments , 
i . e . if X and Y yield identical t ruth functions. It is understood 
that X and Y need not contain the same variables (e .g . p ^ p / \ 
( q V ^ q ) ) . If X is a tautology then we write X ^ T , while if X is 
identically false we write X » F . This is in keeping with our p r e ­
vious notation if we in terpret T(F) as the truth function (of an 
a rb i t r a ry number of variables) which is identically t rue (false). 
The relation£& is t rans i t ive , reflexive and symmetr ical and is 
thus rightly called equivalence. The substitution of equivalent 
formulae for the var iables of a given formula yields equivalent 
formulae. It is not difficult to compute the truth function which 
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i s r e p r e s e n t e d by a given f o r m u l a . A conven ien t l ayout for the 
r e q u i r e d c o m p u t a t i o n i s g iven be low. 

We w i s h to c a l c u l a t e the t r u t h funct ion r e p r e s e n t e d by the 
f o r m u l a (p:> q) z> ( (rVp)=> (r Vq) ) . 

(1) 

P 

T 
T 
T 
T 
F 
F 
F 
F 

1(2) 

q 

T 
T 
F 
F 
T 
T 
F 
F 

(3) 

r 

T 
F 
T 
F 
T 
F 
T 
F | 

(4)=(1)3(2) 

p a q 

T 
T 
F 
F 
T 
T 
T 
T 

(5)=(3)V(1) 

r Vp 

T 
T 
T 
T 
T 
F 

T 
F 

[ (6)=(3)V<2) 

r V q 

T 
T 
T 
F 
T 
T 
T 
F 

! ( 7 ) = ( 5 ) D ( 6 ) 

(rVpMrVq) 

T 
T 
T 
F 
T 
T 
T 
T J 

(8)=(4)o(7) 

(p=> q) = 
( (rvp)=> 
(rVq)) 

T 
T 
T 
T 
T 
T 
T 
T 

T h u s , t h e f o r m u l a in q u e s t i o n i s a t au to logy . 

The r e a d e r wi l l have no diff icul ty in ve r i fy ing t h a t the fol­
lowing e q u i v a l e n c e s hold for a r b i t r a r y f o r m u l a e X, Y, Z . 

3 . 1 . 
3 . 2 . 
3 . 3 . 
3 . 4 . 
3 . 5 . 
3 . 6 . 
3 . 7 . 
3 . 8 . 
3 . 9 . 

X A Y « Y A X 
XV Y ^ YV X 
( X A Y ) A Z ^ X A ( Y A Z ) 
(X VY) V Z « X V ( Y V Z ) 
X V ( Y A Z ) ^ ( X V Y ) A ( X V Z) 
X A ( Y V Z ) « ( X A Y ) V ( X A Z ) 

~ ( ~ X ) « X 
~ ( X A Y ) ^ ~ X V ~ Y 
~ ( X V Y ) # ~ X A ~ Y . 

3 . 1 and 3 .2 above show tha t the conjunc t ion and d i s j u n c t i o n 
obey the c o m m u t a t i v e law and 3 . 3 and 3 .4 e s t a b l i s h tha t they 
sa t i s fy a l s o the a s s o c i a t i v e l a w . It i s t h e r e f o r e c u s t o m a r y to 
omi t b r a c k e t s in c o n s e c u t i v e con junc t ions or d i s j u n c t i o n s ( e . g . 
pVqVr s t a n d s for (pVq)Vr a s we l l a s for p V ( q V r ) . 3 . 5 and 3 .6 
r e p r e s e n t d i s t r i b u t i v e l a w s whi le 3 . 8 and 3 .9 a r e known a s "de 
M o r g a n ' s f o r m u l a e " . The l a t t e r p e r m i t us to i n t e r c h a n g e the 
o r d e r of nega t ion and conjunct ion (d is junct ion) sub jec t to the 

46 

https://doi.org/10.4153/CMB-1958-007-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-007-0


change of the original conjunction (disjunction) into a disjunction 
(conjunction). 

Normal fo rms . A formula is said to be in disjunctive nor ­
mal form (or, simply, a disjunctive normal formula), if it is a 
disjunction or conjunctions of var iab les , and (or) of their nega­
t ions . Thus 

(pAqA~r) v(pA~pA q)v rv» r 

is in disjunctive normal form, while 

pA(qV(pA~r)) , ^ ( r V p ) 

a r e not in disjunctive normal form. 

Similarly a formula is said to be in conjunctive normal 
form if it is a conjunction of disjunctions of var iables and (or) of 
their negations , e .g . (pVqV~r)A (pv ~ p V q)A ^ r . 

The pa r t s of a disjunctive normal formula which a r e sepa­
rated by the sign of disjunction a re called i ts dis juncts . There 
is a corresponding definition for the conjunct s of a conjunctive 
normal formula. 

4. 1. THEOREM. Let X be a conjunctive normal formula. 
In order that X be a tautology, it is necessary and sufficient that 
in each of the conjuncts of X at least one variable appear both 
with and without the sign of negation prefixed to i t . 

The condition is necessa ry . For if a conjunction is a tau­
tology, then each of its conjuncts must be a tautology. Let X be 
a conjunct of X, and suppose that X does not contain any variable 
together with i ts negation. Then to every variable p which occurs 
in X without the sign of negation, we assign the truth value F , 
while to every variable which appears in X with the sign of 
negation we assign the truth value T. This yields the t ruth value 
F for X and hence for X, which is contrary to the assumption 
that X is a tautology. This proves that the condition is necessa ry . 

The condition is also sufficient. For suppose that it is 
satisfied and consider any assignments of truth values to the va­
r iables of X. Let X1 be any conjunct of X. By assumption, X 
contains at least one var iable , p ' say , together with i ts negation, 
^yp. It follows that if T is assigned to p then T is assigned also 
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to pV>v,p and hence to X ; while if F is assigned to p , then T is 
assigned t o ^ p and hence also to pV~p and, fa r ther , to X . It 
follows that T is assigned also to the entire formula X. This 
completes the proof of the theorem. 

The reader will have no difficulty in formulating a s imilar 
test which decides whether or not a given disjunctive normal for­
mula is identically false. 

Next we prove: 

4 . 2 . THEOREM. To every t ruth function ffpj, . . . , pn) 
there exists a conjunctive normal formula X of the var iables 
p , , . . . p such that 
f 1 n 

f(p i: , ) R * X 

Proof. We f i rs t dispose of the possibili ty that f is identi­
cally t r u e . In that case we define X simply by 

( P l V~ P l ) A ( P 2 V ~ P 2 ) A . . . A(pnv~pn) 

Now any t ru th function f(p. , . . . , p ) is determined by 
the specification of the t ruth value F or T for given t ruth values 
of P l , This is exemplified by the following scheme: 

Pl 

T 

P2 

F 
I" 3 

F 

. . . 

. . . 

Pn 

T 

% ! • • • • > Pn) 

F 

There a r e just 2 rows such as th i s , which we may a r r ange 
in an a rb i t r a ry but definite o rde r . Consider the r t i x row, 1 e r 

es 2 . Corresponding to i t , we define the disjunction X r , which 
is of the form 

( ~ ) p x V ( ~ ) p 2 V . . . V ( ~ ) p n 

In this express ion, the t e r m s 1/^J) a r e understood to mean 
that/x^ appears before any p^. if T is assigned to p, in the r 
row, while r^ does not appear before p, if F is assigned to p^ in 
that row. We now define X as the conjunction of all X (taken in 
an a r b i t r a r y order) such that F is assigned to f(p , . . . , p ) in 
the r row. We have already disposed of the t ruth functions 
which a r e identically t rue so that we may assume that X is not 
empty. Now consider any row in which the t ruth value F is 
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assigned to f(p, , . . . , p ). Then F is assigned also to the 
corresponding X r for this distribution of truth values, and the 
same therefore applies to X. On the other hand, suppose that in 
the r row, f(p^, . . . , pn) obtains the truth value T. Consider 
any row other than the r " 1 row, the s* row say. Then for some 
Pk the truth value of p^ in the s t h row is different from the truth 
value of pn in the r " 1 row. Hence p, appears in Xg without (with) 
the sign of negation according as it appears in X r with (without) 
that sign. Now the t ruth value assigned to X r for the distribution 
of t ruth values given in the r" 1 row is F . It follows that the truth 
value assigned to p^. in the r t n row makes Xg t rue and that X r is 
not included in X. It follows that the entire X obtains the value 
T for the assignment of truth values of the r row. This com­
pletes the proof of the theorem. 

We have the corol lary that every truth function can be r e ­
presented by ( i . e . , is equivalent to) a formula which contains 
only the connectives of negation, disjunction, and conjunction. 
Moreover by one of de Morgan 's laws one may eliminate the con­
junction by represent ing it in t e r m s of disjunction and negation. 
Indeed, by 3. 7 and 3. 8 

4 . 3 . X A Y ^ ^ ( - X V ^ Y ) 

for all formulae X and Y. Similar ly, we obtain the equivalence 

4 . 4 . X V Y « ~ ( ~ X A ~ Y ) 

by means of which we may eliminate the disjunction while r e ­
taining conjunction and negation. But even a single connective 
suffices to represent all truth functions in view of the equivalences 

4 . 5 . ~ X « X | X 

4 . 6 . X V Y ^ (X J X) | (Y | Y) 

which can be verified without difficulty. 

We may also take note of the following equivalences for 
future reference 

4 . 7 . X ^ Y « —XVY 

4 . 8 . X 3 Y « (X=> Y) A (Y=>X) 

4 . 9 . x l Y « ~ ( X A Y ) . 
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We have shown that to every formula, there exists an equi­
valent formula in conjunctive normal form. We shall now give a 
procedure for obtaining such a normal formula from the given 
formula without the use of t ruth tab les . Instead of expounding the 
procedure in abs t rac t we give a single example. 

Let the formula X be given by 

( M p A ( q V ~ r ) ) ) V t , 

We first shift the signs of negation until they apply only to 
the individual var iab les , by the use of 3,, 7, 3 .8 , and 3 .9 , so 

Xtt ( - p V ( ^ q A r ) ) V t. 

Next, in view of the commutative and associat ive laws of disjunc­
tion 

X « ~ p V t V (~qAr) 

and finally, applying one of the distributive laws, 

X ^ ( ~ p V t V ~ q ) A ( ^ p V t V r ) , 

We note that the conjunctive normal formula which r e p r e ­
sents X is not unique since we have equally well in the case just 
considered, e .g . 

VtV ^ q)A (/vpVtVr)A (s V^S). 

There is a corresponding procedure for reducing any given 
formula to one in disjunctive normal form. 

Combining the procedure just descr ibed with Theorem 4. 1, 
we obtain an alternative tes t for deciding whether a given formula 
is a tautology. Given X we first find a conjunctive normal formula 
X such that X£^ X and we then check whether the conditions of 
4 . 1 a re satisfied. The difference between this and the ea r l i e r 
procedure (by truth values) is that we now argue direct ly from 
the external "shape" of X while at the same t ime X is obtained 
from X by a purely formal t ransformat ion. 

50 

https://doi.org/10.4153/CMB-1958-007-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-007-0


^' & e v * e w 2È Ë1? concept of a. formula. E a r l i e r , we looked 
upon a formula as a compound truth function obtained by applying 
operations of substitution to single truth functions. This point of 
view can be justified with perfect r igour , but the following a l t e r ­
native approach throws some light on other aspects of our calculus. 

We begin with a set P of objects called nproposit ional v a r i ­
ab le s" , P = {p, q, r , . . . J where P is supposed infinite and may 
or may not be countable. Next we define a set F of objects called 
"formulae" inductively as follows: 

5 . 1 . All var iables a re formulae. 
5 .2 . If X is a formula then *J (X) is a formula. 
5 . 3 . I fX , Y a re formulae, then(X)V(Y) , (X)A(Y), 

(X)D (Y), (X)S (Y), and (X) j (Y) a r e formulae. 

It is then understood that F contains only elements which 
can be shown to be such of the (repeated) applications of 5. 1 -
5 . 3 . The brackets a re inser ted automatically but in some cases 
they a r e unnecessary and in others they can be omitted by a g r e e ­
ment , as before. However, in i ts fully bracketed form, every 
formula is obtained by a unique sequence of operations c o r r e s ­
ponding to 5. 1, 5 .2 , or 5. 3. The var iables which a r e used in the 
definition of a formula a r e said to be contained in the formula. 
Only a finite number of var iables a re contained in each formula. 

Consider the. set of all formulae which contain no var iables 
other t h a n p j , . . . , p . For a given assignment of t ruth value s 
to pi . . . , p , we then define truth values for the remaining 
formulae of the set inductively as follows: 

5 .4 . p i , . . . , p n take the given truth, values. 

5 .5 . If X has a l ready been assigned the truth value T (or 
al ternatively F) then^/(X) is assigned the truth value F (or, in 
the al ternative case , T). 

5 .6 . If t ruth values have already been assigned to formulae 
X and Y then the truth values of (X)V(Y), (X)A(Y), e tc . a re de ­
termined from the corresponding t ruth tables in Section 2. 

In this way, every formula X which contains only the v a r i ­
ables P i t . . . , p n is made to correspond to a t ruth function, 
and this is the same truth function that is. obtained from X if we 
regard this formula as the resul t of successive substitutions. 

5 1 

https://doi.org/10.4153/CMB-1958-007-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1958-007-0


It follows that the notions of equivalence and of tautology apply 
equally to the formulae just defined. For this reason we may, 
if we so d e s i r e , dispense with the connectives of conjunction, 
implication, biconditional, and incompatibility, and consider only 
formulae which a re built up by means of negation and disjunction. 

At this point we ought to investigate in more detail the 
notion of a symbol, e .g . of the symbol for a proposit ional v a r i ­
able . Is the symbol for the propositional variable p (i. e. !p') to 
be regarded as an entity which is distinct from p? We leave it 
to the reader to ponder this question. 

6« The calculus of deduction. So far the reader will have 
discovered no t r ace of the tradit ional approach to Logic, which 
is to some extent a lso that of the working mathematician and 
which regards Logic as "the science of drawing necessa ry con­
clus ions" . The mathematician is in fact accustomed to a p r o ­
cedure by which he der ives conclusions, or " t heo rems" , from 
initial postulates or ax ioms. Thus , informally speaking, the 
theorems in question a r e satisfied in a par t icu lar mathematical 
s t ruc ture only if the given axioms a re satisfied in i t . Since in 
Logic we do not wish to confine ourselves immediately to the 
consideration of pa r t i cu la r (mathematical) s t ruc tu re s , it is 
natural to introduce a deductive sys tem in which the " theorems" 
to be derived a r e such as to apply to all s t ruc tu re s . In other 
words , we shall consider a deductive system in which the p r o ­
vable theorems a re prec ise ly the tautologies. Although this 
would appear to differ considerably fr om the approach used in 
Mathemat ics , the gap can be bridged without difficulty as we 
shall show in due course . 

The deductive system which we a re going to descr ibe is 
that of Whitehead and Russel l (in Pr incipia Mathematica) as m o ­
dified by Bernays . 

Formulae will be defined as in the preceding section, when 
only the connectives ~ and V a re used. Other connectives will be 
regarded as abbreviat ions , as follows: pD q is an abbreviation 
for ' v p V q , p A q is an abbreviation for ~ (*vp V ~ q), p= q is an 
abbreviation for (p^ q) A (q^p) and p 1 q is an abbreviation for 
~ (pAq). 

T^ e theorems of our system a re obtained by the use of the 
following ru l e s . 
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6 . 1 . The following a r e theorems: 

(1) ~ (pVp)Vp 
( 2 ) ~ p V ( p V q ) 
(3) ~ ( P Vq)V(qVp) 
(4) ~ ( ~ p V q ) V ( ~ ( r V p ) V ( r V q ) ) . 

The same formulae a r e , in abbreviated notation, 

(1) (pVp)op 
(2) pp(pVq) 
(3) (pVq)=(q\/p) 
(4) ( p 3 q ) 3 ( ( r V p ) 3 ( r V q ) ) . 

We use the same numbering as before, i . e . (1) - (4) -
since from our point of view corresponding express ions , e . g . 
^^(pVp)Vp and (pVp)op a re supposed to denote the same formula. 

(1) to (4) a re known as the axioms of the system. 

6 .2 . By substituting a formula for one of the var iables in 
a given theorem (whenever the variable occurs in that theorem) 
we obtain a theorem. 

6 . 3 . If X a n d ~ X VY (in abbreviated notation, X=>Y) a r e 
t heo rems , then Y is a theorem. This is the rule of modus ponens. 

We now regard it as our task to produce theorems by the 
use of ru les 6. 1. - 6 . 3 . As for 6 .2 . , we shall use the symbol 
2p- (Y) to indicate the resul t oï the substitution of the formula X 
for the variable p in the formula Y. If Y does not contain p then 
we define-^- (Y) as Y. Thus any substitution can be applied to any 
formula. 

Similar ly, we write MP(X, Z) for the resul t , ( i . e . Y) of 
applying the rule 6 . 3 . to two formulae X and Z where Z is of the 
form X ^ Y , If Z is not of this form then we agree to regard X 
itself as the resul t of the operation. In this way any application 
of 6 . 2 . and 6 . 3 . to theorems already obtained yields a theorem. 

For example, let us substitute /%/r for r in (4), so 

~ £ _ ( 4 ) = (5) ( P D q ) o ( ( - r V p ) ^ K V q ) ) 
r 
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and this i s , in abbreviated notation 

(5) (p=> q)=> ((r=> p)=> (r=> q)) . 

Similar ly , the following a r e all theorems 

£ ( 2 ) = (6) p 3 ( p V p ) 
q 

P V P 

^ (5) = (7) ( ( p V p ) 3 q ) 3 ( ( i 3 ( p V p ) ) 3 ( r 3 q ) ) 

| (7) = (8) ( ( p V p ) 3 p } 3 ( ( r 3 ( p V p ) ) 3 ( r 3 p ) ) 

f (8) = (9) ( ( p V p ) 3 p ) 3 ( ( p ? ( p V p ) ) 3 ( p 3 p ) ) 

MP ((1) , (9)) = (10) ( p = ( p V p ) ) M p = p ) 

MP ((6), (10)) = (11) p , p 

and this i s , more explicitly (11) ~ p \ / p . 

Of the theorems obtained so far , (5) and (11) a r e of p a r ­
t icular in te res t . 

Instead of continuing the derivation of our theorems inde­
finitely, we shall now ask ourselves some basic questions con­
cerning the charac ter of our deductive calculus. 

(To be continued) 

Hebrew Universi ty, J e r u s a l e m , I s r ae l 
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