TWO ADDENDA TO THE AUTHOR'S 'TRANSFINITE CONSTRUCTIONS'

G.M. Kelly

Abstract

Since the author's article "A unified treatment of transfinite constructions ...", in Volume 22 (1980) of this Bulletin, had an encyclopaedic goal, he now takes the opportunity to answer two further questions raised since that article was submitted. The lesser of these asks whether the only pointed endofunctors for which every action is an isomorphism are the well-pointed ones, at least when the endofunctor is cocontinuous; a counter-example provides a negative answer. The more important question concerns the reflexion from the comma-category T / A into the category of algebras for the pointed endofunctor I of A, and the algebrareflexion sequence which converges to this reflexion; and asks for simplified descriptions in the special case where T is cocontinuous. We give closed formules in this case, both for the reflexion and for the sequence which converges to it. The reader may wonder why we care about the approximating sequence when we have a closed formula for the reflexion; the answer is that, in certain applications, we need to separate the roles of finite colimits and filtered ones.

1. Introduction

Recall from the author's article [1] that a pointed endofunctor (T, τ) on a category A is an endofunctor T of A along with a natural

[^0]transformation $\tau: 1 \rightarrow T$, and that (T, τ) is called well-pointed if $\tau T=T \tau: T \rightarrow T^{2}$. A T-algebra is an object A together with an action $a: T A \rightarrow A$, the latter being a map satisfying the unit axiom a. $\tau A=1$. If T has more structure, such as that of a monad, there are more axioms for the action a to satisfy; but we never suppose T to have less structure. When we want to consider the algebras for a mere, unpointed, endofunctor H of A , given by actions $H A \rightarrow A$ subject to no axioms, we treat them as the algebras for the pointed endofunctor $T=1+H$.

In the case of a well-pointed (T, τ), it is shown in Proposition 5.2 of [1] that every action $a: T A \rightarrow A$ is an isomorphism. Thus here A admits an action only when $\tau A: A \rightarrow T A$ is invertible, and then admits the unique action $(\tau A)^{-1}$; in consequence, the forgetful functor $U: T-A l g \rightarrow A$ is fully faithful.

The goal of [1] was to give a comprehensive account of old and new transfinite-sequence existence proofs in categorical algebra, unified by the technique of embedding the T-algebras as a full subcategory in the comma-category T / A, and then exhibiting them as the algebras for a wellpointed endofunctor on T / A. This reduces the reflectivity of T-Alg in T / A to the question of the reflectivity, in the case of a well-pointed T, of $T-A l g$ in A. Transfinite-sequence arguments of various degrees of delicacy were now used to give sufficient conditions for this last; in the simpler cases the sequence $A \rightarrow T A \rightarrow T^{2} A \rightarrow \ldots$, continued transfinitely, ultimately stops and gives the desired reflexion. Then, translating back to the case of a general pointed T, we get an algebrareflexion sequence for each object of T / A, giving its reflexion into $T-A l g$.

In line with the encyclopaedic aim of [1], the author would now like to record the answers to two further questions raised since that manuscript was written.

In a letter to the author of 14 December 1979, Michael Barr asked whether the pointed (T, τ) is necessarily well-pointed if every action is an isomorphism - at least in the case where T is cocontinuous. As Barr pointed out, the question is not a pressing one, but a positive answer might save an author from giving a complicated argument where a simple one
would suffice; he had a particular instance in mind. We show by an example that the answer is in fact negative.

Recent work of the author with Anders Kock on synthetic differential geometry has shown that we need at our disposal a simplified closed form for the algebra-reflexion sequence in the special case when T is cocontinuous - as for instance when T is $D \otimes$ - for a pointed object D in a monoidal biclosed category A. Of course the sequence stops for a cocontinuous T at its wth term, and gives the reflexion. However no closed formula was given in [1] except the classical expression $\sum_{n \in N} E^{(n)}$ for the free monoid on an mpointed E in a biclosed monoidal A. We therefore treat below the three cases of a pointed endofunctor T, an unpointed endofunctor H, and a monad \mathbf{T}, under the hypothesis of cocontinuity.

2. The counter-example for Barr's question

Let R be the associative ($Z / 2 Z$)-algebra of dimension 3 with vector-space basis $\{1, e, f\}$ and with multiplication given by $e^{2}=e$, $f e=f$, ef $=f^{2}=0$. Take for A the category of R-bimodules, and write \otimes for \otimes_{R}. The principal 2-sided ideals I and J of R generated by e and f respectively satisfy $I J=0$ and $J I=J$. Let $\mathcal{K}: R \rightarrow R / I=K$ be the canonical map. In each of the exact sequences

$$
J \otimes I \rightarrow J \otimes R \xrightarrow[J \otimes K]{ } J \otimes K \rightarrow 0, I \otimes J \rightarrow R \otimes J \xrightarrow[k \otimes J]{ } K \otimes J \rightarrow 0,
$$

the middle object is isomorphic to $J ;$ the image of $J \otimes I \rightarrow J$ is J while that of $I \otimes J \rightarrow J$ is $0 ;$ consequently $J \otimes K=0$, while $k \otimes J$ is an isomorphism between non-zero objects.

Set $D=K \oplus J$, making it a pointed object via $d=\binom{k}{0}: R \rightarrow K \oplus J$. If an action $a: D \otimes A \rightarrow A$ is given by $(b, c):(K \otimes A) \oplus(J \otimes A) \rightarrow A$, the unit axiom becomes $b(k \otimes A)=1$; forcing $b: K \otimes A \rightarrow A$ to be an isomorphism since $k \otimes A$ is an epimorphism. We now have $J \otimes A \cong J \otimes K \otimes A=0$ since $J \otimes K=0 ;$ whence $a: D \otimes A \rightarrow A$ is itself an isomorphism.

Yet $D \otimes d, d \otimes D: D \rightarrow D \otimes D$ do not coincide; for as maps
$K \oplus J \rightarrow(K \otimes K) \oplus(J \otimes K) \oplus(K \otimes J) \oplus(J \otimes J)$ they differ in the component $J \rightarrow K \otimes J$, which is 0 for $D \otimes d$ but is the non-zero $k \otimes J$ for $d \otimes D$ 。
3. The free-algebra sequence for a cocontinuous pointed endofunctor

Let $\tau: 1 \rightarrow T: A \rightarrow A$ where A is cocomplete and T is cocontinuous. Write $\sigma_{n}: T^{n} \rightarrow T_{n}$ for the joint coequalizer of the maps $T^{i} \tau T^{n-i-1}: T^{n-1} \rightarrow T^{n}$ where $0 \leq i \leq n-1$; and note that σ_{0} is $1: 1 \rightarrow 1$ while σ_{1} is $1: T \rightarrow T$, the first non-trivial case being the coequalizer $\sigma_{2}: T^{2} \rightarrow T_{2}$ of $\tau T, T \tau: T \rightarrow T^{2}$. Observe that T_{n} is cocontinuous since each T^{m} is so.

PROPOSITION 1. There is a unique $\phi_{m n}$ rendering conmutative
(1)

clearly $\phi_{m n}$ is epimorphic.
Proof. From the fact that $\sigma_{m} T^{n}$ and $T_{m}{ }^{\sigma} n$ are certain joint coequalizers, from the naturality of $T_{m} T^{i} \tau T^{n-1-i}$, and from the fact that $\sigma_{m}^{T^{n-1}}$ is epimorphic, it easily follows that $\sigma_{m} \sigma_{n}$, as $\left(T_{m} \sigma_{n}\right) \cdot\left(\sigma_{m} T^{n}\right)$, is the universal map which jointly coequalizes $\tau T^{m-1} T^{n}, \ldots, T^{m-1} \tau T^{n}$ and jointly coequalizes $T_{T}^{m} \tau T^{n-1}, \ldots, T_{T}^{m} T^{n-1} \tau$. The result follows.

PROPOSITION 2. We have $\phi_{0 n}=\phi_{n 0}=1: T_{n} \rightarrow T_{n}$. The diagram
(2)

commutes, and it is a pushout for $n>0$.
Proof. The first statement is clear because $\sigma_{0}=1$. As for the second, it suffices to consider the composite of (2) with the epimorphism $\sigma_{m} \sigma_{n} \sigma_{k}$, which by (1) is

This commutes by (1), each leg being σ_{m+n+k}. Moreover, by the proof of Proposition 1 , the pushout of $\sigma_{m} \sigma_{n+k}$ and $\sigma_{m+n} \sigma_{k}$ is the universal map which jointly coequalizes the four sets $\tau T^{m-1} T^{n+k}, \ldots, T^{m-1} \tau T^{n+k}$; $T^{m} \tau T^{n+k-1}, \ldots, I^{m} T^{n+k-1} \tau ; \tau T^{m+n-1} T^{k}, \ldots, T^{m+n-1} \tau T^{k} ;$ and $T^{m+n} \tau T^{k-1}, \ldots, T^{m+n} T^{k-1} \tau$. If $n>0$ we have the overlap that makes this equal to σ_{m+n+k}.

We now make $n \mapsto T_{n}$ into a functor $\omega \rightarrow A$ from the ordered set $\omega=\{0,1,2, \ldots\}$, defining the transition-map $T_{n}^{n+1}: T_{n} \rightarrow T_{n+1}$ by
(4)

and the transition-maps $T_{n}^{m}: T_{n} \rightarrow T_{m}$ for $m \geq n$ by composition. (We use this notation to agree with that of [1]; the reader is unlikely to confuse T_{n}^{m} with the power $\left(T_{n}\right)^{m}$, which will never occur.) Note that (4) is equivalent to its composite with the epimorphism σ_{n}, which by (1) and naturality is

by the definition of σ_{n+1}, we could replace τT^{n} here by $T^{i} \tau T^{n-i}$ for any i with $0 \leq i \leq n$.

PROPOSITION 3. For $m^{\prime} \geq m$ and $n^{\prime} \geq n$ we have commutativity in
(6)

Proof. It suffices to consider the cases $m^{\prime}=m+1, n^{\prime}=n$ and $m^{\prime}=m, \quad n^{\prime}=n+1$. In these cases we have only to compose (6) with the epimorphism $\sigma_{m} \sigma_{n}$, and use (1) and (5).

REMARK 4. If we regard ω as a monoidal category with tensor product $m+n$, we can see Propositions 2 and 3 as asserting that $\left(T_{n}, T_{n}^{m}\right)$ and $\phi_{m n}$ constitute a monoidal functor $\omega \rightarrow$ End A.

We now define T_{∞} as the colimit of this functor $n \mapsto T_{n}$ from ω to A, with colimit-cone $T_{n}^{\infty}: T_{n} \rightarrow T_{\infty}$. Of course it comes to the same
thing to define T_{∞} in one step, as the colimit of the diagram with all the T^{n} as vertices and all the $T^{i^{\prime} I_{\tau T}}{ }^{i}{ }^{i} \tau \ldots T^{i} \ldots T^{n} \rightarrow T^{m}$ as edges; but in some of the applications we shall want to separate the roles of the finite colimits and the filtered ones. Note that, as the colimit of cocontinuous functors, T_{∞} is cocontinuous.

Fixing m in $\phi_{m n}: T_{m} T_{n} \rightarrow T_{m+n}$ and passing the colimit defines $\phi_{m \infty}: T_{m} T_{\infty} \rightarrow T_{\infty}$, while fixing n instead defines $\phi_{\infty n}: T_{\infty} T_{n} \rightarrow T_{\infty} ;$ a second passage to the colimit defines $\phi_{\infty \infty}: T_{\infty} T_{\infty} \rightarrow T_{\infty}$, which is easily seen to be independent of the order of the passages. Now (6) holds even if some of $m, n, m^{\prime}, n^{\prime}$ are ∞, provided we set $m+\infty=\infty+n=\infty+\infty=\infty$; whence (2) also holds if some of m, n, k are ∞. Moreover we have $\phi_{0 \infty}=\phi_{\infty 0}=1: T_{\infty} \rightarrow T_{\infty}$. Thus $\left(T_{n}, T_{n}^{m}\right)$ and $\phi_{m n}$ are now extended to a monoidal functor from $\omega+1=\omega+\{\infty\}$ to End A. The monoid ∞ in $\omega+1$ is sent by this to the monoid T_{∞} in End A, with multiplication $\phi_{\infty \infty}$ and unit $T_{0}^{\infty}: 1 \rightarrow T_{\infty}$. Passage to the colimit in (4) gives

$$
\begin{equation*}
\phi_{1 \infty} \cdot \tau T_{\infty}=1 \tag{7}
\end{equation*}
$$

exhibiting $\phi_{1 \infty}: T T_{\infty} \rightarrow T_{\infty}$ as an action of T on T_{∞}.

In the light of Sections 14, 17, 22, and 23 of [1], the following result is a consequence of the more general Theorem 8 below.

THEOREM 5. For a pointed cocontinuous (T, τ), the free-algebra sequence at $A \in A$ is given by the $T_{n} A$ with the connecting maps $T_{n}^{m_{A}}$ and the "approximate actions" $\phi_{1 n} A: T T_{n} A \rightarrow T_{n+1} A$. The free T-algebra on A is the $T_{\infty} A$ to which this converges, with the action $\phi_{1 \infty}$; and the wnit of this adjunction is $T_{0}^{\infty} A: A \rightarrow T_{\infty} A$. The (algebraically) free monad on T is given by $\left(T_{\infty}, T_{0}^{\infty}, \phi_{\infty}\right)$, the unit of this adjunction being $T_{1}^{\infty}: T \rightarrow T_{\infty}$. When A is monoidal biclosed and (T, τ) has the form $(D \otimes-, \delta \otimes-)$, we have $T_{n}=D_{n} \otimes-$ and $T_{\infty}=D_{\infty} \otimes-$, where D_{n} and D_{∞} are constructed from $D^{(n)}=D \otimes D \otimes \ldots \otimes D$ just as T_{n} and T_{∞} are from I^{n}; and D_{∞} is the algebraically free monoid on D.
4. The algebra-reflexion sequence in the cocontinuous pointed case

We now consider the reflexion into $T-A l g$ of an arbitrary object $(A, a: T A \rightarrow B)$ of T / A. Again we give the sequence itself as well as the algebra it converges to: partly, once again, to separate the roles of finite and filtered colimits; and partly as a simple way of proving the result.

We set $X_{0}=A$ and define X_{n+1} for $n \geq 0$ by the pushout
(8)

noting that, since $\phi_{01}=1$, we have

$$
\begin{equation*}
X_{1}=B, y_{1}=a: T A \rightarrow B, z_{0}=1: B \rightarrow B \tag{9}
\end{equation*}
$$

We now set $x_{0}: T X_{0} \rightarrow X_{1}$ equal to $a: T A \rightarrow B$, and define $x_{n+1}: T X_{n+1} \rightarrow X_{n+2}$ for $n \geq 0$ by the diagram

This defines a unique x_{n+1} since T of (8) is again a pushout and since, by (2), (8), and naturality, we have

$$
\begin{aligned}
& y_{n+2} \cdot \phi_{1}, n+1 \\
& A \cdot T \phi_{n 1} A=y_{n+2} \cdot \phi_{n+1,1} A \cdot \phi_{1 n} T A \\
&=z_{n+1} \cdot T_{n+1} a \cdot \phi_{1 n} T A=z_{n+1} \cdot \phi_{1 n} B \cdot T T_{n} a .
\end{aligned}
$$

We shall prove:
PROPOSITION 6. X_{n} and x_{n} are the objects and maps so named in

Section 17.2 of [1].
First, a remark and a lemma. Similar reasoning to that which gave the existence of x_{n+1} in (10), except that this time we compare the pushout T_{2} of (8) with the case $n+2$ of (8), gives a diagram like (10) of which we record only the right-hand square:

LEMMA 7. The right-hand square of (10) is a pushout for $n>0$. Not so for $n=0$: we have $x_{1}=z_{1}$, although $T z_{0}=1$ and $\phi_{10} B=1$.

Proof. It suffices to prove that for $n>0$ the outside of

is a pushout, since the left square is so by (8) and by the cocontinuity of T. But by naturality and (10), this is also the outside of

and here the right square is a pushout by (8), and the left square by Proposition 2 if $n>0$. For $n=0$, we have $z_{0}=1$ by (9) and
$\phi_{10}=1$ by Proposition 2, so that $x_{1}=z_{1}$ by (10).
Proof of Proposition 6. The values of X_{0}, X_{1}, and x_{0} are those required by (17.3) of [1]. It remains to show that x_{n+1} is the coequalizer in

$$
\begin{equation*}
T X_{n} \xrightarrow[T \tau X_{n}]{\tau T X_{n}} T^{2} X_{n} \xrightarrow[T x_{n}]{ } T X_{n+1} \xrightarrow[x_{n+1}]{ } X_{n+2} \tag{12}
\end{equation*}
$$

as required by (17.4) of [1]. Since the coequalizer of τT and $T \tau$ is σ_{2}, which by (1) is ϕ_{11} because $\sigma_{1}=1$, we have equivalently to show that we have a pushout

for $n \geq 0$. When $n=0$ this reduces to the case $n=1$ of the pushout (8), since $x_{0}=a$ by definition and $x_{1}=z_{1}$ by Lemma 7. To deal with the case $n>0$ we replace n by $n+1$ in (13), and compose with $T^{2} z_{n}: T^{2} T_{n} B \rightarrow T^{2} X_{n+1}$; it suffices to prove this composite a pushout, since $T^{2} z_{n}$ is epimorphic - z_{n} is the pushout (8) of the epimorphism $\phi_{n 1} A$, and T^{2} preserves epimorphisms. Now the composite $T x_{n+1} \cdot T^{2} z_{n}$ is $T z_{n+1} \cdot T \phi_{1 n} B$ by (10), while the composite $\phi_{11} X_{n+1} \cdot T^{2} z_{n}$ is $T_{2} z_{n} \cdot \phi_{11}{ }^{T} n^{B}$ by naturality; so that we must show the outside of
(14)

to be a pushout for some w. But here the top left region is a pushout by Proposition 2, and the right region is a pushout by Lemma 7; so that the two top regions express x_{n+2} as the pushout of $\phi_{11} T_{n}{ }^{B}$ by $T z_{n+1} \cdot T \phi_{1 n} B$. Moreover the bottom region commutes by (11) if we take w_{n+1} for w, and $T_{2}{ }^{2} n$ is epimorphic. Hence the outside of (14) is indeed a pushout.

Now, as in Section 17.2 of [1], we define the transition-map $X_{n}^{n+1}: X_{n} \rightarrow X_{n+1}$ by

making X into a functor $\omega \rightarrow A$ with transition-maps X_{n}^{m}. Composing (10) with $\tau T_{n+1} A$, using the naturality of τ, and using (4) and (15), we see that y and z are natural transformations. This being so, passing to the colimit in (8) gives a closed formula for the colimit X_{∞} of $X: \omega \rightarrow A$, as the pushout

Note that the naturality of z and of y gives, since $z_{0}=1$ and $y_{1}=a$, that $X_{1}^{\infty}=z_{\infty} \cdot T_{0}^{\infty} B$ and $X_{1}^{\infty} \cdot a=y_{\infty} \cdot T_{1}^{\infty} A$. Composing the first of these with $X_{0}^{1}=x_{0} \cdot \tau X_{0}=a \cdot \tau A$ and the second with $\tau A=T_{0}^{1} A$, we have

$$
\begin{equation*}
X_{0}^{\infty}=z_{\infty} \cdot T_{0}^{\infty} B \cdot a \cdot \tau A=y_{\infty} \cdot T_{0}^{\infty} A, \quad X_{1}^{\infty}=z_{\infty} \cdot T_{0}^{\infty} B . \tag{17}
\end{equation*}
$$

That the x_{n} constitute a natural transformation x follows from the general theory in [1], or directly from (15) and (12). We can therefore define $x_{\infty}: T X_{\infty} \rightarrow X_{\infty}$ as the colimit of $x_{n}: T X_{n} \rightarrow X_{n+1}$; which is equally to define x_{∞} by the case $n=\infty$ of (10), the right square of which is still a pushout by passage to the colimit in Lemma 7. Now passage to the colimit in (15) gives

$$
\begin{equation*}
x_{\infty} \cdot \tau X_{\infty}=1, \tag{18}
\end{equation*}
$$

exhibiting X_{∞} as a T-algebra with action x_{∞}. It follows from (18) that x_{∞} is the coequalizer of $\tau X_{\infty}, x_{\infty}$ and 1 ; so that by (17.6) of [1] the $x_{\omega}: T X_{\omega} \rightarrow X_{\omega+1}=X_{\omega}$ where the sequence converges is indeed x_{∞}. Thus:

THEOREM 8. The algebra-reflexion sequence of [1] Section 17 at $(A, a: T A \rightarrow B)$ in T / A is given by the X_{n} above, with the connecting maps X_{n}^{m} and the "approximate actions" $x_{n}: T X_{n} \rightarrow X_{n+1}$. The T-algebra $x_{\infty}: T X_{\infty} \rightarrow X_{\infty}$ to which this converges is the reflexion of $(A, a: T A \rightarrow B)$ in $T-A l g$, the wit of this reflexion being $\left(X_{0}^{\infty}, X_{1}^{\infty}\right)$.

We complete the proof of Theorem 5 by observing that the free-algebra sequence at $A \in \mathrm{~A}$ is the algebra-reflexion sequence at $(A, 1: T A \rightarrow T A)$, and that when $a=1$ we have $y_{n+1}=1$ and $z_{n}=\phi_{n 1} A$ by (8), giving
$x_{n}=\phi_{1 n} A$ by (10) and the definition of x_{0}.

5. The case of an unpointed cocontinuous endofunctor

Let H now be any cocontinuous endofunctor of A, and write T for the cocontinuous endofunctor $I+H$, pointed by the coprojection $\tau: 1 \rightarrow 1+H$. As we said, an H-algebra, given by an action $a: H A \rightarrow A$ subject to no axioms, is the same thing as a (T, τ)-algebra. Thus to give the algebra-reflexion sequence explicitly for the reflexion of T / A into $H-A l g$, we have only to translate the results above.

Since H is cocontinuous, $T^{n}=(1+H)^{n}$ is given by the binomial series $\sum\binom{n}{r} H^{r}$, and it is clear that $\sigma_{n}: T^{n} \rightarrow T_{n}$ just identifies the $\binom{n}{r}$ copies of H^{r}, so that we have

$$
\begin{equation*}
T_{n}=\sum_{r=0}^{n} H^{r} \tag{19}
\end{equation*}
$$

Moreover the map $T_{n}^{m}: T_{n} \rightarrow T_{m}$ for $m \geq n$ is the evident coprojection, so that T_{∞} is given by the case $n=\infty$ of (19). It is immediate that the maps $\phi_{m n}: T_{m} T_{n} \rightarrow T_{m+n}$, for finite or infinite m and n, are just those which map the summand $H^{r} H^{S}$ of $T_{m} T_{n}$ identically onto the summand H^{r+s} of T_{m+n}. Note that T_{m} and T_{n} now commute, and that $\phi_{m n}=\phi_{n m}$. As in Theorem 5, if A is monoidal biclosed and H is $E \otimes-$, we have $T_{\infty}=D_{\infty} \otimes-$, where now $D_{\infty}=\sum_{r=0}^{\infty} E^{(r)} ;$ which is the classical expression for the algebraically-free monoid D_{∞} on the unpointed object E of a biclosed A.

Consider now the algebra-reflexion sequence $\left(x_{n}, x_{n}\right)$ of section 4 at a general object $a: A+H A \rightarrow B$ of T / A, where a has components $u: A \rightarrow B$ and $v: H A \rightarrow B$. When we simplify (8) by using (19), we easily see that $z_{n}: T_{n} B \rightarrow X_{n+1}$ is the universal map whose components
$z_{n r}: H^{r} B \rightarrow X_{n+1}$ render commutative the diagrams

for $0 \leq r \leq n-1$; which is to say that z_{n} is the coequalizer in

where $\theta_{n-1}: T_{n-1} H \rightarrow T_{n}$ is the obvious coprojection.
By (15), the first component of $x_{n}: X_{n}+H X_{n} \rightarrow X_{n+1}$ is
$X_{n}^{n+1}: X_{n} \rightarrow X_{n+1} ;$ write $v_{n}: H X_{n} \rightarrow X_{n+1}$ for the second component, so that $v_{0}=v: H A \rightarrow B$. The right square of (10), which since $T z_{n}$ is epimorphic is sufficient to fix the value of x_{n+1}, reduces on using $T T_{n} B=T_{n} B+H T{ }_{n} B$ to two squares. One of these merely asserts the naturality of z; the other fixes the value of v_{n+1} by the commutativity of
(21)

Passing to the colimit in (20) and in (21), we see that the reflexion into $H-A l g$ of $(u, v): A+B A \rightarrow B$ is X_{∞} given as the coequalizer in

with the action $v_{\infty}: H X_{\infty} \rightarrow X_{\infty}$ determined by

The unit $\left(X_{0}^{\infty}, X_{1}^{\infty}\right)$ of the reflexion is given by (17), which here becomes

$$
\begin{equation*}
X_{0}^{\infty}=z_{\infty} \cdot T_{0}^{\infty} B \cdot u, \quad X_{1}^{\infty}=z_{\infty} \cdot T_{0}^{\infty} B . \tag{24}
\end{equation*}
$$

6. The case of a cocontinuous monad

The category T-Alg of algebras for a monad $T=(T, \tau, \mu)$ with unit τ and multiplication μ is a full subcategory of the category $T-A l g$ of algebras for the pointed endofunctor (T, τ), and is hence like $T-A l g$ fully embedded in T / A. Section 24 of [1] gives a new algebra-reflexion sequence $\left(X_{n}, x_{n}: T X_{n} \rightarrow X_{n+1}\right)$ for each $(A, a: T A \rightarrow B)$ of T / A, which when it converges gives the reflexion of (A, a) into $T-A l g$ (and no longer into $T-A l g)$. This new sequence again starts with $X_{0}=A$, $X_{1}=B$, and $x_{0}=a: T A \rightarrow B ;$ but now x_{n+1} is the coequalizer in
(25)

while the connecting-map $X_{n}^{n+1}: X_{n} \rightarrow X_{n+1}$ is still given by (15).
As remarked in Section 25.2 of [1], the free-algebra sequence, obtained by calculating the algebra-reflexion sequence at ($A, 1: T A \rightarrow T A$), is now trivial; $X_{1}=T A$ is already the free T-algebra on A, and $X_{1}^{2}=1$. However the algebra-reflexion sequence at a general (A, a), which when it converges allows us to construct colimits in T-Alg and left adjoints to algebraic functors T-Alg $\rightarrow T^{\prime}-A l g$, does not usually converge at a finite index.

It is however otherwise in the special case of a cocontinuous T :
THEOREM 9. The algebra-reflexion sequence for a cocontinuous monad T stops and gives the reflexion into $\mathrm{T}-\mathrm{Alg}$ at the term X_{2}, the map x_{2}^{3} being the identity.

Proof. We have $X_{0}=A, X_{1}=B, x_{0}=a$. To avoid subscripts write C for X_{2} and $b: T B \rightarrow C$ for x_{1}. Consider the diagram

The bottom is the case $n=0$ of (25), and the top is T of this; since T is cocontinuous, $T b$ is the coequalizer in the top as b is in the
bottom. The vertical squares, except the last, commute by naturality and the associative law for μ. It follows that b. μB coequalizes $T^{2} a$ and $T^{2} a \cdot T^{2} \tau A . T \mu a$, and hence factorizes through their coequalizer $T b$ as $c . T b$ for some $c: T C \rightarrow C$.

We claim that c is the coequalizer x_{2} of $T B$ and $T b . T \tau B . \mu B$. For suppose that some $f: C \rightarrow D$ satisfies $f . T b=f \cdot T b \cdot T \tau B \cdot \mu B$. Then f.Tb factorizes through the coequalizer μB of I and $T \tau B . \mu B$ as $f . T b=g \cdot \mu B$ for some $g: T B \rightarrow D$. Now $f . m b$ coequalizes $T^{2} a$ and $T^{2} a \cdot T^{2} \tau A . T \mu A$, since $T b$ already does so; hence $g \cdot \mu B$ does so. By the commutativity in (26), it follows that g coequalizes Ta. $\mu T A$ and $T a . T T A . \mu A . \mu T A$. Since $\mu T A$ is a retraction, g already coequalizes $T a$ and Ta.TTA. μA, and hence factorizes through their coequalizer b as $g=h b$ for some $h: C \rightarrow D$. Thus $f . T b=g \cdot \mu B=h b \cdot \mu B=h c . T b$, giving $f=h c$ since $T b$ is epimorphic. Since c too is epimorphic because b and μB are, the factorization of f through c is unique, and c is indeed the coequalizer x_{2}.

It remains to show that $X_{2}^{3}=c \cdot \tau C$ is 1 . But $c \cdot \tau C \cdot b=c \cdot T b \cdot \tau T B$ by naturality, which by the commutativity of the right-most square in (26) is $b . \mu B . \tau T B$, which is b. Since b is epimorphic, we do have $c . \tau C=1$.

Reference

[1] G.M. Kelly, "A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on", Bull. Austral. Math. Soc. 22 (1980), 1-83.

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales 2006, Australia.

[^0]: Received 19 April 1982. The author gratefully acknowledges the assistance of the Australian Research Grants Committee.

