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Abstract

Objective: To model cognitive reserve (CR) longitudinally in a neurodiverse pediatric sample using a residual index approach, and to test the
criterion and construct validity of this index. Method: Participants were N= 115 children aged 9.5–13 years at baseline (MAge= 10.48 years,
SDAge= 0.61), and n= 43 (37.4%) met criteria for ADHD. The CR index represented variance in Matrix Reasoning scores from the WASI that
was unexplained byMRI-based brain variables (bilateral hippocampal volumes, total gray matter volumes, and total white matter hypointensity
volumes) or demographics (age and sex). Results: At baseline, the CR index predicted math computation ability (estimate= 0.50, SE= 0.07,
p< .001), and word reading ability (estimate= 0.26, SE= 0.10, p= .012). Longitudinally, change in CR over time was not associated with change
in math computation ability (estimate=−0.02, SE= 0.03, p< .513), but did predict change in word reading ability (estimate= 0.10, SE= 0.03,
p< .001). Change in CR was also found to moderate the relationship between change in word reading ability and white matter hypointensity
volume (estimate= 0.10, SE= 0.05, p= .045). Conclusions: Evidence for the criterion validity of this CR index is encouraging, but somewhat
mixed, while construct validity was evidenced through interaction between CR, brain, and word reading ability. Future research would benefit
from optimization of the CR index through careful selection of brain variables for a pediatric sample.
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The construct of cognitive reserve (CR) is defined as the efficiency,
capacity, and flexibility of cognition, and has been outlined as an
important protective factor in the context of cognitive aging and
neurodegenerative disease (Stern et al., 2020). The mechanisms by
which CR confers resilience to cognitive decline are poorly
understood; however, several demographic/lifestyle factors, such
as total years of education and occupational complexity (Chapko
et al., 2018; Valenzuela & Sachdev, 2006) and participation in
leisure activities (Song et al., 2022), have been identified as
attenuating the effects of brain pathology on cognition later in life.
It has been theorized that cognitive stimulation induced by these
factors results in increased computational flexibility and/or the
recruitment of cognitive structures that may be more resilient to
neurological damage (Stern, 2002).

While the vast majority of research on CR has been conducted
with older adult populations, there has been a shift toward
investigating CR in midlife in order to elucidate its development
across the lifespan. In middle-aged adult samples, studies have
examined reading and vocabulary scores (Soldan et al., 2020),
occupational complexity (Boots et al., 2015), and participation in
cognitively stimulating leisure activities(Ihle et al., 2018; Reed et al.,

2011); findings suggest that increased levels of these factors in
midlife may continue to promote CR, and ultimately, mitigate late-
life cognitive decline.

With precedence established that CR is active in midlife, it is
reasonable to suggest that CR is being built even earlier than this
(e.g., childhood/adolescence), particularly given that most formal
education occurs in the first 18 years of life. While the concept of
pediatric CR remains to be clearly conceptualized, Dennis and
colleagues (2000) postulated a framework delineating biological
risk/resilience factors (i.e., brain reserve capacity and neuro-
biological integrity), and functional risk/resilience factors (i.e.,
cognitive reserve) that are largely in line with theories of reserve
based on older adults (Stern et al., 2020). Further, according to
Dennis et al. (2007), along with functional plasticity, the combined
effect of brain and cognitive reserve is likely to account for the
significant disparities observed in physical, cognitive-academic,
neuropsychological, and psychosocial outcomes in children with
acquired or congenital neurological damage.

Empirical work on CR in child samples is, again, somewhat
limited compared to literature with older adults; although, higher
CR has been shown to predict more favorable outcomes in
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pediatric samples afflicted with various neurological disorders,
such as improved executive functioning in children with acute
lymphoblastic leukemia (Kesler et al., 2010), as well as stable/
improving cognitive performance in pediatric-onset multiple
sclerosis (Pastò et al., 2016). Further, CR has been found to
moderate relationships between brain injury severity and post-
concussive symptoms (Fay et al., 2010) as well as intellectual
functioning (Donders & Kim, 2019) in pediatric samples with
traumatic brain injury.

Findings pertaining to CR in pediatric samples seem intriguing,
although studies have typically operationalized CR through proxy
variables, such as parental (Donders & Kim, 2019) or maternal
education (Kesler et al., 2010), as well as full-scale IQ (Koenen
et al., 2009; Pastò et al., 2016) and other general measures of
cognitive ability (Fay et al., 2010). This methodology presents
challenges in terms of confounding influences (Jones et al., 2011).
For instance, in line with CR theory, maternal education reflects
socioeconomic status of the household, and may indeed facilitate
increased opportunity for exposure to cognitively stimulating
environments; however, socioeconomic status also predicts child
height-for-age, increased health-seeking behaviors, access to
healthcare, and overall child mortality (Desai & Alva, 1998),
which may influence cognitive/diagnostic outcomes through
mechanisms unrelated to CR.

To ameliorate methodological issues related to proxy variables,
research investigating pediatric CR might benefit from an
approach mirroring that of the literature on older adults;
specifically, a residual reserve index (Reed et al., 2010). This
method involves partialling out variance in cognition due to an
individuals’ demographic or structural brain characteristics.
Ultimately, the aim is to generate a more valid operationalization
of CR based on the variance in cognition that is left unaccounted
for by these confounding influences. Further, in the case where
longitudinal cognitive and imaging data is procured, the residual
approach holds another advantage over static proxy variables (e.g.,
parental education) in that it allows the construction of a dynamic
index that can quantify changes in CR over time (Bettcher et al.,
2019; Zahodne et al., 2015).

A residual-based method seems particularly suited to measur-
ing CR in a developing cohort, and further, it provides the
opportunity to apply methods based on established geriatric
residual models (e.g., Bettcher et al., 2019; Reed et al., 2010) to
pediatric samples. In the case where a meaningful CR index could
be generated using the same approach as in older adults, this would
have both theoretical and practical implications for the CR
construct. For instance, success with a residual approach would
imply that CR can be modeled in children as the discrepancy
between expected versus observed cognitive functioning given
certain brain and demographic characteristics – a notion that has
been hitherto alluded but not empirically tested, to our knowledge.
Additionally, the identification of salient brain and demographic
predictors for age groups at both ends of the lifespan would enable
the modeling of CR across childhood and into adulthood, thereby
facilitating the study of its developmental trajectory. Ultimately,
this could serve to inform interventions aiming to facilitate the
“growth” of CR to not only protect children afflicted with
neurological disease, but also bolster the reserve of future
generations and mitigate their susceptibility to late-life cognitive
decline.

Alternatively, in the case where a geriatric CR index did not
show the same level of validity in our pediatric cohort, this too
would have implications; specifically, that the construct of CR, as it

is currently conceptualized in the geriatric literature, does not
directly apply to children in this form and would need to be
operationalized accordingly. Further, regardless of how the
geriatric model performs, a baseline would be established (i.e.,
certain residual model components will have been outlined as
salient or irrelevant for a pediatric cohort), which would inform
future attempts at optimizing – or overhauling, in the case where
the geriatric model does not apply at all – a pediatric residual
reserve index.

The current study utilized a residual approach to operationalise
CR within a pediatric cohort that comprised children both with
and without ADHD; this is a neurodiverse sample previously
shown to exhibit variability in structural brain characteristics (Ball
et al., 2019). The residual model was based on brain and
demographic variables paralleling studies that have successfully
employed this methodology in older adult samples, using latent
variable (Bettcher et al., 2019; Reed et al., 2010; Zahodne et al.,
2015; Zahodne et al., 2013), and regression approaches (Beyer
et al., 2019; Habeck et al., 2017; van Loenhoud et al., 2019).

We aimed to adhere to successful cross-sectional (Reed et al.,
2010), and longitudinal (Bettcher et al., 2019) geriatric residual
models as closely as possible. However, the residual index is
generated based on the decomposition of variance in “cognition”,
and previous studies have selected episodic memory as a cognitive
domain given its sensitivity to a multitude of late-life neurode-
generative processes and diseases (e.g., Alzheimer’s); given the
absence of such processes in children, we opted to decompose a
measure of fluid intelligence to represent cognition. This decision
was based on research previously employing intellectual quotient
(IQ) as a proxy for CR in pediatric samples (Koenen et al., 2009;
Pastò et al., 2016). Further, intelligence – and more specifically, its
fluid component – shows face validity in terms of its ability to
capture the adaptability of cognitive processes that is central to
Stern et al.’s (2020) definition of CR (i.e., the efficiency, capacity,
and flexibility of cognition). That is, fluid intelligence has been
described similarly, with the construct thought to represent novel
problem-solving, abstract reasoning, and ultimately, an individ-
ual’s capacity to “flow” into different forms of cognitive activities
(Carroll, 1993).

In keeping with the approach taken by Reed et al. (2010) in their
pilot study with older adults, we subjected a residual index to tests
of criterion validity as well as more stringent tests of construct
validity. We hypothesized that our residual index would predict
criteria relevant to a pediatric cohort (i.e., academic outcomes; H1),
as well as moderate the relationship between structural brain
characteristics and academic ability (H2), both at baseline and
longitudinally.

Method

This study received ethical approval from the University of
Western Australia’s Human Research Ethics Office (Ref: 4/20/
6290) as well as The Royal Children’s Hospital Human Research
Ethics Committee, Melbourne (Ref: #34071). Research was
completed in accordance with the Helsinki Declaration.

Participants

Longitudinal data were obtained from the Children’s Attention
Project (CAP) cohort, who were recruited by the Murdoch
Children’s Research Institute over a 9-year span (i.e., 2011–2019).
The CAP sample was recruited in Grade 1 during 2011–2012 (i.e.,
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two consecutive cohorts) across 43 primary schools of diverse
socioeconomic status near Melbourne.

Of the initialN= 5922 eligible participants whowere contacted,
3734 returned both parent and teacher screening reports of the
Conners 3 ADHD index. Potential ADHD cases were assessed via
clinical interview, and participants were matched with typically
developing children on sex, school, and age; this resulted in a
sample of 179 children with confirmed ADHD and 212 typically
developing controls from ages 6–8 years, who were followed up in
regular 18-month intervals following initial recruitment. Exclusion
criteria for the CAP study were as follows: intellectual disability,
serious medical conditions, neurological diagnoses, genetic
disorders, moderate-to-severe sensory deficits, and parents with-
out sufficient English language competency (i.e., precluding their
ability to fill out questionnaires and participate in interviews).

The present study utilized data from a subset of the CAP sample,
referred to as the Neuroimaging of the Children’s Attention Project
(NICAP) cohort. This comprised those participants whose parents
provided further consent, prior to their 36-month follow-up, for
them to take part in a neuroimaging substudy, which would be
completed alongside their regular assessments. More detailed
descriptions of the CAP (Sciberras et al., 2013) and NICAP (Silk
et al., 2016) study protocols have been previously published.

Complete datasets (i.e., comprising cognitive assessment and
neuroimaging data from at least two timepoints) were available for
N = 115 children, of which N= 72 (63%) were male. At baseline,
the mean age of the sample was 10.48 (SD= 0.61, min= 9.5,
max = 13), and there were N= 43 (37.4%) participants who met
the criteria for a DSM-IV ADHD diagnosis. Each participant had
received at least two MRI scans, with N= 86 (74.1%) receiving
three scans. In addition, completion of the Matrix Reasoning task
at a minimum of two timepoints were required for all participants,
with N= 85 (73.9%) completing three assessments; no significant
difference in raw matrix reasoning scores at final scan was found
between those completing two assessments (M= 25.63) versus
those completing three (M= 25.73), with t(50)=−0.10, p= .923.

Materials

NIMH diagnostic interview schedule for children: fourth edition
Parents were interviewed with the NIMH Diagnostic Interview
Schedule for Children: Fourth Edition (NIMH DISC-IV; Shaffer
et al., 2000) to ascertain participants’ ADHD diagnostic status at
recruitment (age 7), at imaging baseline (age 10) and at the imaging
36-month follow-up (age 13). The parent-completed version of the
NIMH DISC-IV is a widely employed and psychometrically
validated structured interview for the assessment of a range of
psychiatric conditions, including ADHD and related behaviors, in
children aged 6–17 (Shaffer et al., 2000).

Fluid intelligence
The Matrix Reasoning subtest of the Wechsler Abbreviated Scale of
Intelligence (WASI;Wechsler, 1999) was administered at eachwave,
as part of a more comprehensive cognitive assessment. This subtest
has excellent reliability and validity, andwas selected as ameasure of
fluid intellect (Wechsler, 1999). To minimize the influence of
measurement error, participants’ baseline Matrix Reasoning raw
scores were adjusted to produce “true” scores according to the split-
half reliability of the WASI measure, which, according to previous
research, is estimated at approximately r= .92 (Wechsler, 1999).
This adjustment was done by determining the difference between
observed scores from the samplemean, scaling this difference by the

reliability coefficient, and summing this product with the mean
(Strauss et al., 2006). Similarly, individual Matrix Reasoning score
changes were converted to “true” change scores based on test-retest
reliability of the WASI, which was found to be r= .77 in previous
research (Wechsler, 1999).

Academic achievement
Math Computation and Word Reading subtests from the Wide
Range Achievement Test: Fourth Edition (WRAT-4; Wilkinson &
Robertson, 2006) were utilized as academic outcomes; both
subtests have demonstrated high internal consistency and
alternate-form reliability. Math Computation is a two-part subtest:
Part 1 consists of “oral math” (15 items) while Part 2 comprises a
40-item subtest that involves basic arithmetic (e.g., number
identification, counting, addition, subtraction, multiplication and
division), as well as more advanced mathematical skills (e.g.,
decimals, fractions, and algebra); raw scores ranged from 0 to 55,
with higher scores indicating greater mathematic ability. The
Word Reading subtest also consists of two parts: Part 1 involves
letter recognition (15 items) while Part 2 requires participants to
correctly read aloud words that are shown to them in written
format. A total of 55 words are present on the word card, with the
range of scores being 0–70 for the full subtest; higher scores
indicate more favorable word decoding and recognition ability.
Raw scores from each subtest were z-transformed prior to analysis.

Neuroimaging

Brain images were acquired from the Murdoch Children’s
Research Institute at The Royal Children’s Hospital in
Melbourne. The apparatus utilized was a research-dedicated
3-Tesla Siemens MRI scanner with a 32-channel head coil
(Siemens, Erlangen, Germany). Navigator-based prospective
motion correction was incorporated to mitigate movement
artifacts during imaging. A modified multi-echo magnetization-
prepared rapidly acquired gradient-echo (MEMPRAGE; van der
Kouwe et al., 2008) sequence was used to generate T1-weighted
structural images of the brain. For full sequence and acquisition
details, see Silk et al. (2016).

Data processing

The process of segmenting and parcellating neural structures was
accomplished with the longitudinal FreeSurfer pipeline (Reuter
et al., 2012). The method implemented by Reuter et al. (2012)
involved processing data from each timepoint using the standard
cross-sectional FreeSurfer function, and subsequently, generating
an unbiased within-subjects template based on averaged informa-
tion from each timepoint. Intracranial volumes were extracted
from the cross-sectional analyses (i.e., at baseline), while the
longitudinal pipeline was run to obtain structural information
from several neural regions, including bilateral hippocampal
volumes, total gray matter volumes (i.e., sum of bilateral cortical,
subcortical, and cerebellar gray matter volumes), and total white
matter hypointensity (WMH) volumes. These regions were
selected based on a dynamic residual model shown to effectively
operationalize CR in a geriatric sample (Bettcher et al., 2019).

Statistical analyses

All data cleaning, structuring, and analysis was conducted using
the R programing language (v4.1.1; R Core Team, 2021).
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Generation of baseline and longitudinal CR indices
Matrix Reasoning true scores were entered as dependent variables
in two separate multiple linear regressions with different sets of
predictor variables involving demographic data and MRI-based
brain volumes (i.e., a baseline CR model and a CR change model).

Demographic variables included age (centred at 10) and sex
(coded as male = 0, female= 1). Observed MRI-based brain
variables included standardized total gray matter volumes,
hippocampal volumes, and WMH. Given that the original
distribution was extremely skewed, WMH were log-transformed
to obtain a normalized distribution. In addition, total gray matter,
hippocampal volumes, and WMH volumes were scaled by
intracranial volumes at baseline and adjusted accordingly. CR at
baseline was estimated by regressing standardized Matrix
Reasoning true scores onto demographic variables, as well as the
brain variables, at the time of first scan; baseline CR was
represented by the residual variance in this model.

Change in brain variables over time was estimated by
calculating differences between raw morphometric data (i.e., total
gray matter, hippocampal volume, and WMHs) obtained at
participants’ final scan from their first scan; change variables were
subsequently converted to z-scores and annualized. To estimate a
residual index representing longitudinal change in CR, Matrix
Reasoning difference scores (i.e., difference between Matrix
Reasoning score at first and last MRI scans) were regressed onto
demographic, baseline brain, and brain change variables.

The baseline and longitudinal CR residual models are visualized
in Figure 1.

Missing values
Baseline and longitudinal CR indices were computed using only
observed variables. This was to maintain face validity of the CR
construct and mitigate any bias that would result from deriving a
CR index – which is purportedly representing discrepancy in an
individual’s functioning – that is generated from linear
combinations of other variables in the dataset. Regressions

involving outcome variables were, however, based on imputed
datasets generated via multiple imputation by chained equations
(MICE). Data were assumed to be missing at random. Multiple
imputation was carried out using the R software package “mice”
v3.14.0 with the default command, which generates m = 5
imputed datasets based on a fully conditional specification
approach. Regression models involving outcome variables were
fit across all imputed datasets; subsequently, estimates and
standard errors were amalgamated to produce a single set using
mice’s pool() function.

Predicting academic outcomes
To assess whether the CR index could predict relevant academic
outcomes both cross-sectionally and longitudinally, a series of
multiple linear regression models were run. Cross-sectional
analyses of outcome variables involved each academic variable
(i.e., standardized mathematical computation and word reading
z-scores) entered as dependent variables in two separate multiple
regressions with identical sets of predictors, including demo-
graphics, structural brain variables, and CR at baseline. A
moderation effect of baseline CR on the relationship between
baseline brain characteristics and each academic outcome was also
assessed. Similarly, two longitudinal models were run, each of
which involved either math computation and word reading change
scores as dependent variables. Differences in math computation or
word reading between first and last MRI scan were regressed onto
the CR change variable, as well as baseline CR, baseline brain
variables, and annualized change in brain variables. This was to
estimate unique effects of CR at baseline, as well as CR change, on
change in each academic variable. Similar to the cross-sectional
analysis, a moderation effect of CR change on the relationship
between change in brain variables and change in each academic
outcome, was also analysed.

The described baseline and longitudinal models involving
academic outcomes variables are visualized in Figure 2.

Figure 1. Regression models used to generate the baseline CR index (left) and longitudinal CR index (right). BL= baseline; Adj= adjusted for intracranial volume; GMV= gray
matter volume; HCV= hippocampal volume; logWMH= log-transformed white matter hypointensities.
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Results

Descriptive statistics

Sample characteristics are presented in Table 1, including
demographic information as well as baseline and change (i.e.,
from first to last scan) for cognitive, academic, and MRI-based
brain variables.

Baseline and longitudinal residual models

For the baseline CRmodel, results of a multiple linear regression
indicated that there was no significant collective effect of
structural brain variables and demographics on fluid intellect
(i.e., Matrix Reasoning true score), with F(5, 109) = 2.05,
p = .077, R2 = .09 (adjusted R2 = .04). Regarding the perfor-
mance of individual predictors in the model, baseline gray
matter explained a significant amount of variance in fluid
intellect (estimate = 1.68, standard error [SE] = 0.73, p = .023),
while other baseline predictors including hippocampal volume
(estimate = 0.12, SE = 0.62, p = .847), log-transformed WMHs
(estimate =−0.81, SE = 0.51, p = .115), sex (estimate = 0.97,
SE = 1.14, p = .397), and age (estimate = 0.62, SE = 0.76,
p = .818), were nonsignificant.

For the longitudinal CR model, a multiple linear regression
analysis indicated a significant collective effect of brain change
variables and demographics on change in fluid intellect, with
F(8, 106)= 2.23, p= .031, R2= .14 (adjusted R2= .08). Regarding
individual predictors, only gray matter change exhibited a
significant unique effect on fluid intellect change (estimate= 1.08,
SE= 0.34, p= .002). Other brain change variables yielded no
unique effects on change in fluid intellect, namely hippocampal
volume change (estimate =−0.19, SE= 0.33, p= .557) and
log-transformed WMH change (estimate =−0.40, SE= 0.37,
p= .284), while baseline gray matter (estimate= 0.04, SE= 0.22,
p= .876), baseline hippocampal volume (estimate=−0.14, SE=
0.18, p= .426), baseline log-transformed WMH (estimate= 0.05,

SE= 0.18, p= .804), female sex (estimate= 0.13, SE= 0.35,
p= .716), and age (estimate=−0.43, SE= 0.23, p= .059) also
had no unique effect on change in fluid intellect.

Reserve predicting academic functioning

To investigate whether our calculated index of CR would vary with
related constructs, such as academic ability (H1), CR at baseline
and change were entered with brain and demographic variables as
predictors of math computation and word reading ability, in a
series of multiple linear regressions. Interaction effects between CR
and brain characteristics on academic variables were also assessed
in order to address H2. Full regression outputs can be seen in the
online Supplemental Materials.

Math computation
Baseline CR was found to positively predict baseline math
computation (estimate= 0.50, SE= 0.07, p< .001), as was baseline
gray matter volume (estimate= 0.24, SE= 0.12, p= .040), while
age negatively predicted math computation change (estimate=
−0.11, SE= 0.04, p= .017). Change in CR was not found to be
related to change in math computation ability (estimate=−0.02,
SE= 0.03, p= .513).

Word reading
Both baseline CR (estimate= 0.26, SE= 0.10, p= .012) and
baseline gray matter (estimate= 0.35, SE= 0.17, p= .041), were
found to positively predict baseline word reading. In addition,
change in CR was found to positively predict change in word
reading ability (estimate= 0.10, SE= 0.03, p< .001), Further, an
interaction effect was also present between CR change and WMH
change on change in word reading ability (estimate= 0.10,
SE= 0.05, p= .045); this is plotted in Figure 3. The plot suggests
that for individuals with higher change in WMH volume, word
reading trajectories are more favorable for those with higher rather
than lower change in CR.

Figure 2. Regression models assessing unique effects of brain characteristics, demographics, and cognitive reserve on academic outcomes, as well as moderation of cognitive
reserve on brain and academic outcomes, at baseline (left) and longitudinally (right). BL= baseline; Adj = adjusted for intracranial volume; GMV = gray matter volume;
HCV= hippocampal volume; logWMH= log-transformed whitematter hypointensities; Academic Outcome= Math Computation or Word Reading z-scores from theWRAT-4 (each
entered as dependent variables in separate models).
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Discussion

The current study sought to operationalize an index of CR in a
diverse pediatric cohort comprising children with and without
ADHD. It was hypothesized that our CR index would satisfy
criterion validity checks; specifically, that CR would predict
academic variables at baseline and longitudinally (H1). Baseline CR
predicted math computation and word reading ability at baseline,
but only word reading ability over time, lending partial support to
H1. It was also predicted that our CR index would moderate the
relationship between structural brain characteristics and academic
variables cross-sectionally, as well as over time (H2). Partial
support for this hypothesis was also observed, where change in CR
moderated the relationship between change in WMH volume and
change in word reading ability.

Based on results from a multiple linear regression, baseline CR
predicted baseline math computation scores with a strong effect
(.50), although, change in CR did not predict change in math
computation, possibly suggesting that while math computation
and CR are found to correlate cross-sectionally at specific junctures
in the developmental period, the factors contributing to change in
CR may not overlap with those conferring changes in numerical
reasoning ability across this phase of development (e.g., age
10–13). This result is somewhat in line with those of Arcara et al.
(2017), who noted that mathematical ability was not related to CR
in a sample of older adults; instead, they found that aging
performance in mathematics was mostly attributable to level of
education, the latter of which was largely constant in our sample.

Regarding word reading ability, both baseline CR and CR
change predicted baseline word reading and change in word
reading ability, respectively. This result is particularly encouraging
regarding the criterion validity of the CR index. Word reading

ability demands a relatively intensive knowledge-base of phono-
logical rulesets and prerequisite exposure to words, and is often
used to represent premorbid ability and crystallised intelligence;
both of these constructs have been previously conceptualized as
adjacent to CR, given that the adaptability/efficiency of one’s
cognition is likely to be related to the accrual of crystallised
knowledge and strategies acquired through cognitive stimulation
and exposure to learning environments (Alexander et al., 1997;
Richards & Sacker, 2003).

In addition, change in CR was found to moderate the effect of
WMHvolume change on word reading trajectory. Individuals with
low change (−1 SD) in WMH volume performed similarly
regardless of change in CR across time; however, those with higher
change (1 SD) in WMH volume and higher change in CR (1 SD)
showed a more favorable word reading trajectory compared to
those with low change in CR (−1 SD). The capacity for change in
CR to moderate the relationship between change in a measure of
brain pathology and change in an academic outcome, in a pediatric
sample, is a novel finding. This result demonstrates preliminary
evidence of construct validity of the CR index, and is in line with
how we would expect the index to behave in the case where it had
appropriately operationalized the CR construct. Although, the
aetiological mechanisms and functional implications represented
byWMHs in pediatric samples requires elucidation, given that this
mode of neuropathology is typically associated with age-related
degenerative processes (e.g., hypertension, diabetes, and arterio/
atherosclerosis). In saying this, some research has linked increased
WMHwith higher prevalence of suicidality (Ehrlich et al., 2004), as
well as ADHD, conduct disorder, and depression (Lyoo et al.,
2002), in pediatric samples.

Implications

Our findings satisfy the foundational aims of the current study,
which was predominantly concerned with initial proof-of-concept;
that is, the generation of a meaningful residual index in a pediatric
cohort based on a methodology developed to measure CR in older
individuals. Indeed, our adapted pediatric residual index showed a
somewhat similar performance to the residual geriatric model
upon which it was based: Reed and colleagues’ (2010) index also
predicted word reading ability independently of brain. Further,
numerous papers have shown CR to moderate the association
between change in structural brain characteristics and change in
cognition (Bettcher et al., 2019; Reed et al., 2010; Zahodne et al.,
2015), within older adult samples. Taken with findings from
geriatric studies, there seem to be two possible implications: firstly,
it seems plausible that CRmay be consistently operationalized with
a residual approach at both ends of the lifespan; secondly, in terms
of operationalizing CR in children, fluid intellect appears to be a
suitable substitute for cognitive variables (e.g., episodic memory
performance) that are typically employed in geriatric residual
models.

Limitations & future research

The results of the current study are preliminary, and any
implications are pending more rigorous validation of the residual
index, as well as optimization in terms of its “purity” as a measure
of CR. Indeed, perhaps the most salient shortcoming of the study
relates to the relatively low amount of variance explained in fluid
intellect for both baseline and longitudinal CR models, compared
to past research (Reed et al., 2010). Our CR index seems to mostly
represent variance in fluid intellect, suggesting that results may

Table 1. Sample characteristics for cognitive, academic, and brain variables

All (N= 115)

Age (years)
Baseline, Mean (SD) 10.48 (0.61)

Female
n (%) 43 (37.40%)

ADHD diagnosis
n (%) at baseline 41 (35.70%)
n (%) at final scan 31 (27.00%)

Follow-up time
Mean (SD) 2.56 (0.67)

WASI Matrix Reasoning score
Baseline, Mean (SD) 22.40 (5.38)
Change, Mean (SD) 3.30 (3.85)

WRAT-4 Word Reading score
Baseline, Mean (SD) 45.06 (8.32)
Change, Mean (SD) 8.15 (4.46)

WRAT-4 Math Computation score
Baseline, Mean (SD) 31.14 (4.95)
Change, Mean (SD) 6.48 (4.32)

Intracranial Volume (cm3)
Baseline, Mean (SD) 1590.97 (139.81)

Gray Matter Volume (cm3)
Baseline, Mean (SD) 788.92 (62.99)
Change, Mean (SD) −0.96 (16.36)

WMH (cm3)
Baseline, Mean (SD) 0.97 (0.42)
Change, Mean (SD) 0.23 (0.18)

Number of visits
n (%) with two visits 29 (25.22%)
n (%) with three visits 86 (74.78%)

Note: SD= standard deviation; ADHD= attention-deficit/hyperactivity disorder; WMH=white
matter hypointensities; MRI=magnetic resonance imaging.
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instead pertain to this construct, rather than CR. Having said this,
if the current selection of MRI-based brain variables (i.e., gray
matter volume, WMHs, and hippocampal volume) and demo-
graphic variables (i.e., age and sex), are explaining only 9% of the
variance in fluid intellect at baseline and 14% of the variance in its
longitudinal change, this raises the question as to what other
factors may be constituting such substantial residual variance.

In saying this, the study shows several strengths, including
rigorous study recruitment procedures, as well as the compre-
hensive neuroimaging, cognitive, and academic data procured at
multiple timepoints, which are necessary to generate a dynamic
residual CR index (i.e., that which can track changes in CR over
time; Bettcher et al., 2019).

Further research is necessary to develop a residual model that is
optimized for children, which may involve, for instance, careful
selection of brain variables that sufficiently partial out brain
reserve. A model with higher face validity (e.g., a “purer” CR
index), will facilitate the interpretability of analyses concerning
criterion and construct validity, and subsequently, permit more
rigorous inquiry regarding its clinical utility among pediatric
samples. Notably, while the participants in this study were largely
representative of a community sample, there is a high portion of
children with ADHD included by design. This likely provided great
variance in the measures, although the specific effect on CR is
unknown and was not specifically tested. Following optimization
of the residual model for a pediatric cohort, future research would
benefit from investigating associations with diagnostic status and/
or symptom severity among children with neurodevelopmental

disorders (e.g., ADHD). Ultimately, the effective operationaliza-
tion of a dynamic residual CR index in children will likely prove to
be a useful clinical tool, serving to not only elucidate prognosis and
identify children more at risk for cognitive sequelae in brain-based
medical conditions, but also facilitate research aiming to
disentangle the contributions of functional and structural aspects
of the brain thatmight confer neuroprotection among children and
adolescents.

Conclusion

The current study has provided the first step toward the
operationalization of a dynamic residual model of CR in a
pediatric sample. Utilizing a residual model shown to be successful
for geriatric populations, criterion validity was found to somewhat
mixed, but encouraging. Indeed, the present study is the first to
show change in CR to track change in word reading ability across a
pediatric developmental period. Further, change in CR was also
found to moderate the influence of WMH volume change on word
reading ability, exerting a protective effect. Importantly, these
findings were obtained with a residual model that seemed to be
largely unoptimized, with the selected brain and demographic
variables predicting minimal variance in our residualised variable.
Future research should aim to adapt themodel to a pediatric cohort
for the purpose of improving criterion and construct validity, and
ultimately, to yield a model that may both enable investigation into
the dynamic and developmental nature of CR, as well as facilitate
clinical application of CR across the lifespan.

Figure 3. Interaction between change in cognitive reserve by change in log-transformed white matter hypointensity volume (WMH) on word reading ability scores.
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