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THE HEXAGONAL PACKING LEMMA AND 
DISCRETE POTENTIAL THEORY 

BY 

DOV AHARONOV 

ABSTRACT. One of the questions concerning the Hexagonal Packing 
Lemma ([1], [3], [4]) is the rate of convergence of Sn. It was suggested 
in [3] and [4] that Sn = 0(1/n). In the following we prove this conjecture 
under the additional condition of some "nice" behaviour of the "circle 
function". 

1. Introduction. In [5] Burt Rodin and Dennis Sullivan proved Thurston's con
jecture that his scheme converges to the Riemann mapping. The Hexagonal Packing 
Lemma ([3], [4]) is a key result in this proof. A weaker result, which is closely related 
was earlier proved in [1]. In [5], Rodin and Sullivan, suggested, following ideas of 
Thurston, to investigate the rate of convergence of Sn. It was suggested ([3], [4], [5]) 
that Sn — 0{\/n). Rodin used discrete potential theory, as developed by him for the 
Hexagonal case, to find some interesting results concerning this question, and related 
problems. In any case, it seems that for the time being nothing is known about the rate 
of convergence of Sn (except, of course, the deep result, Sn —> 0, which is equivalent 
to the Hexagonal Packing Lemma [5]). 

In what follows we use freely the notations of Rodin in [3] and [4]. Our aim in the 
following note, is to show that under certain restrictions, the conjecture Sn = 0{\/ri) is 
indeed, true. The main idea is the observation that if both u and \ju are subharmonic 
for a positive w, then u behaves "similarly" to an harmonic function in some sense 
that will be clear later. 

2. Preliminary results. We first quote some results that will be needed for our 
purposes. 

THEOREM A. Let HCP\ packing consists of an inner circle of radius r, surrounded 
by six tangent circles of radii {r\,..., r^}, Then 

1 6 

(2.1) r~6^rj 

(2.2, I S i £ l 
r 6 ^ ^ rj 

y=i J 
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Both statements appeared in [1]. The proof of (2.2) appeared in [1] and the proof 
of (2.1) appeared in [3]. 

THEOREM B. (Rodin, [3], Prop. 3.4). 
Let u, v be functions defined on HN, the first N generations of the Hexagonal 

lattice of mesh h. Then 

(2. 3) YJ v(a)Dhu(a) - u(a)Dhv(a) = — J^ v(a)u((3) - u(a)v(J3) 

where the second sum is over all pairs (a,/J) such that a G d//#-i, (3 E d//# and a 
is a neighbor of (3. 

3. Statement of the result. Following Rodin, we denote by HCPN the first N 
generations of the regular hexagonal circle packing. Also, HCP'N will be a circle 
packing that is combinatorially isomorphic to HCP^. We now claim 

THEOREM 3.1. There exists an absolute constant p > 0, independent of n, s.t. if the 
ratio Rn/rn < 1 + p, then, indeed, Sn = 0(l/ri) 

In the above Rn(rn) stands for the maximum (minimum) of the radii of the circle 
packing HCP'N 

We first prove the following 

LEMMA 3.2. Let u > 0 and Dxu ^ 0, D\(l/u) ^ 0. 

Then 

(3.1) , n / 1 M < o /? V ^ (^ + ^ ~ U^°^2 

\Dx(\ogu)\ ^ 2 / 3 > 
^—' u(a + or)w(a) 
£=0 

PROOF OF LEMMA 3.2. Denote v = logw. We have: 

r u(a + ujk)] 
D1v = 2 / 3 ^ 1 o g 

5 

= 2/3 E log 
*=0 

1 + 

«(a) 

(u(a + ujk) — w(a)) 
w(a) 

But 1/6 log[7r^0(l +&)] = log[7rf=0(l + /3,)]1/6 ^ log[l + E ^ o % 6 ] ^ £y=o#/6. 

provided 1 + /3y ^ 0, Yl%oPj = °- Using this for /3y = [«(a W)-w(a ) ] /w(a ) (Noting 

that YlUoPj = ° f o l l o w s f r o m D\u = 0) w e get: 

(3.2) D!(v)S(2/3)2 
A=0 

V-A w(a + u/) — u(a) 

u(a) 
= D\(u)/u. 
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We also have: 

D\(u)u + D\(u l)/u 1 = ( 2 / 3 ) > —— 7-— 

as follows by a simple calculation. Hence, using D\(u~l)/u~l ^ 0, 

^ ^ n < n / W < n / ^ V " w(a + a / ) - w(a))2 

(3.3) OS Di (w)/w ^ (2/3) > 
z—' w(aOw(a + ur) /r=0 

Applying (3.3) to (3.2) we get 

Di(v) ^ (2/3) > 
^ u(a)u(a + cjk) 

But 

f 1 l-]2 

\ U(CÏ + ufi} U(CY} i 
k=0 

D{ log(l/ii) = - / ) i logW ^ (2/3) ] £ f * - - M / ( 
*-i \u(a + Ljk) u(a)J I V 

1 1 
u{a) u(a + cjk) 

(changing the roles of u and 1/w), and thus the lemma is proved. 

REMARK. It is worthwhile to note that a similar statement to the above lemma 
is easily established also in the continuous case. Indeed, if T — log u, Au ^ 0, 
A(l/w) ^ 0 for a positive u, it follows by an easy calculation that \AT\ fH r 2 + T2, 
where A = (d2/dx2) + (d2/dy2) is the Laplacian operator. (In fact, the same property 
holds in Rn, as follows at once). 

PROOF OF THEOREM 3.1. The proof will be by induction on the number of genera
tions. Assume that the theorem has been proved up to N — 1, i.e. for some A > 0 

(3.4) | S * | < p l^k^N-l 

Let v = log u, where u is the "circle function". Let 1 ^ N\ < N — 1 be fixed later. 
By Lemma 3.2 and the induction assumption we have 

4A2 

(3.5) |£>i(v)|^ (N -N{ - l)2 

On the diagonal lattice //L(l, N\) (where we used, as above, Rodin's notation, [3] p. 
274). 

We now consider a discrete harmonic function h which is defined on //L(l, N\) 
and agrees with v on the boundary 9//L(l, N\). 
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Apply Th.B for the two functions </> = v — h and the discrete Green's function's 
g/v,(a, 0) for the domain //L(l, N\). We get 

(3.6) Y, [Dxv{a)gNx(a, 0)-DlgNl(a, 0)c/>(a)] = 0 
aeHN 

Here we have used the fact that both <f> and gux vanish on the boundary. Also D\v 
D\{v — h) — D\(j>, since h is harmonic by our construction. Similarly, 

(3.7) J2 [DMa)gNi(a, \)-DlgNl(a, !)<£(<*)] = 0 
aeHN 

It is not difficult to deduce from Rodin's results (cf. [3] Th. 3.2 and Prop. 3.3) that 
there exists an absolute constant B such that 

(3.8) \gNl(a, !)-£*.(<*, 0 ) | < £ / ( | a | + l) 

If we subtract (3.6) from (3.7) we get, using (3.5) and (3.8), that: 

4A2B 
(3.9) l ( v - / z ) ( 0 ) - ( v - / z ) ( l ) | ^ < 

(N -Ni - l)2 •(6N0 

(Recall that \D\gN](a1 0)| = 2\/3/3 for a = 0 and equals zero other wise. [3], p. 
275). 

We now claim that there exists an absolute constant C such that 

(3.10) \h(0)-h(\)\< 
C\og(MN/mN) 

/V, 

(M/v, mN where defined in the statement of the theorem). Indeed, consider the function 
hi =h-\og m/v. Obviously, |/2i(0)-/?i(l)| = \h(0)-h(\)\. Also 0 ^ hx ^ log MN/mN 

which follows at once from the way that h was defined. It is well known that 

(3.11) 
MO)- / ! , ( ! ) 

*i(0) 
< 

D 

where D is an absolute constant (cf. [2] Th. 5 for a similar statement). In [3] (Th. 3.5) 
Rodin proved a "mean value property" which we apply for h\. Thus 

(3.12) | /z,(0) |<£ log (MN/mN) 

for some absolute constant E. Hence (3.10) follows at once from (3.11) and (3.12). 
In order to finish the induction proof we have to find an estimate for |v(0) — v(l) 

using (3.9) and (3.10). Indeed. 

log 
M0) 

v(0 ) -v ( l ) log 1 + 
u(\)-u(0) 

w(0) 
>F 

I I ( 1 ) - ( i i ( 0 ) 

"(0) 
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for some absolute constant F > 0 (assuming an obvious limitation on the growth of 
|(w(l) - K(0))/K(0)|). Hence we get from (3.9) and (3.10): 

(3.13) 
M ( 1 ) - M ( 0 ) 

II(0) 

d log (Myy/myy) + 5 , A 2 ^ 
TVi (N-Nx-\)

2 

where #1 and Ci are absolute constants depending on the previous constants. It now 
remains to show that if N\ is chosen properly, and if log (M/v/ra/v) is small enough 
then 

3 4 d log (NN/mN) BXA2NX < A 
Nx (N -Nï-l)2 ~ N ' 

But Myv/m^ < 1 + p implies log (M^/m/v) < p and thus (3.14) will be established if 

(3.15) Ç1R + _B^NL__ A 
v } Nx (N-Nx-l)

2 N 

for a small enough p. It will be convenient to write Nx = XN/A and to choose the 
optimal A instead of the optimal N\. We thus have from (3.15). 

CxpA BXA2XN < A 
NA + A(N - XN/A - l)2 = JV ' 

Hence 
CiP . _ _ J M _ _ < , 

A ( l - A / A - l / N ) 2 ~ ' 
If we make the obvious restriction X/A+N~] ^ 1/2 we get CipA-1 + 4#iA ^ 1. We 
now take A2 = Cxp/4BX to get the desired restriction p = (\6B\C\)~l. Since B\ and 
Ci are absolute constants independent of N our proof is complete. 

REMARK. Obviously N\ has to satisfy N\ ^ 1. Also N\ has to be an integer. While the 
limitation 'Wi is an integer" is a minor technical detail, the limitation N\ ^ 1 needs 
some care. We have: 

X = TTT = 7 7 T ( 1 6 5 1 C I ) 
4£J 45i 64£f 

Hence A = (8#i)_l and Nx = N/SB\A. It follows that Ni è 1 is equivalent to 
A/N Û l/SB\. But since S# —* 0 is known and B\ is an absolute constant the 
condition S^ = (8Z?i)-1 is obviously satisfied for N large enough. (In fact we don't 
need the full strength of the result SN —* 0, but only the fact that Sn is "small enough", 
i.e. SN ^ (SBx)-

{ for N sufficiently large). 
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ADDED IN PROOF. Recently He, Zheng-Xu proved similar results using an entirely dif
ferent method. 
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