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Abstract. We present a derivation of the dispersion relation for electrostatic oscil-
lations in a zero-temperature quantum plasma, in which degenerate electrons are
governed by the Wigner equation, while non-degenerate ions follow the classical
fluid equations. The Poisson equation determines the electrostatic wave potential.
We consider parameters ranging from semiconductor plasmas to metallic plasmas
and electron densities of compressed matter such as in laser compression schemes
and dense astrophysical objects. Owing to the wave diffraction caused by over-
lapping electron wave function because of the Heisenberg uncertainty principle in
dense plasmas, we have the possibility of Landau damping of the high-frequency
electron plasma oscillations at large enough wavenumbers. The exact dispersion
relations for the electron plasma oscillations are solved numerically and compared
with the ones obtained by using approximate formulas for the electron susceptibility
in the high- and low-frequency cases.

1. Introduction

The field of quantum plasma physics is becoming of increasing current interest
(Bonitz et al. 2003; Manfredi 2005; Shukla 2006, 2009; Shaikh 2007; Crouseilles
2008; Serbeto 2008), motivated by its potential applications in modern technology
(e.g. metallic and semiconductor nanostructures including metallic nanoparticles,
metal clusters, thin metal films, spintronics, nanotubes, quantum well and quantum
dots, nano-plasmonic devices, quantum X-ray free-electron lasers and the like).
In dense quantum plasmas and in the Fermi gas of metals, the number densities
of degenerate electrons are extremely high so that their wave functions overlap,
and the electrons therefore obey the Fermi–Dirac statistics. The collective oscil-
lations in quantum plasmas have been studied by several authors in the past
(Bohm 1952; Klimontovich and Silin 1952; Bohm and Pines 1953; Ferrel 1957;
Klimontovich and Silin 1961; Pines 1961) with applications to the Fermi plasmas
in metals and semiconductors and to electrostatic oscillations in quantum pair plas-
mas (Mendonça et al. 2008). Watanabe (1956) studied experimentally the Bohm–
Pines dispersion relation of the electron plasma oscillations bymeasuring the energy
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loss of electrons by the excitation of collective modes in metals. The Fermi degen-
erate dense plasma may also arise when a pellet of hydrogen is compressed to many
times the solid density in the fast-ignition scenario for inertial confinement fusion
(Azechi et al. 1991, 2006; Son and Fisch 2005; Lindl 1995; Tabak et al. 1994, 2005).
Since there has been an impressive development in the field of short pulse petawatt
laser technology, it is highly likely that such plasma conditions can be achieved
by intense laser pulse compression using powerful X-ray pulses. Here ultrafast
X-ray Thomson scattering techniques can be used to measure the features of laser-
enhanced plasma lines, which will, in turn, give invaluable information regarding
the equation of state of shock-compressed dense matters. Recently, spectrally
resolved X-ray scattering measurements (Kritcher et al. 2008; Lee et al. 2009) have
been performed in dense plasmas, allowing accurate measurements of the electron
velocity distribution function, temperature and ionization state and of plasmons in
the warm dense matter regime (Glenzer et al. 2007). This novel technique promises
to access the degenerate, the closely coupled and the ideal plasma regime, making
it possible to investigate extremely dense states of matter, such as the inertial
confinement fusion fuel during compression, reaching super-solid densities.
In this paper, we present a study of the dispersion properties of electrostatic

oscillations in a dense quantum plasma, by employing the Wigner–Poisson model.
We point out the differences between different regimes comprising the relatively
low-density regime of semiconductor plasmas and the higher-density regimes cor-
responding to metallic electron densities and laser-compressed plasmas, as well as
plasmas in dense astrophysical objects such as white dwarf stars.

2. Derivation of the dispersion relation for the Wigner–Poisson
system

We here present a derivation of the dispersion relation for electrostatic waves in
a degenerate quantum plasma. The electron dynamics is governed by the Wigner
equation

∂f1

∂t
+ v · ∇f1 = − iem3

e

(2π)3�4

∫ ∫
d3λd3v′ exp

[
i
me

�
(v− v′) · λ

]

×
[
φ1

(
x+

λ

2
, t

)
− φ1

(
x− λ

2
, t

)]
f0(v′), (2.1)

where the electrostatic potential φ is given by the Poisson equation

∇2φ1 =
e

ε0

(∫
f1d

3v − ni1

)
. (2.2)

Here e is the magnitude of the electron charge; me is the electron mass; � is the
Planck constant divided by 2π; and ε0 is the permittivity of free space. Further-
more, f0 and n0 denote the equilibrium electron distribution function and the
electron number density, respectively, while f1 , φ1 and ni1 denote the perturbed
electron distribution function, the electrostatic potential and the ion number dens-
ity, respectively.
Assuming that f1 , φ1 and ni1 are proportional to exp(−iωt + ik · x), where ω is

the frequency and k is the wave vector, we respectively obtain the following from
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(2.1) and (2.2):

(ω − k · v)f1 =
em3

e

(2π)3�4

∫ ∫
d3λd3v′ exp

[
i
me

�
(v− v′) · λ

]

×
[
eik·λ/2 − e−ik·λ/2

]
f0(v′)φ1(ω,k), (2.3)

k2φ1 = − e

ε0

(∫
f1d

3v − ni1

)
. (2.4)

Since ions are non-degenerate in quantum plasmas, for ω � kVT i we have

ni1 = −ε0k
2

e
χiφ, (2.5)

where

χi = −
ω2
pi

ω2 (2.6)

is the ion susceptibility; VT i is the ion thermal speed; and ωpi is the ion plasma
frequency.
Rewriting (2.3) as

(ω − k · v)f1 =
iem3

e

(2π)3�4

∫ ∫
d3λd3v′

×
{

exp
[me

�
(v− v′) · λ + ik · λ/2

]

− exp
[
i
me

�
(v− v′) · λ − ik · λ/2

]}
f0(v′)φ1(ω,k) (2.7)

and performing the integration over λ space, we have

(ω − v · k)f1 =
em3

e

�4

∫
d3v′

{
δ

[
me

�
(v− v′) +

k

2

]

−δ

[
me

�
(v− v′) − k

2

]}
f0(v′)φ1(ω,k), (2.8)

where δ is the Dirac delta function. Now, the integration can be performed over
the v′ space, obtaining the result

(ω − k · v)f1 =
e

�

[
f0

(
v+

�k

2me

)
− f0

(
v− �k

2me

)]
φ1(ω,k). (2.9)

Eliminating ni1 and f1 in (2.4) with the help of (2.5) and (2.9), we obtain the
dispersion relation

1 + χe + χi = 0, (2.10)

where the ion susceptibility is given by (2.6), and the electron susceptibility is given
by

χe = −4πe2k2

�

∫ ⎡
⎣f0

(
v+ �k

2m e

)
(−ω + k · v) −

f0

(
v− �k

2m e

)
(−ω + k · v)

⎤
⎦ d3u. (2.11)
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Suitable changes of variables in the two terms in square brackets in (2.11) now give

χe = −4πe2k2

�

∫ [
1

[−ω + k · (u− �k
2m e

)]
− 1

[−ω + k · (u+ �k
2m e

)]

]
f0(u)d3u, (2.12)

which can be rewritten as

χe = −4πe2

me

∫
f0(u)

(ω − k · u)2 − �2 k 4

4m 2
e

d3u. (2.13)

This expression was also derived by Bohm and Pines (1953), using a series of
canonical transformations of the Hamiltonian of the system (see for example the
dispersion relation (57) in their paper), and by Ferrel (1957), using the method of
self-consistent fields.
We now choose a coordinate system such that the x axis is aligned with the wave

vector k. Then, (2.13) takes the form

χe = −4πe2

me

∫
f0(u)

(ω − kux)2 − �2 k 4

4m 2
e

d3u. (2.14)

We next consider a dense plasma with degenerate electrons in the zero-
temperature limit. Then, the background distribution function takes the simple
form

f0 =

{
2
(

m e
2π�

)3
, |u| � VFe,

0, elsewhere,
(2.15)

where VFe = (2EFe/me)1/2 is the speed of an electron on the Fermi surface and
EFe = (3π2n0)2/3

�
2/(2me) is the Fermi energy. The integration in (2.14) can be

performed over velocity space perpendicular to ux , using cylindrical coordinate in
uy and uz , obtaining the result

χe = −4πe2

me

∫
F0(ux)

(ω − kux)2 − �2 k 4

4m 2
e

dux, (2.16)

where

F0(ux) =
∫ ∫

f0(u)duyduz = 2π

∫ √
V 2
Fe−u2

x

0
2
( me

2π�

)3
u⊥ du⊥

=
{

2π
(

m e
2π�

)3 (V 2
Fe − u2

x), |ux | � VFe,
0, elsewhere.

(2.17)

It is interesting to note that the distribution, which is flat topped in three
dimensions, becomes parabola shaped in the remaining velocity dimension after
the integration over the two perpendicular velocity dimensions. Hence, the electron
distribution function F0(ux) in (2.17) may support Landau damping if the pole of
the denominator in (2.16) falls into the range of negative slope of F0(ux) in velocity
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space. Equation (2.16) can be written as

χe = −8π2e2

me

( me

2π�

)3
∫ VV e

−VFe

V 2
Fe − u2

x

(ω − kux)2 − �2 k 4

4m 2
e

dux

=
3ω2

pe

4V 3
Fe

∫ VV e

−VFe

V 2
Fe − u2

x

(ω − kux)2 − �2 k 4

4m 2
e

dux. (2.18)

Performing the integration over velocity space, from (2.18) we have

χe =
3ω2

pe

4k2V 2
Fe

{
2 − me

�kVFe

[
V 2
Fe −

(
ω

k
+

�k

2me

)2
]

log

∣∣∣∣∣
ω
k − VFe + �k

2m e

ω
k + VFe + �k

2m e

∣∣∣∣∣
+

me

�kVFe

[
V 2
Fe −

(
ω

k
− �k

2me

)2
]

log

∣∣∣∣∣
ω
k − VFe − �k

2m e

ω
k + VFe − �k

2m e

∣∣∣∣∣
}

. (2.19)

In the derivation of (2.19), we have assumed that the waves are only weakly
damped, so that when integrating over poles, only the principal parts of the in-
tegrals are kept. In the limit �k/me → 0, from (2.19) we have

χe =
3ω2

pe

k2V 2
Fe

(
1 − ω

2kVFe
log

∣∣∣∣ω + kVFe
ω − kVFe

∣∣∣∣
)

, (2.20)

where it holds that ω is real and ω/k > VFe. Hence in this ‘semi-classical’ limit,
we do not have Landau damping. (We call (2.20) ‘semi-classical’ because it can be
derived from the Vlasov equation for electrons using the flat-topped background
electron distribution function given by (2.15).)

3. Electron oscillations

We here consider high-frequency (ω � ωpi) oscillations so that χi � 1 in (2.6). Then,
expanding (2.19) for small wavenumbers up to terms containing k4 , we obtain from
(2.10) the dispersion relation

ω2 = ω2
pe +

3
5
k2V 2

Fe + (1 + α)
�

2k4

4m2
e
, (3.1)

where α = (48/175)m2
eV

4
Fe/�

2ω2
pe ≈ 2.000(n0a

3
0)

1/3 and a0 = �
2/mee

2 ≈ 53×10−10 cm
is the Bohr radius. For a typical metal such as gold, which has a free-electron
number density of n0 = 5.9 × 1022 cm−3 , we would have α ≈ 0.4. For the free-
electron density in semiconductors, which is many orders of magnitude less than in
metals, α is much smaller and can safely be dropped compared with unity. However,
for electron plasma oscillations in dense matters, α could be larger than unity. It
should be noted that the term proportional to α in (3.1) was not discussed by Bohm
and Pines (1953) and others but was, however, obtained and discussed by Ferrel
(1957) in his study of collective electron oscillations in metals (see (10) in his paper,
where, in his notation, it should be (Δv2/v2

0 )2 = 12/175).
It is interesting to note that (2.19) may admit Landau damping above a certain

critical wavenumber, k >kcr and corresponding frequency ω >ωcr . This occurs if
the denominator in the integral of (2.18) vanishes within the integration limits
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ux = ±VFe. For the critical wavenumber and frequency, we have

ω = ωcr = kcrVFe +
�k2

cr

2
me. (3.2)

Inserting this expression into (2.19) we note that the term involving the logarithm
on the second line of (2.19) vanishes, and we obtain the critical wavenumber k = kcr

from

1 +
3ω2

pe

4k2
crV

2
Fe

[
2 −

(
2 +

�kcr

meVFe

)
log

(
1 +

2meVFe
�kcr

)]
= 0. (3.3)

A careful examination of the dispersion relation for k > kcr , should involve Landau
contours to correctly take into account Landau damping. Here we are interested in
low- and high-frequency waves in the weakly damped regime and have postponed
the investigation of Landau damping of the system to future studies.

4. Ion oscillations

In a quantum plasma system composed of mobile ions and inertialess electrons,
we have the possibility of low-phase-speed (in comparison with the Fermi electron
thermal speed) ion-acoustic-like oscillations. For low-frequency (ω � kVFe) waves,
from (2.19) we have

χe =
3ω2

pe

2k2V 2
Fe

[
1 − me

�kVV e

(
V 2
Fe − �

2k2

4m2
e

)
log

∣∣∣∣∣VFe − �k
2m e

VFe + �k
2m e

∣∣∣∣∣
]
. (4.1)

For small wavenumbers �k � meVFe, we have the approximate electron susceptib-
ility, up to terms containing factors of k4 ,

χe ≈
3ω2

pe

k2V 2
Fe + �k4/12m2

e
. (4.2)

Using the dispersion relation

ε(ω, k) = 1 + χe + χi = 0, (4.3)

we employ (2.6) to obtain the frequency of ion acoustic waves as

ω =
ωpi

(1 + χe)1/2 , (4.4)

with χe given by (4.1) or (4.2). For χe given by the approximate expression (4.2),
we have

ω =
ωpi(k2V 2

Fe + �
2k4/12m2

e )
1/2

(3ω2
pe + k2V 2

Fe + �2k4/12m2
e )1/2 =

kCs(1 + �
2k2/12m2

eV
2
Fe)

1/2

(1 + k2V 2
Fe/3ω2

pe + �2k4/36m2
eω

2
pe)1/2 ,

(4.5)
where Cs =

√
meV 2

Fe/3mi is the Fermi ion acoustic speed. We note that ω → ωpi
as k → ∞.

5. Density regimes of the system

We note that there is a critical density parameter in the system. When the inter-
particle distance is smaller than the Bohr radius, then the quantum statistical
pressure dominates the wave dynamics, while in the opposite case, the quantum
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tunnelling effects become important when the wavelength is comparable to the
inter-particle distance. This can be seen by normalizing the system such that
ω/ωpe = Ω and kVFe/ωpe = K. Then, (2.19) takes the form

χe =
3

4K2

{
2 − β

K

[
1 −

(
Ω
K

+
K

2β

)2
]

log

∣∣∣∣∣
Ω
K − 1 + K

2β

Ω
K + 1 + K

2β

∣∣∣∣∣
+

β

K

[
1 −

(
Ω
K

− K

2β

)2
]

log

∣∣∣∣∣
Ω
K − 1 − K

2β

Ω
K + 1 − K

2β

∣∣∣∣∣
}

, (5.1)

where

β =
meV

2
Fe

�ωpe
= 32/3π5/6(a3

0n0)1/6 . (5.2)

In the scaled variables, (2.20) and (3.1) take the forms

χe =
3

K2

(
1 − Ω

2K
log

∣∣∣∣Ω + K

Ω − K

∣∣∣∣
)

(5.3)

and

Ω2 = 1 +
3
5
K2 +

(
1
β2 +

48
175

)
K4

4
, (5.4)

respectively. We note that the limit �k/me → 0 to obtain (2.20) from (2.19) cor-
responds to β → ∞ to obtain (5.3) from (5.1). For β � 1, the quantum statist-
ical pressure dominates, while for β � 1, the quantum tunnelling effects dominate.
Considering the value of β for different physical systems, we note that β = 0.1
corresponds to relatively low-density degenerate plasma such as in semiconduct-
ors, while β = 1 corresponds to typical free-electron densities in metals. The high-
density case β = 10 corresponds to high-density matter which may be obtained
in laser compression schemes or which exist in white dwarf stars. Even though
we have formally considered the semi-classical limit β → ∞, it should be kept
in mind that an upper limit for the validity of our theory is when the electron
density becomes high enough so that the Fermi speed VFe becomes comparable to
the speed of light. In this limit, the inter-particle distance n−1/3 approaches the
Compton length λC = 2π�/mec ≈ 2.4 × 10−12 , and we have an electron number
density of the order 1035 m−3 , corresponding to β ≈ 27. For larger values of β, the
equilibrium equation of state for the electrons (Chandrasekhar 1935) changes from
P = (2/5)EF n0(ne/n0)5/3 to P = (3/π)1/3(4πch/8)n4/3

e . For this case, we need to
include relativistic effects in the electron susceptibility.
In the normalized variables, the condition (3.3) for the critical wavenumber for

the limit between undamped and Landau-damped high-frequency waves is given
by

1 +
3

4K2
cr

[
2 −

(
2 +

Kcr

β

)
log

(
1 +

2β

Kcr

)]
= 0, (5.5)

and the normalized critical frequency is obtained from (3.2) as

Ωcr = Kcr + K2
cr /2β, (5.6)

where Kcr = kcrVFe/ωpe and Ωcr = ωcr/ωpe.
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ω
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p
e

β = 0.1

Landau-damped waves

β = 1

β = 10

Semi-classical
β → ∞

Figure 1. Dispersion curves (ω versus k) for different values of β = meV
2
Fe/�ωpe. The solid

curves show solutions of (2.10) using the exact susceptibility (2.19); the dashed curves show
the expanded solution (3.1); and the dash-dotted curve shows shows the solutions of (2.10)
using the ‘semi-classical’ electron susceptibility (2.20). The dotted curve indicates the border
between undamped waves and Landau-damped waves, given by (3.2) and (3.3) (or (5.5) and
(5.6)).

Finally, for the low-frequency case, the electron susceptibilities (4.1) is in the
normalized variables given by

χe =
3

2K2

[
1 − β

K

(
1 − K2

4β2

)
log

∣∣∣∣∣
1 − K

2β

1 + K
2β

∣∣∣∣∣
]
, (5.7)

and the expression for small wavenumbers (4.2) is given by

χe ≈ 3
K2 + �K4/12β2 . (5.8)

6. Numerical results

In Figs 1 and 2, we show dispersion curves for the high-frequency (ω � ωpi) waves
for different values of β, obtained from the solutions of the dispersion relation
(2.10), by using the electron susceptibility (2.19), as well as the expansion (3.1) and
the limiting semi-classical case (2.20). We have also indicated the border between
undamped and Landau-damped waves, obtained from (3.2) and (3.3). We note that
the dispersion curve for the semi-classical case in Fig. 1 always lies in the undamped
regime, below the border between undamped and Landau-damped waves. For the
undamped waves, expansion (3.1) approximates the exact dispersion relation within
a few per cent and can therefore be used instead of (2.19) for most cases. This holds
especially for small wavenumbers, as can be seen in the close-up in Fig. 2.
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Figure 2. Close-up of the dispersion curves in Fig. 1.

The dispersion curves for the low-frequency ion-acoustic oscillations are plotted
in Fig. 3, where we have depicted the ω in (4.4) for χe, given by the exact ex-
pression (4.1) and the approximate expansion (4.2), and for different values of
β. We note that the dispersion curves show agreement at small wavenumbers
but deviate significantly for larger wavenumbers in the case β = 0.1, while the
agreement is better for β = 1 and excellent for β = 10. It should be kept in
mind that when �k ∼ meVFe, the wavelength of the oscillations is comparable to
the inter-particle distance, and there will be corrections because of the discrete
nature of the ion background. Thus, the theory is not valid for oscillations with
�k � meVFe.

7. Conclusions

In this paper, we have studied the dispersion properties of electrostatic oscillations
in quantum plasmas for different parameters ranging from semiconductor plasmas
to typical metallic electron densities and densities corresponding to compressed
matter and dense astrophysical objects. We have derived a simplified expansion
that accurately approximates the exact dispersion relation for small wavenumbers.
The possibility of Landau damping owing to quantum tunnelling effects at large
wavenumbers has also been discussed, and conditions for Landau damping have
been derived. The present results should be useful in understanding the salient
features of electrostatic plasma oscillations in dense plasmas with degenerate elec-
trons. The latter are encountered in metals, in highly compressed intense laser–solid
density plasma experiments and in compact astrophysical objects (e.g. interior of
white dwarf stars).
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Figure 3. Dispersion curves (ω versus k) for the low-frequency ion oscillations, for different
values of β = meV

2
Fe/�ωpe. The solid curves show the wave frequency given by (4.4) using

the low-frequency electron susceptibility (4.1), while the dashed curves use the approximate
electron susceptibility (4.2). For β = 10 the solid and dashed curves are indistinguishable.
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