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Abstract

We show that the bar version of the Pin(2)-monopole Floer homology of a three-
manifold Y equipped with a self-conjugate spinc structure s is determined by the
triple cup product of Y together with the Rokhlin invariants of the spin structures
inducing s. This is a manifestation of mod 2 index theory and can be interpreted as a
three-dimensional counterpart of Atiyah’s classical results regarding spin structures on
Riemann surfaces.

In [Lin15] we introduced, for each closed oriented three-manifold (Y, s) equipped with a self-
conjugate spinc structure (i.e. s = s̄), the Pin(2)-monopole Floer homology groups

HS ∗(Y, s), ĤS ∗(Y, s), ĤS ∗(Y, s).

These are graded modules over the ringR= F[V,Q]/Q3, where V andQ have degrees respectively
−4 and −1, and F is the field with two elements. To define them, one exploits the

Pin(2) = S1 ∪ j · S1 ⊂ H

symmetry of the Seiberg–Witten equations and, in the case b1(Y ) = 0, they are the analogues
of Manolescu’s invariants [Man16] in the context of Kronheimer and Mrowka’s monopole
Floer homology [KM07]. In particular, they can be used to provide an alternative disproof of
the triangulation conjecture. We refer the reader to [Lin16] for a friendly introduction to the
construction and to [Man13] for a survey on the triangulation conjecture.

In the present paper, we will focus on the simplest of the three invariants, namely HS ∗(Y, s).
This only involves reducible solutions and, heuristically, it computes the homology of the
boundary of the blown-up moduli space of configurations. It is shown in [KM07, § 35.1] that
their monopole Floer homology HM ∗(Y, s) is determined entirely by the triple cup product

∪3
Y : Λ3H1(Y ;Z)→ Z

a1 ∧ a2 ∧ a3 7→ 〈a1 ∪ a2 ∪ a3, [Y ]〉.

This is a key step in the proof of their non-vanishing theorem (see [KM07, Corollary 35.1.3]),
which is in turn one of the main ingredients of Taubes’ proof of the Weinstein conjecture in
dimension three; see [Tau07]. In our set-up, recall that there is a natural map

{spin structures}→ {self-conjugate spinc structures}
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F. Lin

which is surjective and has fibers of cardinality 2b1(Y ). This should be compared to the Bockstein
sequence

· · · ·2−→ H1(Y ;Z) −→ H1(Y ;F) −→ H2(Y ;Z)
·2−→ H2(Y ;Z) −→ · · · ,

which implies that the set of spin structures inducing s (which we denote by Spin(s)) is an affine
space over H1(Y ;Z) ⊗ F. We will denote an element of Spin(s) by s. To each spin structure s
one can associate the (rational) Rokhlin invariant

µ(s) = σ(W )/8 mod 2,

where W is any four-manifold whose boundary is Y and on which s extends. We will think of
the collection of the Rokhlin invariants of the spin structures in Spin(s) as a map µs (called the
Rokhlin map). With this in hand, we are ready to state our main theorem.

Theorem 1. The Floer homology group HS ∗(Y, s) is determined by the triple cup product ∪3
Y

and the Rokhlin map µs. More precisely, given (Y0, s0) and (Y1, s1), suppose that:

– there exist (respectively linear and affine) isomorphisms

ϕ : H1(Y0;Z)→ H1(Y1;Z),

Φ : Spin(s0)→ Spin(s1)

such that the linear part of Φ is the reduction modulo 2 of ϕ;

– we have ϕ∗(∪3
Y1

) = ∪3
Y0

and µs1 ◦ Φ− µs0 is constant.

Then there is an isomorphism of graded R-modules

HS ∗(Y0, s0) ≡ HS ∗(Y1, s1)

up to an overall grading shift.

The two main protagonists of the theorem, the Rokhlin map µs and the triple cup product ∪3
Y ,

are in fact intimately connected.

Proposition 1. The Rokhlin map µs on Spin(s) is cubic, with its cubic part given by the
reduction modulo 2 of the triple cup product ∪3

Y .

We point out that while our main result shows that HS ∗(Y, s) is determined by rather
explicit topological data, the actual computation of the group is in general quite laborious.
We will provide several concrete examples in § 3.

The key inspiration for these results is the classic paper [Ati71]. The main difference is that
while [Ati71] focuses on spin manifolds of dimension 8k + 2 (for which the spin Dirac operator
is skew-adjoint), much of the content of the present paper can be generalized to spin manifolds
of dimension 8k + 3 (for which the spin Dirac operator is quaternionic).

The key ideas in the proof of our main result are the following. There is a natural involution
on the torus of flat connections

T = H1(Y ; iR)/2πiH1(Y ;Z)

given by conjugation. This has exactly 2b1(Y ) fixed points corresponding to the spin connections
of the elements of Spin(s) or, equivalently, the flat connections with holonomy {±1}.
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PIN(2)-monopole Floer homology and the Rokhlin invariant

Furthermore, the spinor bundle S → Y is quaternionic (with j acting from the right) and
the family of Dirac operators {DB} parametrized by [B] ∈ T satisfies the identity

DB(Ψ · j) = (DB̄Ψ) · j.

The key point is that HS ∗(Y, s) can be shown to depend only on the homotopy class of this
family of operators with involution, and the latter can be determined via a suitable K-theoretic
index theorem. As in the case of [Ati71] (see also [AS71b]), such a homotopy class cannot
be recovered purely in cohomological terms. Fortunately enough, the information lost passing
to cohomology can be fully recovered in terms of the mod 2 spectral flow between the Dirac
operators corresponding to the spin connections, which is in turn determined by the Rokhlin
map µs.

Plan of the paper. In § 1, after discussing a suitable K-theoretic framework, we describe the
index theorem relevant to our problem. In § 2 we discuss the specialization of this index theorem
to our case of interest and prove Theorem 1 and Proposition 1. In § 3 we provide some explicit
examples of computations.

1. Quaternionic K-theory and the index theorem for families

In this section we discuss the index theorem for families which is relevant to our situation. While
we were not able to find in the literature the exact result we will need, the content of this
section is quite standard and the proofs are straightforward adaptations of those appearing in
the classical papers in the subject (to which we will refer for more details).

Quaternionic K-theory
We start by discussing KQ, the Quaternionic analogue of Atiyah’s Real K-theory of spaces with an
involution KR [Ati66], first introduced in [Dup69]. Such a K-theoretic invariant has already been
used in works on four-dimensional Seiberg–Witten theory [FK05, Li06]. As is customary, we will
use the capitalized versions Real and Quaternionic when dealing with spaces with involutions.

The key observation is the following: a real vector space can be thought of as a complex
vector space E equipped with a complex antilinear map E squaring to 1E , while a quaternionic
vector space is a complex vector space E equipped with a complex antilinear map E squaring
to −1E . We will denote the latter by j. This can be of course extended to vector bundles over a
space X and gives rise to an alternative viewpoint for the invariants KO(X) and KSp(X). From
this description, we see that there are natural product maps on real and quaternionic K-theories

KOi(X)⊗KOj(X)→ KOi+j(X),

KOi(X)⊗KSpj(X)→ KSpi+j(X),

KSpi(X)⊗KSpj(X)→ KOi+j(X)

induced by the tensor product of vector bundles with involution

(V, V )⊗ (W, W ) = (V ⊗W, V ⊗ W ). (1)

As a consequence, KO•(X) is a ring and KSp•(X) a module over it. Recall that for a point ∗,
the multiplication by H − 4 ∈ K̃Sp(S4) = KSp−4(∗), where we interpret S4 as HP1 and H is the
quaternionic tautological bundle, induces an isomorphism

KOi(∗) ∼= KSpi−4(∗)
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and hence in particular the following version of Bott periodicity holds:

i mod 8 0 1 2 3 4 5 6 7

KSp−i(∗) Z 0 0 0 Z Z/2Z Z/2Z 0

see for example [Mil63, p. 142]. Furthermore, the multiplication map

KSp−5(∗)⊗KO−1(∗)→ KSp−6(∗), (2)

in which all involved groups are Z/2Z, is an isomorphism [ABS64].
Suppose now that X is a compact Hausdorff space equipped with an involution (denoted

either by τ or x 7→ x̄). The key example is the n-dimensional torus (R/2πZ)n with the involution
induced by x 7→−x. We will denote this space with involution by Tn or, when the dimension is not
important, simply by T. A Real (respectively Quaternionic) vector bundle E is a complex vector
bundle equipped with a complex antilinear map j covering τ such that j2 is 1E (respectively
−1E). The Grothendieck group of Real vector bundles was introduced in [Ati66] and is denoted
by KR(X). It is important to remark that it is not the Z2-equivariant K-theory of X.

Definition 1 [Dup69]. Given a space with involution X, its Quaternionic K-theory KQ(X) is
defined to be the Grothendieck group of Quaternionic vector bundles.

There are natural maps
K(X)← KQ(X)→ KSp(Xτ )

given respectively by forgetting the quaternionic structure and restricting to the fixed points of
the involution. If X∗ is a space with base point ∗ (which we assume to be a fixed point for τ), we

can define the reduced Quaternionic K-theory K̃Q(X∗) as the kernel of the augmentation map
to

KQ(X∗)→ KQ(∗).

As usual, we can then extend the definition of KQ to define a cohomology theory on spaces with
or without base points via

K̃Q
−i

(X∗) = K̃Q(ΣiX∗),

KQ−i(X) = K̃Q(Σi(X ∪ ∗)).

Here by ΣX∗ we denote the reduced suspension

[0, 1]×X∗/({0} ×X∗ ∪ {1} ×X∗ ∪ [0, 1]× {∗})

with the involution induced by (t, x) 7→ (t, τ(x)). We can also define the alternative suspension
Σ̃X∗ with the same underlying space but involution induced by (t, x) 7→ (1 − t, τ(x)). The
following is the key version of Bott periodicity for this version of K-theory (compare also with
the Real case in [Ati66]).

Proposition 2 [Dup69]. There are canonical isomorphisms

K̃Q
i
(ΣΣ̃X∗) ∼= K̃Q

i
(X∗),

KQi+8(X) ∼= KQi(X).
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The first isomorphism implies the isomorphism

K̃Q
i
(Σ̃jX∗) ∼= K̃Q

i+j
(X∗),

while the second isomorphism is determined via the product map induced by the tensor product
of bundles with involutions (1)

KQi(X)⊗KOj(∗)→ KQi+j(X)

by multiplication with the generator of KO8(∗) = Z.

As an example, using the above we have

KQi(T1) = KQi−8(T1)

= K̃Q
i−1

(Σ7(T1 ∪ ∗)) = K̃Sp
i−1

(S6 ∨ S7) = KSpi−7(∗)⊕KSpi−8(∗),

where we used that T∧X is naturally identified with Σ̃X. In particular, when k = 1, we obtain

KQ1(T1) = Z/2Z. (3)

More generally, we have the following.

Lemma 1. We have the isomorphism

KQ1(Tn) = Zan2 ⊕ Zbk ,

where

an =
⊕

k≡1,2 mod 8
16k6n

(
n

k

)
, bn =

⊕
k=3,7 mod 8

16k6n

(
n

k

)
.

Proof. From the discussion above, we see that

KQ1(Tn) = K̃Q(Σ7(Tn)) = K̃Q
−7

(Tn) = K̃Q
1
(Tn),

where we used the fact that KSp−7(∗) = 0. Recall the basic homotopy equivalence (see for
example [Hat02, Proposition 4I.1])

Σ(X × Y ) = ΣX ∨ ΣY ∨ Σ(X ∧ Y ),

which also holds at the level of space with involutions. Applying this to Tn = T1 ×Tn−1, by the
periodicity theorem we obtain that

K̃Q
i
(Tn) = K̃Q

i+1
(ΣTn)

= K̃Q
i+1

(ΣT1)⊕ K̃Q
i+1

(ΣTn−1)⊕ K̃Q
i+1

(Σ(T ∧ Tn−1))

= K̃Q
i
(T1)⊕ K̃Q

i
(Tn−1)⊕ K̃Q

i+1
(Tn−1).

From this, it inductively follows that

K̃Q
i+1

(Tn) =

n⊕
k=1

K̃Q
k+i

(T)⊕(nk)

and the result follows. 2
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An index theorem for Quaternionic families
Consider a quaternionic bundle on a compact Riemannian manifold E → M with j acting
from the right. A Quaternionic family ζ is a continuous family {Tp}p∈P of first-order elliptic
self-adjoint operators

Tp : C∞(E)→ C∞(E),

where P is a space with involution p 7→ p̄ and we have

Tp(s · j) = (Tp̄s) · j for every s ∈ C∞(E).

To such an object we can associate a topological index and an analytical index as follows (see
[APS76], which treats the classical case without involutions, for more details). Let

π : SM →M,

the projection from the unit cotangent bundle. For each p ∈ P , the symbol Tp defines a self-adjoint
automorphism σp of the bundle π∗E → SM . This defines a decomposition π∗E = E+

p ⊕ E−p in
positive and negative eigenspaces. In particular, we get a vector bundle

E+
ζ =

⋃
p∈P

E+
p → SM × P,

which is indeed Quaternionic for the action of j on E and hence a class [E+
P ] ∈ KQ(SM × P ).

The symbol class of ζ is defined to be the image of this class under the coboundary map

δ : KQ(SM × P )→ KQ1(TM × P ),

where TM is the tangent bundle of M . More concretely, this image can be described as follows
(see [APS76, Lemma 3.1]). We say that a symbol is positive/negative if E∓ζ = 0. Two self-adjoint
symbols are said to be stably equivalent if

σ ⊕ α⊕ β ≈ σ′ ⊕ α′ ⊕ β′

with α, α′ positive and β, β′ negative. Then the image of the coboundary map δ is naturally in
bijection with stable equivalence classes of self-adjoint symbols. Finally, we define the topological
index to be the image of the symbol class under the index map

KQ1(TM × P )→ KQ1(P );

see [AS71a] for more details about the latter.
Fix now a quaternionic separable Hilbert space (H, j) and consider the space Op of complex

linear Fredholm self-adjoint operators which are not essentially definite (see [AS69]). This comes
with a natural involution sending the operator T to the operator

v 7→ −(T (v · j)) · j,

the fixed points of which are exactly the quaternionic linear operators. With this involution, this
is naturally a classifying space for KQ1, i.e.

KQ1(P ) = [P,Op]Z/2Z, (4)

where on the right-hand side we consider the homotopy classes of equivariant maps. The proof
of this fact follows quite closely the non-equivariant case and we provide here a brief sketch of it.
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Figure 1. The path of operators γT (t) is equivariant under reflection across the vertical axis in
this picture.

First of all, one identifies the space Fred0 of Fredholm operators on H of index zero (with the

same involution as above) as a classifying space for K̃Q (see for example [Ati67]). Then one

shows that there is an equivariant homotopy equivalence

Op ≈ Ω̃ Fred0, (5)

where, for a space with involution (X, τ), we denote its Ω̃X loop space (based at a fixed point

of τ) equipped with the involution sending a based loop γ(t) for t ∈ S1 to the loop τ(γ(t̄)).

The operation Ω̃ is the adjoint of Σ̃. To show (5), fix a quaternionic linear operator T0 ∈ Op and

consider for T ∈ Op the loop γT (t) in Fred0 given by

γT (t) =

{
i cos(t) + sin(t)T, t ∈ [0, π],

i cos(t)− sin(t)T0, t ∈ [π, 2π],

which we think of as based at t = 3/2π (see Figure 1). As (right) multiplication by i is sent by

conjugation to −i, if we consider the involution sending t to π − t mod 2π (and t = 3/2π as the

base point), we obtain an equivariant map

Op→ Ω̃ Fred0,

where the loop space is based at T0. This map is, up to a simple manipulation, the one shown

in [AS69] to be a homotopy equivalence.

By (4), the Quaternionic family of operators ζ parametrized by the space with involution P

determines (after performing a standard trick to make them Fredholm) a class in KQ1(P ) called

the analytical index. We then have the following.

Proposition 3. For a Quaternionic family of operators ζ parametrized by P , the topological

index coincides with the analytical index in KQ1(P ).

The proof of the result follows very closely that of the classical index theorem for families

of self-adjoint operators (see [APS76], to which we refer for details). For example, using a

loop construction as above, one obtains a Quaternionic family of elliptic symbols giving rise

to an element in KQ0(S1 × X × TY ), and similarly the family of operators induces a class in

KQ0(S1 ×X). From this, one reduces to the usual index theorem (cf. [Ati66]).
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2. Applications to monopole Floer homology

We now discuss the implications of the index theorem discussed in the previous section for
monopole Floer homology. As a technical remark, in the present section we will be working in
the setting of unbounded self-adjoint operators S∗(H : H1) on a Hilbert space H with a suitable
dense subspace H1 introduced in (see [KM07, ch. 33, Definition 33.1.3]). This differs from that
employed in the previous section (where we considered the space Op) and in the classical papers
on index theory (as for example [APS76]), but the main results are readily adapted as in [KM07].
The reader not too interested about these technical aspects should think of S∗(H : H1) as a
suitable generalization of the space of compact self-adjoint perturbations of Dirac operators
(in which case H = L2(Y ;S) and H1 = L2

1(Y ;S)).

Families of Dirac operators
While the results we will discuss hold more in general for (8k+3)-dimensional spin manifolds, we
will focus on the case of three-manifolds. Let Y be a three-manifold equipped with a self-conjugate
spinc structure s and consider the family of Dirac operators {DB}[B]∈T parametrized by the
b1(Y )-dimensional torus T of flat connections. The torus T comes with the natural involution by
conjugation (or, equivalently, x 7→ −x), which has exactly 2b1(Y ) fixed points corresponding to
the spin connections of the elements of Spin(s).

We start by discussing a key example. Suppose that b1(Y ) = 1. We know from (3) that

KQ1(T1) = Z/2Z,

so that there are exactly two homotopy classes of Quaternionic families of operators. These
can be described explicitly as follows. Given any family over T1, the operators at 0 and π are
quaternionic, so that in particular their kernel is even dimensional over C. This implies that the
mod 2 spectral flow between the two operators is well defined. Indeed, both cases can be realized:
in the case of S2 × S1 we have even spectral flow, while in the case of the zero surgery on the
trefoil we have odd spectral flow. Both cases can be computed explicitly, the first one using a
metric with positive scalar curvature, the second using the flat metric (see [KM07, §§ 36.1 and
37.4]). Hence, the mod 2 spectral flow is a complete invariant for families. With this in mind, we
prove the following.

Proposition 4. Let {DB}[B]∈T be the Quaternionic family of Dirac operators for (Y, s). Then

its analytical index in KQ1(T) is determined by the triple cup product of Y together with the
mod 2 spectral flow between the Dirac operators corresponding to the spin connections of
the elements of Spin(s).

Proof. By Proposition 3, the analytical index coincides with the topological index. To compute
the latter, we first consider the map

KQ1(T)→ K1(T), (6)

which forgets the involution. This map is injective after tensoring with Q. This is clear from
the computation of the first group (see Lemma 1) and the fact that the statement is true for the
natural map KSpi(∗) → Ki(∗). Of course, this map simply sends the family to its index (as a
family of self-adjoint operators), which is in turn determined via the Chern character

ch : K1(T)→ Hodd(T;Q)
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by the triple cup product, as follows from the usual index theorem for families (see [KM07,

Lemma 35.1.2] for an explicit computation). An important point here is that K1(T) is torsion-free,

so no information is lost by taking the Chern character. Hence, we only need to understand the

torsion of KQ1(T), which is according to Lemma 1 a suitable direct sum of Z/2Zs.

Pick a basis x1, . . . ,xn of H1(Y,Z). This determines a splitting in one-dimensional factors

T = T1 × · · · ×Tn, and (choosing a base spin structure s0), we can also use it to identify the set

Spin(s) with subsets of {1, . . . , n}. From the computation in Lemma 1, we then know that the

summands Z/2Z to KQ1(T) arise from the K̃Q
1
-groups of wedge summands of the form

Ti1 ∧ · · · ∧ Tik ,

where k = 1 or 2 modulo 8. Consider now a standard equivariant loop γ in T whose fixed points

are precisely s0 and the spin structure corresponding to {i1, . . . , ik}. Then the suspension of the

inclusion γ ↪→ T factors through the suspension of

γ ↪→ Ti1 ∧ · · · ∧ Tik .

We claim that the family over Ti1 ∧ · · · ∧ Tik is trivial if and only if the family over γ is trivial

(recall that both have K̃Q
1

equal to Z/2Z). Let us first focus on the case k = 2. Then we can

identify

T1 ∧ T2 = Σ̃γ;

see Figure 2. The intuition behind the claim is then the following. Any Quaternionic family on γ is

trivial once we forget the involution, as the total spectral flow around γ vanishes by equivariance.

Hence, we can extend the family to an equivariant family on Σ̃γ by first choosing any extension

to the upper hemisphere and then extending it to the lower hemisphere by equivariance.

The spectral flow mod 2 between the two fixed points only depends on the spectral flow mod 2

of γ and determines the corresponding element in K̃Q
1
(Σ̃γ) = Z/2Z. In more algebraic terms,

we can exploit the sequence of of maps

K̃O(S1)⊗ K̃Q
1
(Σ̃γ) −→ K̃Q

1
(ΣΣ̃γ) ∼= K̃Q

1
(γ),

where the first map is given by multiplication, while the second map is given by Bott periodicity;

see Proposition 2. The composition maps the family over T1 ∧ T2 to the family over γ.

Furthermore, it is an isomorphism, as it can be identified with the multiplication

KO−1(∗)⊗ K̃Q
2
(γ)→ K̃Q

1
(γ)

and hence with the multiplication map (2). The general case in which k = 1 or 2 modulo 8 follows

from the cases k = 1, 2 by identifying

Ti1 ∧ · · · ∧ Tik = Σ̃k−1γ

and using the 8-periodicity of the invariants; see again Proposition 2.

To sum up, the component in each Z/2Z-summand of KQ1(T) can be interpreted in terms

of the restriction of the family to a certain equivariant loop γ, which is in turn determined by a

certain mod 2 spectral flow by the discussion above on the case b1 = 1. 2
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Figure 2. The space T1∧T2 is obtained from the square on the left by quotienting the boundary.
The involution in the picture is given by sending x to −x, where the origin is the dot, and the

quotient is identified with Σ̃γ. The result is the two-sphere on the right, where the involution
has exactly the two dots as fixed points.

Coupled Morse homology
Given a family of operators L in S∗(H : H1) parametrized by a smooth manifold Q, in [KM07,
ch. 33] (and in particular § 33.3) the authors constructed the coupled Morse homology H̄∗(Q,L),
which is a relatively graded module over F[U ] with U of degree −2. We can assume in our context
that the family has no spectral flow around loops in Q, so that the grading is absolute. We very
quickly recall its definition and refer the reader to [KM07] for more details. Fix a metric and
choose a generic Morse function f on Q. After a small perturbation of the family, we can assume
that the following genericity assumption holds:

(∗) for all critical points q of f , the operator Lq has no kernel and simple spectrum.

The chain complex for the coupled Morse homology C̄∗(Q,L) is generated over F by the
projectivizations of the eigenspaces (which are all one dimensional by (∗)) of the operators
at the critical points. We then look at equivalence classes of pairs of paths (γ(t), φ(t)), where γ
is a Morse trajectory for f and φ is a path in the unit sphere of H satisfying a given differential
equation. The differential counts the number of these paths in zero-dimensional moduli spaces.
The two key properties of this construction are the following.

– The coupled Morse homology H̄∗(Q,L) only depends on the homotopy class of the family
L and hence on the corresponding element in K1(Q) = [Q,S∗(H : H1)].

– If (Y, s) is a three-manifold equipped with a torsion spinc structure, the result of the
construction applied to the family of Dirac operators parametrized by flat connections
{DB}[B]∈T is HM ∗(Y, s).

An analogous construction can be performed if the manifold Q comes with an involution τ
and the family of operators L is Quaternionic for this involution. We will assume that the fixed
points of τ are isolated, so that it is locally modeled on x 7→ −x. The main complication is that
now the operators at the fixed points of the action are quaternionic–linear, so the transversality
assumption (∗) cannot be achieved (respecting the involution) as the eigenspaces will always
be even dimensional over C. The problem can be solved, as in [Lin15], by allowing Morse–
Bott singularities of a very specific kind. Indeed, generically the operators at the fixed points
of τ will have no kernel and two-dimensional eigenspaces: each of these will give rise, after
projectivization, to a copy of S2 on which the involution j acts as the antipodal map. With this
in mind, the construction of Pin(2)-monopole Floer from [Lin15] carries over without significant
differences (see also [Lin16] for an introduction): indeed, as we do not have to deal with boundary
obstructedness phenomena, the technical details are significantly easier in this case. The output

2690

https://doi.org/10.1112/S0010437X18007510 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007510


PIN(2)-monopole Floer homology and the Rokhlin invariant

is a version of the chain complex C̄∗(Q,L) whose homology is H̄∗(Q,L) which is equipped with
a natural chain involution τ . We then define H̄τ

∗ (Q,L) to be the homology of the invariant
subcomplex. This is naturally a module over the ring R. We record the main features of this
construction in the following result, whose proof follows along the lines of the results contained
in [Lin15] (and is in fact much simpler).

Proposition 5. For any Quaternionic family of operators L in S∗(H : H1) on (Q, τ), there is a
well-defined equivariant coupled Morse homology group H̄τ

∗ (Q,L), which is an absolutely graded
module over R. The following properties hold:

– H̄τ
∗ (Q,L) only depends on the homotopy class of the Quaternionic family and hence on the

corresponding element in KQ1(Q) = [Q,S∗(H : H1)]Z/2Z;

– if (Y, s) is a three-manifold equipped with a self-conjugate spinc structure, the result of
the construction applied to the family of Dirac operators parametrized by flat connections
{DB}[B]∈T is HS ∗(Y, s).

Remark 1. As in the construction from [KM07], the coupled Morse homology H̄τ
∗ (Q,L) is a

priori not natural, i.e. the isomorphism between the groups for different choices of data might
depend on some extra choices.

Putting the pieces together, we can finally prove the main result of the present paper.

Proof of Theorem 1. Using the equivariant coupled Morse homology introduced above, we see
that HS ∗(Y, s) only depends on the homotopy class of the Quaternionic family of operators
{DB}[B]∈T, which is by definition the analytic index of the family. Using the index theorem for
families (Proposition 3), we showed in Proposition 4 that the analytical index is determined by the
triple cup product of Y and the mod 2 spectral flow between the Dirac operators corresponding
to elements of Spin(s). Hence, we only need to show that the latter is determined by the Rokhlin
invariants of the spin structures. This can be seen by looking at the absolute gradings in the chain
complex (as introduced in [KM07, § 28.3]). Choose a standard equivariant Morse function f on T
so that its 2b1(Y ) critical points correspond to the elements of Spin(s). Given two spin structures
s0 and s1 with corresponding spin connections B0 and B1, we have that the zero-dimensional
chains in a stable critical submanifold Ci over (Bi, 0) have relative grading

indf (s0)− indf (s1)− 2sf(DB0 , DB1) mod 4.

On the other hand, zero-dimensional chains in Ci have absolute grading −σ(Wi)/4 + indf (si)
modulo 4, where Wi is any manifold whose boundary is Y on which si extends. For this
computation we exploit the fact that on a spin four-manifold the Dirac operator is quaternionic,
so that its (real) index is divisible by 4 (see also [Lin15, ch. 4]). Comparing this with the formula
above, we see that the mod 2 spectral flow between DB0 and DB1 is exactly the difference between
the Rokhlin invariants of s0 and s1. 2

Rokhlin invariants as a cubic map
The rest of this section is devoted to understand the structure of the Rokhlin invariants of a
pair (Y, s) and in particular to prove Proposition 1. First, recall some features of spin manifolds
in low dimensions (we refer the reader to [Kir89, chs 4 and 5] for a more thorough discussion).
Of course,

ΩSpin
0 = Z.
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Figure 3. The two spin structures on the circle. The one on the left corresponds to the non-
trivial double cover of the circle and extends to the disk. The one of the right is the Lie structure;
it corresponds to the trivial double cover of the circle and does not extend.

In dimension one, the spin cobordism group is

ΩSpin
1 = Z/2Z,

the generator being the trivial double cover of the circle (see Figure 3). We will refer to this as
the Lie structure and denote it by sLie. In dimension two, we have

ΩSpin
2 = Z/2Z

and the spin cobordism class is determined by the Arf invariant of (Σ, s). More precisely, by
restricting to loops the spin structure s determines a map

q : H1(Σ,Z)⊗ F→ ΩSpin
1 = Z/2Z,

which is a quadratic refinement of the intersection product. The Arf invariant of this quadratic
form in Z/2Z is then the spin cobordism class of (Σ, s).

In dimension three, we have
ΩSpin

3 = 0,

i.e. every spin manifold is a spin boundary. Consider as an example the three-manifold Y =
S1 × S1 × S1. This has eight spin structures, seven with Rokhlin invariant 0 and one with
Rokhlin invariant 1. Indeed, a spin structure on Y is a product of spin structures on the circle.
If at least one of the factors is not the Lie structure, then it extends to a manifold diffeomorphic
to S1×S1×D2, which has signature zero. On the other hand, the product of the Lie structures
(which we denote by s0 = sLie × sLie × sLie) extends to a manifold with signature −8, namely
the complement of a regular fiber of the elliptic fibration E(1)→ CP 1 (see [Kir89, ch. 5]). With
this in mind, we can proceed on the proof of Proposition 1.

Proof of Proposition 1. Consider two spin structures s and s′ in Spin(s) so that they differ by
an element x ∈ H1(Y ;Z) ⊗ F. Let Σ ⊂ Y be an oriented surface Poincaré dual to x. We claim
that the difference of their Rokhlin invariants satisfies

µ(s)− µ(s′) = [s|Σ] ∈ ΩSpin
2 = Z/2Z.

To show this, we construct a suitable spin cobordism between (Y, s) and (Y, s′) as follows.
Consider the manifold Y × [−1, 1] with fixed spin structures s and s′ at the boundary. Then
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Σ×{0} is a characteristic surface (in a relative sense): there is a spin structure on its complement

restricting to s and s′ at the boundaries and which induces the non-trivial element in ΩSpin
1 on

the unit circle of a normal fiber of Σ. The proof of this is a direct generalization of the closed
case; see [Kir89, § 11.2]. Consider now ∂nbhd(Σ×{0}), which is naturally identified with S1×Σ.
This has the induced spin structure sLie × s|Σ. Hence, to find a spin cobordism from (Y, s) to
(Y, s′), it suffices to find a spin manifold whose boundary is S1 ×Σ on which this spin structure
extends and glue it in. The example of the three-torus discussed above (which is the case S1×T 2)
readily implies that if s|Σ is trivial, then one can find an extension to a manifold with σ = 0
modulo 16 and, if s|Σ is not, then one can find an extension to a manifold with σ = 8 modulo 16.
This is because, from the properties of the Arf invariant, writing Σ = #gT 2, s|Σ bounds if and
only if the number of restrictions to the summands s|T 2 that do not bound is even.

To conclude the proof, we need to show that the map

H1(Y ;Z)⊗ F→ Z/2Z
x 7→ [s|PD(x)]

is cubic. To see this, fix a basis x1, . . . ,xn with transverse dual surfaces Σ1, . . . ,Σn. Then, if
x =

∑
λixi, and Σ is dual to x, we have

[s|Σ] =
∑

λi[s|Σi ] +
∑

λiλj [s|Σi∩Σj ] +
∑

λiλjλk[s|Σi∩Σj∩Σk
],

as can be seen directly by a cut and paste argument (see [Kir89, § 11.3]). Finally, the term
[s|Σi∩Σj∩Σk

] is clearly the triple cup product 〈xi ∪ xj ∪ xk, [Y ]〉 modulo 2. 2

Indeed, the proof shows that not only is the function cubic (with the cubic part determined by
the triple cup product), but also that the linear and quadratic coefficients can be determined very
explicitly in terms of embedded surfaces. For example, in the case of the three-torus discussed
above, fix s0 as the base spin structure. Using this to identify the set of spin structures with
H1(Y ;Z)⊗F, the map µ is 1 on any non-zero element. Denoting by xi the generator of the circle
in the ith factor, we see that this is the cubic map∑

λixi 7→ 1 + λ1 + λ2 + λ3 + λ1λ2 + λ2λ3 + λ1λ3 + λ1λ2λ3.

The coefficients can be interpreted topologically as follows. First consider a surface Σi Poincaré
dual to xi. Then s0|Σi is a product of Lie structures and hence it has Arf invariant 1, which
corresponds to the coefficient of λi. Furthermore, for i 6= j the intersection Σi ∩ Σj has induced

the Lie structure and hence it is 1 ∈ ΩSpin
1 . This corresponds to the coefficient of λiλj .

3. Examples

We now discuss some explicit computations of the group HS ∗ in terms of the topological data
appearing in Theorem 1. We start by recalling the simplest cases of manifolds with b1 = 0 and
1, which were worked out in [Lin15, ch. 4]. Define

R̃ = F[V −1, V,Q]/Q3,

which is naturally a module over R, and

I = F[V −1, V ]⊕ F[V −1, V ]〈−1〉,
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where the action of Q is an isomorphism from the first tower onto the second. Here, given a
graded module M , we denote by M〈d〉 the module obtained by shifting the degrees up by d, i.e.
M〈d〉i = Md−i. When b1 = 0, the final result is simply the direct sum of the homologies of the
critical submanifolds and hence up to a total grading shift we have

HS ∗(Y, s) = R̃.

When b1 = 1, as mentioned in the previous section, there are two cases corresponding to the two
elements of KQ1(T) = Z/2Z. We can pick a standard equivariant function on T with exactly
two critical points, and denote by s and s′ its maximum and minimum. If the two spin structures
have the same Rokhlin invariant (so that there is no mod 2 spectral flow between the spin two
Dirac operators), for each critical submanifold C over s there is a critical submanifold C ′ over s′

lying in degree one less; furthermore, the moduli space of trajectories between C and C ′ consists
of two copies of CP 1, each mapping diffeomorphically onto the images under the evaluation map,
so that

HS ∗(Y, s) = R̃ ⊗H1(S1;F).

In the case where they have different Rokhlin invariants, for each critical submanifold C over
s there is a critical submanifold C ′ over s′ lying in degree one more; and the moduli space of
trajectories between them consists of two points, inducing multiplication by Q2 in homology.
Hence, the final result is

HS ∗(Y, s) = I ⊕ I〈2〉.

The first case is realized for example by manifolds obtained by zero surgery on a knot K ⊂ S3

with Arf(K) zero, while the latter happens when Arf(K) is one.
With these computations in mind, we can prove a general result as follows. Here we fix a

basis x1, . . . ,xn of H1(Y ;Z)⊗F and a base spin structure s0. Given a subset I ⊂ {1, . . . , n}, we
denote by sI the spin structure s0 +

∑
λixi, where λi = 1 if and only if i ∈ I. We denote by |I|

the cardinality of I.

Proposition 6. There exists a spectral sequence converging to HS ∗(Y, s) whose E1 page is∑
I

R̃〈−2µ(sI) + |I|)〉,

so that the differential d1 has a non-zero component

R̃〈−2µ(sI) + |I|〉→ R̃〈−2µ(sI′) + |I ′|〉

if and only if I ′ ⊂ I, |I ′| = |I| − 1, and µ(sI) 6= µ(sI′), in which case it is (up to grading shift)
multiplication by Q2.

Proof. To compute the Floer homology group, we can proceed as in [Lin15] and use an equivariant
Morse function

f : T→ R

to perturb the equations. We can choose f to be a standard Morse function on the torus, whose
critical points correspond to the 2b1(Y ) fixed points of the involution and hence to the set of spin
structures Spin(s). Using our basis, we can also choose the function so that the index of the
critical point corresponding to sI is |I|. We can then filter the Floer chain complex according
to the index of the corresponding critical point of f . The E1 page of the spectral sequence
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associated to this filtration is then the direct sum of the homologies of the critical submanifolds,
so that one obtains the first part of the statement after recalling that the index of the critical
point contributes to the grading shift; the statement regarding the differential d1 follows from
description of the moduli spaces in the case b1 = 1. 2

This corollary does not provide an explicit computation for the group, but just a spectral
sequence for which we know explicitly the E2 page. Indeed, also the explicit general computation
of [KM07, Theorem 35.1.1] assumes rational coefficients and exploits the formality of the de Rham
cohomology of T. In the case of [KM07], the differential d2 always vanishes (although higher
differentials can be non-zero). In our setting, even the differential d2 is non-zero in general, as
we will see explicitly in an example.

Pin(2)-standard manifolds
We say that a three-manifold Y equipped with a self-conjugate spinc structure s is Pin(2)-
standard if the triple cup product of Y vanishes and the spin structures in Spin(s) all have the
same Rokhlin invariant. We claim that in this case we have

HS ∗(Y, s) = R̃ ⊗H1(T;F).

Indeed, our main theorem implies that, up to grading shift,

HS ∗(Y, s) = HS ∗(#
b1(Y )S2 × S1, s0),

where s0 is the unique torsion spinc structure. The latter can be computed for example using
the connected sum spectral sequence (see [Lin17]). Indeed, we know that

HS ∗(S
2 × S1, s0) = R̃ ⊗H1(S1;F)

and, as this is a free module over R, the invariant of the connected sum is simply the tensor
product over R of the invariants (as the spectral sequence collapses at the E2 page).

Manifolds with b1 = 2
In this case the triple cup product vanishes, so that the invariant is determined by the Rokhlin
invariants. If all of them coincide, then the manifold is Pin(2)-standard, so that the result
discussed above holds. For simplicity, we assume that the homology of the manifold does not
have 2-torsion, so that the reduction mod 2 map

H1(Y ;Z)→ H1(Y ;F)

is surjective. This assumption, the vanishing of the triple cup product, and Poincaré duality
imply that the cup product of two basis elements of H1(Y ;Z) has to be zero mod 2. Hence, the
cubic form from Theorem 1 has to be linear, so that the four Rokhlin invariants coincide in pairs.
In particular, in light of Theorem 1, we can compute HS ∗(Y, s) as the invariant for the manifold
obtained by zero surgeries on each component of a split link, one component being a trefoil and
one component being unknotted. For this case,

HS ∗(Y, s) = (I ⊕ I〈2〉)⊗H1(S1;F),

as follows by looking at the connected sum spectral sequence.
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Figure 4. Taking the band sum of n copies of the Borromean rings, and doing zero surgery on
each of the components, one obtains a three-manifold with b1 = 3 and triple cup product n. Here
we have depicted the case n = 2.

Manifolds with b1 = 3

Let us assume as above that the homology of the manifold does not have 2-torsion. There are

several cases to discuss. First of all, if we pick a basis x1,x2,x3 ∈ H1(Y ;Z), the value

〈x1 ∪ x2 ∪ x3, [Y ]〉 ∈ Z

is well defined (up to sign). With a little abuse of terminology, we will refer to m as the triple cup

product of Y . Recall that examples of three-manifolds with triple cup product m can be provided

by the construction in [RS00] by doing surgery on a band sum of m copies of the Borromean

rings; see Figure 4.

First of all, we consider the case in which the triple cup product is even. By Poincaré duality,

the cup product on H1(Y ;Z) vanishes modulo 2. As above, this implies that the Rokhlin function

is linear. Hence, either all Rokhlin invariants coincide (in which case the manifold is Pin(2)-

standard) or exactly half of them take one value. We can compute the homology in the latter

case as follows. We can write the torus of flat connections as T1 × T2 in such a way that the

spin structures in {0} × T2 and {π} × T2 all have the same Rokhlin invariant. We can consider

the two-step filtration coming from the value in the component T1. The E1 page is the direct

sum of the equivariant coupled Morse homologies of the families parametrized by {0} × T2 and

{π} × T2, which are Pin(2)-standard. In particular, we have

E1 = R̃ ⊗ ((H1(T2;F))⊕ (H1(T2;F))〈1〉).

Here the shift of the second summand comes from the difference of the Rokhlin invariants.

Furthermore, each summand H1(T2;F) has a filtration coming from the index of the Morse

function on T2. The d1 differential maps the first summand to the second and it also lowers

the filtration level on H1(T2;F). Using the description of the moduli spaces in the case b1 = 1, the

filtration-preserving component is readily computed to be multiplication by Q2 (up to grading

shift). Hence, we have

HS ∗(Y, s) = (I ⊕ I〈2〉)⊗ (H1(T2;F)).

In the case where the triple cup product is odd, there are again two cases (as can be shown

by a direct inspection): either seven spin structures attain one value and the remaining one a
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different one (as in the case of the three-torus) or five spin structures attain one value and three
attain the other. The latter case can be realized from the general example in Figure 4 by tying
a knot of Arf invariant 1 in one of the components. We already see a difference with the even
case in usual monopole Floer homology: as shown in [KM07, § 35.3] (see in particular the proof
of Theorem 35.3.2), in the odd case HM ∗(Y, s) has rank three in each degree, rather than four.
In the first of the two possible cases, we will show that

HS ∗(Y, s) = (H1(T3)⊕H2(T3))⊗ R̃.

An analogous computation was provided in different terms in the case of the three-torus in
[Lin15]. To see this, first recall that the Gysin exact triangle

HS ∗(Y, s) HS ∗(Y, s)

HM ∗(Y, s)

·Q

implies that (if we think of HS ∗ as a F[Q]/Q3-module) each cyclic summand of HS ∗ corresponds
to a rank-two subgroup F⊕ F of HM ∗. Furthermore, if this summand is isomorphic to F[Q]/Qi,
then the generators of this subgroup differ in degree by i.

We look at the spectral sequence from Proposition 6. The E1 page is given by

F

F F3 F

F F3 F3 F

F3 F3 F

F3

where each column repeats four-periodically. The groups in the ith column correspond to the
critical points of index 3 − i. The spin structure corresponding to the last column has different
Rokhlin invariant (so that it is shifted in degree by two). We will use the convention that between
two consecutive groups in the same column the map Q has the highest possible rank.

The differential d1 goes from one column to the one on its right and, by Proposition 6, the
E2 page is given by

F

F F3 F

F F3 F2 F

F3 F3

F3

Because of the module structure, the only possible non-trivial differential d2 is the dashed one.
Furthermore, as HM ∗ has rank three in each degree, from the discussion on the Gysin sequence
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above the differential d3 is forced to be the arrow drawn. Now, if d2 is not zero, the final

result is

F F2

F F3 F2

F3 F3

F3

Of course, there are no possible extensions as F[Q]/Q3-modules, so that this is indeed HS ∗.

On the other hand, this module requires seven generators over F[Q]/Q3, so that one obtains a

contradiction with the computation of HM ∗ from [KM07] using the Gysin sequence. Hence, d2

vanishes and the E∞ page is

F3

F F3 F2

F3 F3

F3

Again this requires seven generators over F[Q]/Q3, but there is now space for a non-trivial

extension: this is shown by the dotted arrow and the result follows.

Finally, in the case in which exactly five spin structures have the same Rokhlin invariant, we

have

HS ∗(Y, s) = (I⊕ I〈2〉)⊗H1(T3;F)

by an analogous argument. We just point out that this is an example in which the differential d2

of the spectral sequence in Proposition 6 is non-zero. Indeed, we can assume after a basis change

that the Rokhlin map is

λ1x1 + λ2x2 + λ3x3 7→ λ1 + λ2 + λ3 + λ1λ2λ3,

so that the E1 page looks like

F

F F3 F

F F3 F3 F

F F3 F3

F3

repeated as before four-periodically. Here the components in the third column are shifted in light

of the Rokhlin invariants. So, the E2 page is
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F

F F2 F

F F F3

F F3 F

F3

and, if we suppose that d2 is zero, we see that also d3 has to be zero (for degree reasons and

because it is a map of R-modules). On the other hand, this group cannot fit in the Gysin exact

sequence with HM ∗.
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