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Flow stability and sequence of bifurcations in a
cubic cavity driven by a constant shear stress
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The progressive destabilisation of the incompressible flow in a cubical cavity driven by
a constant shear stress is investigated numerically. To that end, one of the square faces
of the cube is subjected to a constant shear stress parallel to two opposite edges of
that face. The three-dimensional steady basic flow loses its mirror symmetry through a
supercritical pitchfork bifurcation leading to a pair of steady stable non-symmetric flow
states that are antisymmetric to each other. Upon increase of the strength of the driving,
these non-symmetric equilibria become unstable via a Hopf bifurcation resulting in two
limit cycles. The bifurcations are investigated using classical linear stability analyses as
well as nonlinear simulations. Upon a further increase of the driving shear stress, the
limit cycles destabilise through bursts triggering a complex interplay between the unstable
equilibria. The transition to turbulence resembles the Pomeau–Manneville scenario.

Key words: vortex dynamics, intermittency, bifurcation

1. Introduction

Barely investigated in the literature, the incompressible flow of a fluid in a cubic
container driven by a constant shear stress on one of its surfaces is at the crossroads
of numerous well-studied flows. Indeed, this configuration shares many aspects with a
low-Prandtl-number fluid flow in a differentially heated cavity driven by thermocapillary
forces along a free surface as depicted in figure 1(a). This set-up represents an idealisation
of the open-boat crystal-growth technique which has been widely investigated (see e.g.
Schwabe 1981; Xu & Zebib 1998; Kuhlmann & Albensoeder 2008). The three-dimensional
flow structure in a cube driven by thermocapillary surface forces was studied by Saß,
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(b)(a) (d )(c)

Figure 1. Flow configurations closely related to the shear-driven cavity problem: (a) thermocapillary-driven
cavity flow; (b) gas flow past a liquid-filled cavity, (c) flow over an open cavity; and (d) the lid-driven cavity
problem.

Kuhlmann & Rath (1996) for different Prandtl numbers, explaining the structure of the
secondary flows caused by the three-dimensional confinement.

Provided the surface tension is sufficiently high, the free surface can be considered
flat and non-deformable. Since the temperature field is dominated by conduction for
low Prandtl numbers, the surface tension varies almost linearly with the temperature
for small temperature differences, leading to a nearly constant thermocapillary stress
acting on the plane interface. The steady incompressible flow in two-dimensional cavities
was calculated numerically by Zebib, Homsy & Meiburg (1985) for Prandtl numbers as
small as Pr = 0.01 and thermocapillary Reynolds number up to ReTC = 5 × 104 (the
superscript TC stands for thermocapillary convection). Results for infinitely extended
layers (Smith & Davis 1983a,b) and experiments (Braunsfurth & Mullin 1996; Gillon &
Homsy 1996) suggest that three-dimensional and/or time-dependent flow instabilities can
arise at Reynolds numbers of this order of magnitude or lower. Schimmel, Albensoeder
& Kuhlmann (2005) established that the critical Reynolds numbers and the critical modes
for the onset of three-dimensional flow in spanwise infinitely extended cavities driven
by a constant shear stress τ exhibit a one-to-one correspondence with the corresponding
lid-driven cavity analysed by Albensoeder, Kuhlmann & Rath (2001b), for a wide range of
cross-sectional aspect ratios. It was shown that the critical shear-based Reynolds number
ReTC

c (Pr → 0) = Re2
τ is almost Re2

τ = ReU
c /16.25, where ReU is the velocity-based

Reynolds number of the corresponding lid-driven cavity problem.
If the shear stress on the interface between immiscible fluids can be induced by

variations of the surface tension, it could as well be caused by a high-momentum external
flow, as depicted in figure 1(b). Motivated by crystal-growth applications, Kalaev (2012)
numerically explored the different regimes of the flow of a liquid confined to a cubical
cavity and driven by an external gas flow directed tangentially to the non-deformable
surface. Kalaev focused on the temporal behaviour of the flow and roughly quantified
the transition to turbulence in terms of a shear stress Reynolds number. The same
configuration, albeit with an outer liquid flow driving a gas flow in a cavity, is also a
viable approach to modelling geometry-induced hydrophobicity of surfaces (Ybert et al.
2007; Cherubini, Picella & Robinet 2021), although it is often modelled using Navier’s
slip condition (see e.g. Lauga, Brenner & Stone 2007; Schönecker & Hardt 2013) to avoid
a discretisation of the cavity.

Another example for a flow configuration sharing similarities with the shear-driven
cavity is the flow over an open cavity, shown in figure 1(c). This type of flow has received
attention since the 1960s in the context of compressible flows and its acoustic properties
(Rossiter 1964). Apart from the acoustic mechanism, hydrodynamic mechanisms can

978 A28-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.946


Bifurcations in a cubic constant shear stress driven cavity

also lead to instability. For periodically grooved channels, Ghaddar et al. (1986) found
Tollmien–Schlichting waves triggered by a Kelvin–Helmholtz instability of the free
shear layer which arises along the streamline separating from the leading edge of the
cavity. Apart from the two-dimensional oscillatory instability, Neary & Stephanoff (1987)
experimentally found a three-dimensional instability in a single shear-driven cavity in
the form of a transverse wave travelling in the spanwise direction along the primary
vortex in the cavity. Evidence for large-scale three-dimensional structures was already
found by Maull & East (1963). At low Mach number Ma different modes can be
unstable, depending on the momentum thickness of the boundary layer, the aspect ratio
and the Reynolds number. More recently, Brés & Colonius (2008) performed a linear
stability analysis for Ma = 0.3 and 0.8 for the system infinitely extended in the spanwise
direction. Apart from a mode resembling the low-frequency three-dimensional mode
observed experimentally by Neary & Stephanoff (1987), Brés & Colonius (2008) found
high-wavenumber Taylor–Görtler vortices inside a cavity with a square cross-section.
A corresponding Taylor–Görtler instability for incompressible flow was found numerically
by Alizard, Robinet & Gloerfelt (2012) and Citro et al. (2015). Faure et al. (2007, 2009)
and Douay, Pastur & Lusseyran (2016) experimentally investigated the Taylor–Görtler
instability at low Mach number in open cavities with various streamwise and spanwise
aspect ratios and were able to observe the characteristic mushroom-like tracer structures
generated by these modes. Not much later, Picella et al. (2018) numerically reproduced
these flows for the square cavity configuration. They found the same patterns and spanwise
recirculation structures as in the experiments and studied the successive Hopf bifurcations
in this set-up.

Finally, the classical lid-driven cavity problem, sketched in figure 1(d), is also tightly
related to the shear-driven cavity. It differs in its formulation only by the boundary
condition: the motion of the flow is driven by a solid lid moving tangentially to itself at a
constant velocity. As the literature on this problem is too extensive, we only mention a few
original sources and refer to the reviews of Shankar & Deshpande (2000) and Kuhlmann
& Romanò (2019) on this canonical flow. The onset of two-dimensional flow oscillations
in a square cavity has been studied first by Shen (1991) who found a Hopf bifurcation at a
critical velocity-based Reynolds number of the order of ReU

c ≈ 104. Much more accurate
simulations of Auteri, Quartapelle & Vigevano (2002) estimated the onset of unsteadiness
to arise at ReU

c = 8018.2 ± 0.6. This result was later reproduced by Peng, Shiau & Hwang
(2003) and Bruneau & Saad (2006). However, experimental results (Koseff et al. 1983;
Koseff & Street 1984b; Prasad & Koseff 1989) have shown that the lid-driven flow in
a square cavity and spanwise aspect ratio of 3 becomes unstable to three-dimensional
Taylor–Görtler vortices at a much lower Reynolds number (ReU

c < 3000). The critical
Reynolds number of ReU

c = 786 for the onset of three-dimensional Taylor–Görtler vortices
in a square cavity of infinity spanwise extent was predicted numerically by Albensoeder
et al. (2001b) and confirmed by Theofilis, Duck & Owen (2004), both by linear stability
analyses.

With the increase of computer resources, simulations of bifurcation analyses from
steady three-dimensional basic flows became feasible. Feldman & Gelfgat (2010) were
the first to investigate the onset of time-dependence in a cubic cavity flow. They
found that oscillations set in at ReU

c ≈ 1914 via a subcritical Hopf bifurcation which
were deemed to break the reflection symmetry with respect to the cavity midplane.
A similar threshold was found by Kuhlmann & Albensoeder (2014), confirming the
slightly subcritical nature of the Hopf bifurcation. Moreover, they demonstrated that
the transition scenario is more complicated and that the bifurcating oscillatory flow
is reflection symmetric with respect to the midplane, but becomes weakly unstable
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slightly above the critical Reynolds number. Kuhlmann & Albensoeder (2014) found a
breakdown of the reflection symmetric oscillations into nonlinear symmetry-breaking
bursts after a sufficiently long integration time amounting to several viscous time units.
Loiseau, Robinet & Leriche (2016) reproduced this result and demonstrated that a second
limit cycle was approached during the nonlinear bursts. Exploiting reflection symmetry
of the basic flow and the primary oscillations, Lopez et al. (2017) identified a more
complete bifurcation scenario for ReU < 2100, including the unstable limit cycles, using
an edge-state tracking technique (Itano & Toh 2001; Schneider et al. 2008): first, the
flow bifurcates via a subcritical Hopf bifurcation and saturates in a limit cycle. In turn,
this limit cycle also bifurcates via an even more subcritical Neimark–Sacker bifurcation.
The complex dynamics between these two limit cycles involves bursts which break the
reflection symmetry. The intermittent bursts characterise the transition to turbulence which
can thus be classified as a Pomeau–Manneville scenario (Pomeau & Manneville 1980).

In the present work, we investigate the incompressible flow in a cubic cavity which is
driven by a constant shear stress. The three-dimensional steady basic flow is expected to
be destabilised by a similar mechanism as in the lid-driven cavity, because the structure
of both basic flows is similar, and because similar Taylor–Görtler-like critical modes have
been obtained for the different configurations discussed above. The objective is to find the
sequence of bifurcations the flow undergoes, by combining linear stability analyses and
nonlinear simulations. Of interest are the characteristics of the unstable modes and their
relation to the lid-driven counterparts. Moreover, we intend to establish whether or not
the scenario of transition to turbulence is the same as for the cubic lid-driven cavity, and
whether the intermittent transition scenario found for the lid-driven cavity is generic for a
whole class of related cavity flows.

In § 2, the set-up and the mathematical models are defined. In § 3, we present the
numerical methods and validate the solvers against results available for the cubic lid-driven
cavity. Thereafter, in § 4, results from a three-dimensional linear stability analysis are
presented and discussed in terms of symmetries. Finally, we carry out a detailed analysis
of the nonlinear evolution upon increasing the strength of the driving force and close, in
§ 5, with a discussion of the results.

2. Mathematical formulation

2.1. Problem definition
We consider the flow of an incompressible Newtonian fluid with density ρ and kinematic
viscosity ν in a cubical cavity of side length L (figure 2). The flow is driven by a constant
shear stress τ > 0 imposed on one face of the cube and aligned with the cube’s edges,
while the remaining boundaries are rigid.

Using the scales L, ν/L, L2/ν and ρν2/L2 for length, velocity, time and pressure, and a
Cartesian coordinate system with origin in the centre of the cavity, the domain occupied
by the fluid is V = [−1/2, 1/2]3 and the Navier–Stokes and continuity equations are

(∂t + u · ∇)u = −∇p + ∇2u, (2.1a)

∇ · u = 0. (2.1b)

The shear stress is imposed on the boundary at y = 1/2 and acts in the negative x direction
such that

∂yu = −Re2
τ

v = 0
∂yw = 0

⎫⎬⎭ on y = 1/2. (2.2a)
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Reτ

y

x

z

Figure 2. Schematic of the cubical cavity with the coordinate origin at its centre. The grey square indicates
the mirror-symmetry plane z = 0.

On the remaining boundaries of the cavity no-slip and no-penetration conditions are
imposed

u = 0 on x = ±1/2, y = −1/2 and z = ±1/2. (2.2b)

As the control parameter we use the well-known shear-stress Reynolds number

Reτ = uτL
ν

=
√
τ

ρ

L
ν

(2.3)

based on the friction velocity uτ = √
τ/ρ.

The problem is invariant in time and mirror-symmetric with respect to the plane
z = 0. Thus, the basic flow at low Reynolds number is steady and mirror-symmetric. We
are interested in the linear stability of this basic flow and in the nonlinear flow above
the threshold Rec at which the symmetry will be spontaneously broken. To facilitate a
comparison with the related lid-driven cavity (Kuhlmann & Romanò 2019) we also specify
the Reynolds numbers ReUmax and ReUavg , respectively, based on the maximum (Umax) and
average velocity magnitude (Uavg) on the moving boundary.

2.2. Linear stability analysis of the steady basic flow
The classical road to quantify the linear stability of a dynamical system is to first solve for
the basic flow q0 = (u0, p0) which satisfies the steady Navier–Stokes equations

u0 · ∇u0 = −∇p0 + ∇2u0, (2.4a)

∇ · u0 = 0, (2.4b)

subject to the boundary conditions (2.2). If, in addition, the symmetry condition

∂u0

∂z
= 0,

∂v0

∂z
= 0, w0 = 0, on z = 0 (2.5)

is imposed at the midplane, the solution is restricted to the subspace of mirror-symmetric
basic flows. Once q0 has been obtained, infinitesimal perturbations q̃ = (ũ, p̃) are
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0 0.5−0.5

0y

x/z

0.5

Figure 3. The 12 × 12 × 12 tensor mesh with refined surface elements at the boundaries.

considered. They are solutions of the linearised Navier–Stokes equations

(∂t + u0 · ∇)ũ + (ũ · ∇)u0 = −∇p̃ +�ũ, (2.6a)

∇ · ũ = 0, (2.6b)

and must satisfy the boundary conditions

∂yũ = ṽ = ∂yw̃ = 0 on y = 1/2, (2.7a)

ũ = 0 otherwise. (2.7b)

Using the normal mode ansatz

ũ(x, t) =
∑

j

ûj(x) eγjt + c.c., with γj = σj + iωj, (2.8)

one obtains the classical generalised eigenvalue problem. For the perturbation modes ûj,
we never enforce any symmetry.

3. Numerical methods

3.1. Time-dependent flow
The time-dependent flow is computed using the spectral-element solver Nek5000, with
an ad hoc refinement of the elements close to the boundaries of the cavity as shown
in figure 3. The elements at the free surface are more refined in order to better capture
the strong variations of the velocity at the surface as a result of the imposed shear
stress. The discontinuities in the first derivative due to the jump in the boundary
condition along the four edges of the free surface naturally slow down the convergence
of the unsteady solver. For the spatial discretisation, the PN/PN−2 formulation for the
velocity/pressure is used employing Lagrange polynomials of degree N = 6 defined on
Gauss–Lobatto–Legendre quadrature points of the tensor mesh of 12 × 12 × 12 elements
(figure 3). Time integration is accomplished using the third-order backward difference
formula/third-order extrapolation (BDF3/EXT3) scheme. The time step was selected in
order to keep the Courant number C � 0.5 for all times. For Reτ = 239.37 (ReU,max =
1948.94, ReU,avg = 1342.34), e.g. this leads to a time step of �t ≈ 1.2 × 10−6.
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3.2. Steady flow
To obtain the basic steady flow (u0, v0,w0, p0)

T, even if it is unstable, the governing
nonlinear system of equations is solved using the BoostConv algorithm, recently proposed
by Citro et al. (2017). The method is based on the acceleration of the convergence of
an iterative method of solution. In the following a short description of the algorithm is
provided. For further details the reader is referred to Bucci (2017) and Loiseau et al. (2019).

The approach relies on the use of a transient solver. This transient solver can be
represented as

xn+1 = xn + B · rn, (3.1)

where xn+1 is the next iterate, B represents the time integration operator for a chosen time
interval �tB and rn is the residual, defined by the equation

rn = A · xn − b, (3.2)

where A is the steady-state operator, possibly nonlinear, and b gathering the driving force
and boundary conditions. Applying the operator A to (3.1) and using (3.2), one obtains

rn+1 = rn − C · rn, (3.3)

where C = −A · B. Now a modified residual ξ(rn) is formally introduced such that the
next residual

rn+1 = rn − C · ξ(rn) = 0 (3.4)

vanishes. This condition is satisfied if ξ(rn) solves the linear system of equations

rn = C · ξ(rn). (3.5)

The objective of the method is to find the best (non-trivial) ξ . To avoid computing the
operator C, which would be computationally too expensive, we introduce two Krylov
spaces

U = {r1, r2, . . . rN} and V = {r1 − r2, r2 − r3, . . . rN − rN+1} (3.6a,b)

of dimension N. From (3.3) they are related to each other by V = C · U . One can then
express

ξ = U · c, (3.7)

where c ∈ R
N , is a linear combination of the vectors spanning U . The components of c

can be obtained by solving the least-squares problem

c = min
c

|rn − V · c|2. (3.8)

This leads to a small linear system of N equations

V TV · c = V T · rn, (3.9)

which can be solved by direct methods. Here, we solve (3.9) using the LU factorisation.
So far we have only expressed C · ξ in a specific basis, which alone does not accelerate
convergence. The key idea of Citro et al. (2017) is to also express the new residual
ρ = rn − C · ξn which (3.7) introduces in (3.5) using the Krylov space V such that

ρ = rn − V · c. (3.10)

Adding this residual to (3.7) yields

ξn = rn + (U − V ) · c. (3.11)

By replacing the residual rn in (3.1) by the corrected vector ξn the convergence is
significantly accelerated, while the extra load to compute ξn is negligible for large systems.
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The computation of ξn is based on a combination of residuals in low-dimensional Krylov
spaces U and V of dimension N. These Krylov spaces are fed in a cyclic fashion such
that the Krylov vectors will be cyclically overwritten after integer multiples of N iterations
by the data obtained at the current iteration. For further details and explanations on the
acceleration, we refer to Bucci (2017).

The two parameters on which this method depends are the dimension N of the Krylov
space, and the time �tB between two calls. Typically a small Krylov space dimension is
sufficient. However, N must be selected according to �tB such that possible oscillations
can be detected, i.e. the dimension of the Krylov space has to respect a Nyquist criterion.
In other words, the sampling frequency of the BoostConv algorithm should be smaller than
the frequencies that are to be suppressed. The BoostConv algorithm can be implemented
on the basis of the time-dependent solver with only minor changes. It allows us to
track three-dimensional steady flow states, regardless of their stability. From a practical
point of view, the BoostConv algorithm has an advantage as compared with the standard
selective frequency damping (Åkervik et al. 2006), because it does not require additional
information about the growth rate and frequency of the perturbation.

For all calculations we use a Krylov space dimension of N = dim(K) = 10 and
a second-order time-integration scheme. To be able to track steady states with
different symmetries (symmetric or non-symmetric with respect to the midplane) a
mirror-symmetry boundary condition is imposed at the midplane when tracking the steady
mirror-symmetric solution which evolves from small Reynolds numbers. To that end, (2.4)
is solved for only one half of the domain using the symmetry boundary condition (2.5) and
reconstructing the flow in the full domain by mirror symmetry.

3.3. Linear stability
The size of the discretised generalised eigenvalue problem is too large to be solved
directly by assembling the matrix of the discretised linearised problem. Therefore, the now
standard time-marching method is employed (Edwards et al. 1994; Bagheri et al. 2009).
It consists of evaluating the propagation operator rather than the linearised Navier–Stokes
operator when applying the eigenvalue algorithm. For more details on the time-marching
method, we refer to the book chapter of Loiseau et al. (2019). To solve the resulting
eigenvalue problem we employ the implicitly restarted Arnoldi algorithm implemented
in the ARPACK library (Lehoucq, Sorensen & Yang 1998) using a Krylov space of
dimension K = 400.

3.4. Verification of the solvers
To verify the unsteady solver, the shear-stress boundary condition on y = 1/2 is replaced
by a prescribed velocity −Uex, corresponding to a moving lid, and use of the Reynolds
number ReU = UL/ν. The critical Reynolds number is bracketed by running the solver
to obtain the largest Reynolds number for which the flow remains steady and the lowest
Reynolds number for which the flow is oscillatory. Initially, the flow is computed for
ReU = 1900 at which only the steady solution exists. Thereafter, the Reynolds number
is increased in small increments of�Re = 1. For each incremented Reynolds number, two
successive steps are carried out. In the first step the new steady state is computed using
the BoostConv algorithm together with the BDF2/EXT2 time-integration scheme (Citro
et al. 2017) until the time derivative of the total kinetic energy drops below 10−4. In this
way, the systems have closely approached steady equilibrium, but the oscillations have not
yet been completely removed. In the second step, the unsteady solver is initialised with
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Reference Method ReU
c ωc

Feldman & Gelfgat (2010) — 1914 1100.55
Kuhlmann & Albensoeder (2014) — 1919.5 1124.83
Gelfgat (2019) — 1919.4 1124.96
Lopez et al. (2017) — 1928.9 1124.93
Loiseau et al. (2016) — ReU

c ∈ [1900, 1930] 1123.20
Present Transient solver ReU

c ∈ [1918, 1919] 1125.59
Present Eigenvalue solver 1918.75 1125.56

Table 1. Critical Reynolds number and critical oscillation frequencies for the flow in a cubic lid-driven cavity.

ReU σ1 ω1

1915 −0.89 1123.82
1918 −0.17 1125.22
1920 0.29 1126.15

Table 2. Eigenvalues σ1 + iω1 for Reynolds numbers ReU
c close to the critical point.

the approximate solution. The temporal evolution of the residual perturbations during one
viscous time unit is then monitored via the kinetic energy of the total flow. Depending on
the growth or decay of the oscillation amplitude of the kinetic energy, an estimate of the
critical Reynolds number is obtained during the incremental increase of ReU .

The results achieved are compared in table 1 with data for the critical Reynolds number
available in the literature. The present results agree very well with the results of Kuhlmann
& Albensoeder (2014) and Gelfgat (2019). These studies are also the most accurate,
since they used a spectral method with a 1283 tensor grid combined with a singularity
subtraction method and a finite volume method with 2563 grid points, respectively. We
conclude that the time-dependent solver is verified and accurately captures the flow and
linear stability in the targeted range of Reynolds numbers.

To verify the implementation of the linear stability analysis we consider again the
lid-driven flow in a cube. The basic flow is obtained using the BoostConv algorithm
with a time step between two iterates of �t = 7 × 10−4 and a Krylov space dimension
of 10. For the stability analysis the propagation operator is evaluated at time steps of
�t = 3.5 × 10−4, and the eigenvalues are computed using a Krylov space of dimension
dim(K) = 400. As this Krylov space dimension is already large enough, no restart is
required for the implicitly restarted Arnoldi method which is then equivalent to the
classical Arnoldi method. The leading eigenvalues for three Reynolds numbers near the
critical point are listed in table 2. Quadratic interpolation to zero yields the critical
Reynolds number ReU

c = 1918.75 (last line in table 1). Since the critical Reynolds numbers
obtained agree very well with the results from the literature, in particular with those
of Kuhlmann & Albensoeder (2014) and Gelfgat (2019), both the steady solver and the
eigenvalue solver are considered verified. The corner singularities were not treated in any
particular way, because the regularity of the numerical solution was almost unaffected.

4. Results

At low Reynolds number the basic flow in the shear-driven cube q0 = (u0, p0)
T is steady

with time translation symmetry q0(x, t) = q0(x, t + t′), where t′ is arbitrary. The basic

978 A28-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.946


P.-E. des Boscs and H.C. Kuhlmann

flow is also invariant under the spatial mirror symmetry map M:

M : (u0, v0,w0)(x, y, z) → (u0, v0,−w0, )(x, y,−z). (4.1)

For any mirror symmetric flow the velocity component w = 0 vanishes in the midplane
z = 0.

The basic flow can lose its stability by the breaking of either the translational invariance
in t, the spatial symmetry (4.1) or both. From the linear stability equations, perturbations
q̃ of the symmetric basic state q0 must either be mirror-symmetric, satisfying the same
spatial symmetry M as the basic flow, or antisymmetric, satisfying

(û, v̂, ŵ)(x, y, z) = (−û,−v̂, ŵ)(x, y,−z). (4.2)

We further define the symmetric velocity field uS and the antisymmetric velocity field uA
as

uS = 1
2 [u + M(u)],

uA = 1
2 [u − M(u)],

}
(4.3)

with u = uS + uA. The kinetic energies ES and EA associated with the symmetric and
antisymmetric part of the flow are

ES = 1
2

∫
V

|uS|2 dV = 1
8

∫
V

|u + M(u)|2 dV,

EA = 1
2

∫
V

|uA|2 dV = 1
8

∫
V

|u − M(u)|2 dV.

⎫⎪⎪⎬⎪⎪⎭ (4.4)

We note that the total energy of the flow is

E = 1
2

∫
V

|u|2 dV = 1
2

∫
V

|uS + uA|2 dV � 1
2

∫
V

|uS|2dV + 1
2

∫
V

|uA|2 dV = ES + EA.

(4.5)

To quantify the symmetry or asymmetry of a flow state, one defines the symmetry and
asymmetry parameters, respectively, as

S = ES

E
= 1

8E

∫
V

|u + M(u)|2 dV, (4.6a)

A = EA

E
= 1

8E

∫
V

|u − M(u)|2 dV. (4.6b)

As the Reynolds number is increased a sequence of instabilities can be identified.
The qualitative structure of the bifurcations and the naming convention for the different
bifurcation points and solutions are sketched in figure 4. The basic mirror-symmetric
steady state S, the low Reynolds number part of which up to point F1 is denoted
S1, is linearly stable until a pitchfork bifurcation P, where it becomes unstable to a
non-oscillating antisymmetric mode q̂P. This critical mode saturates in the asymmetric
steady state A or its antisymmetric counterpart A′. Upon increase of the Reynolds number,
the now unstable basic flow S1 loses its stability with respect to an antisymmetric
oscillating mode q̂HS

at the Hopf bifurcation point HS. For slightly larger Reynolds number
the solution S develops a fold. The unstable symmetric solution between the saddle node
points F1 and F2 is denoted S2, while the solution past F2 is denoted S3. The large
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Re2
τS = S3

S = S1

A

A′

I′

L1

P F1

F2

H1

H ′
1

H ′
2

L′
1

H2

HS

I
�

�

A

S

Figure 4. Sketch of critical points and bifurcating solutions in the space spanned by the Reynolds number
Reτ and the square root of the symmetry parameter

√S and of that of the antisymmetry parameter
√A.

Linearly stable solutions are indicated by full lines, unstable ones by dashed lines. The blue solution branches
are confined to the plane

√A = 0 (bright blue). The two red branches emerging from P are located above and
below the plane

√A = 0.

Reynolds number solution S3 remains unstable to antisymmetric perturbations, but stable
to symmetric perturbations.

The asymmetric steady state A (respectively, A′) is stable until a Hopf bifurcation
H1 (respectively, H′

1), where it becomes unstable to an oscillating mode q̂H1
(respectively, q̂H′

1
). As the oscillation saturates, the system settles on a limit cycle L1

(respectively, L′
1). Upon increasing the Reynolds number A (respectively, A′) becomes

unstable to a second oscillating mode q̂H2
in a Hopf bifurcation H2 (respectively, H′

2).
The limit cycles L1 and L′

1 destabilise at points I and I′, and a complex dynamics between
the two limit cycles arises.

4.1. Stability of the symmetric basic flow

4.1.1. Structure of the symmetric basic flow S1
Figure 5 shows the steady symmetric basic flow S1 for Reτ = 231.19. This value is slightly
less than the critical Reynolds number for the loss of symmetry. The flow structure is
similar to the one in the cubic lid-driven cavity (Feldman & Gelfgat 2010). The flow
along the free surface y = 0.5 accelerates as it leaves the upstream edge at (x, y) =
(0.5, 0.5) and reaches (global) maxima with magnitude of max |u0| = 1851.7 (= ReUmax)

at (x, y, z) = (−0.380, 0.5,±0.449). The maxima are located close to the downstream
edge (x, y) = (−0.5, 0.5) of the free surface. The average free-surface velocity is u0,fs =
(−1278.8, 0, 0)T (and ReUavg = 1278.8). The main characteristic of the flow is a core
vortex aligned with the spanwise direction, best seen in figure 5(a). Similar as in the
cubic lid-driven cavity, the swirling motion slows down in the vicinity of the end walls
at z = ±0.5 and two mirror symmetric vortical structures arise near the end walls which
have the tendency to form ring-like vortices (figure 5b,c) due to the Bödewadt mechanism
(Bödewadt 1940). Considering the local helicity u · ω, where ω = ∇ × u is the vorticity,
we notice that in the plane y = 0 the y-contribution to the local helicity vωy takes its local
extrema at the locations indicated by the pink dots. These properties will be used later for
comparison.
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1.00.5

0.5−0.5

0 wS1
y

x

0.5−0.5
z

0.5−0.5
z

−1.0

0.5 0.5

0

1540

−1540

0 vS1
y uS1

x

680

−680

(b)

(a)

(c)

Figure 5. Basic flow S1 at Reτ = 231.19 < ReP in the planes z = 0 (a), x = 0 (b) and y = 0 (c). Arrows denote
the in-plane components of the velocity vector, while the colour map shows velocity normal to the plane shown.
Along the green lines the spanwise velocity w0 = 0 vanishes. Global extrema of vωy are indicated by pink dots.

The two ring-like end wall vortices lead to a spanwise velocity directed towards the
symmetry plane z = 0 within a region near (x, y) ≈ (0, 0), while the spanwise flow is
directed away from the symmetry plane near the walls x = ±0.5 and y = −0.5. On the
free surface at y = 0.5 the flow has a small component directed towards the symmetry
plane. These regions are separated by the surfaces characterised by w = 0, the contours of
which are shown in figure 5(b,c) by dark green lines.

4.1.2. First bifurcation of S1 to the steady asymmetric flow A
As the Reynolds number is increased, the mirror symmetry is lost. The spectrum of the
linear stability operator slightly above the critical Reynolds number, shown in figure 6,
reveals the first eigenvalue to cross the imaginary axis has ω = Re(γ ) = 0. Interpolation
of the subcritical and supercritical growth rates near the critical point P yields a critical
Reynolds number of ReP = 231.28. The spanwise velocity w(x, y) /= 0 in the midplane z =
0 of the leading and supercritical eigenmode is non-zero (figure 7a). Therefore, this mode
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Figure 6. Eigenvalue spectrum of the linear stability problem for the basic flow at the supercritical Reynolds
number Reτ = 231.73. The grey shade indicates the region of negative growth rates σ = Re(γ ) < 0.

−A

0

A

ŵP wA

0.5

y

x x0.5−0.5 0.5−0.5
−8.7

8.7

0

0.5
(b)(a)

Figure 7. Spanwise velocity field in the plane z = 0 of (a) the slightly supercritical eigenmode ŵP(x, y)
for Reτ = 231.73, and of (b) the velocity field wA(x, y) of the slightly supercritical nonlinear steady-state
A obtained by numerical simulation for Reτ = 232.38. The dashed lines correspond to (a) ŵP = 0 and
(b) wA = 0. The marker (�) in (b) indicates the monitoring point xp = (0.4, 0, 0)T.

breaks the mirror symmetry (4.1). The corresponding critical Reynolds number based on
the maximum surface velocity ReUmax,P = 1852.62 compares very well with the critical
Reynolds number ReU

c = 1919.51 for the lid-driven cube (Kuhlmann & Albensoeder
2014), even though the critical mode in the cube is oscillatory and subcritical with the
saddle-node point at ReU

c = 1906.0. The critical Reynolds number based on the average
velocity ReUavg,P = 1279.47 is much lower.

The result of the linear stability analysis is confirmed by the full numerical simulation.
At Reτ = 232.38 (ReUmax = 1866.4, ReUavg = 1288.0) the deviation of nonlinear steady
state A from the symmetric steady state S1 exhibits essentially the same structure
as the linear mode at Reτ = 231.73, except from small nonlinear corrections. This is
demonstrated in figure 7(b). The isolines of wA(z = 0) are almost indistinguishable from
those of the eigenfunction ŵP shown in figure 7(a).
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x
y

z

0.5

z

x v̂P

ûP v̂P ŵP

A

–A

0.5

−0.5

(b)(a)

(d )

(c)

Figure 8. Leading stationary eigenmode q̂P(x) at Reτ = 231.73. Velocity components ûP (a), v̂P (b) and ŵP (c)
of the isosurfaces are shown at ±20 % of their respective extrema (yellow,>0; purple,<0). The arrow indicates
the direction of the surface stress. (d) Structure in the plane y = −0.2. Arrows indicate the cross-stream velocity
field (ûP, ŵP), while colour indicates the velocity component v̂.

Apart from the solution branch A, also a solution branch A′ exists which is distinguished
from A by the asymmetric part of the flow having the opposite sign. The two nonlinear
states A and A′ emerge from the critical point P, and both originate from the same
real-valued linear mode but with amplitudes of different sign. To distinguish between A
and A′ we associate with A the steady state in which w(xp) > 0, and with A′ its mirror
symmetric counterpart with w(xp) < 0, where the monitoring point xp = (0.4, 0, 0)T has
been selected arbitrarily. It is marked by a black square (�) in figure 7(b).

The global structure of the steady antisymmetric eigenmode q̂P at Reτ = 231.73
(ReUmax = 1857.81, ReUavg = 1282.86) for slightly supercritical conditions is illustrated in
figure 8. The breaking of the mirror symmetry is obvious from the isosurfaces of ŵ shown
in figure 8(c). The perturbation velocity field is primarily located near the upstream wall
at x = 0.5 and extends upstream of the basic flow. Furthermore, the perturbation velocity
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10−5

10−4

10−1 100

Slope = 1

Reτ − ReP

A

Figure 9. Asymmetry measure A as a function of the distance of the shear stress Reynolds number from
the critical point ReP. Open symbols represent numerical simulations. The function a1(Re − a2)

a3 with
a1 = 4.513−5, a2 = 231.29 and a3 = 0.9526 is represented by a full line.

exhibits strong components in the streamwise direction, parallel to the basic flow. From
the isosurfaces for û and v̂ with large positive (yellow) and negative (purple) values the
perturbation flow primarily consists of a single slender vortex located in midplane z = 0
and extending over the solid walls. This structure can be clearly seen from figure 8(d)
which shows the structure of the vortex in the horizontal plane y = −0.2 in the lower half
of the cavity. The location and shape of the single vortex is very similar to the periodic
Taylor–Görtler vortices known from the spanwise extended lid-driven cavity (Koseff et al.
1983; Koseff & Street 1984a; Albensoeder et al. 2001b; Kuhlmann & Romanò 2019).
We denote the vortex a single Taylor–Görtler vortex, because it is created by the same
instability mechanisms which are also responsible for the Taylor–Görtler vortices in the
periodic lid-driven cavity, as further explained below.

At the critical Reynolds number ReP the asymmetric steady flows A and A′ (figure 4)
bifurcate supercritically from the symmetric basic state S1. We find the steady asymmetric
mode grows to a finite amplitude which saturates for t → ∞. To compute the saturated
flow state A the unsteady solver was run for Reτ = 232.38 until the time derivative of
the total kinetic energy ∂E/∂t became less than 10−5. Thereafter, the flow state A was
computed for successively decreasing Reynolds numbers using the steady solver. As a
measure for the amplitude of the deviation from the symmetric flow the asymmetry
measure A was evaluated and fitted by

A(Reτ ) = a1(Reτ − a2)
a3 . (4.7)

The result is shown in figure 9 with exponent a3 = 0.9612 ≈ 1. For a generic pitchfork
bifurcation, the deviation of the flow from the basic flow scales as the square root of the
distance from the critical point. Since the asymmetry measure A (4.6b) is quadratic in
the velocity deviation, the linear scaling A(Reτ ) ∼ Reτ − ReP found signals a pitchfork
bifurcation at ReP = a2 = 231.28 (ReP,max = 1854.71,ReP,avg = 1281.32). This critical
Reynolds number, determined by nonlinear simulation, matches perfectly the value
obtained by the linear stability analysis.

The saturated asymmetric flows A and A′ do not differ much from the basic flow
S1. The strength of the Taylor–Görtler perturbation vortex centred on the midplane
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Figure 10. Saturated asymmetric flow uA for Reτ = 236.01 shown in the planes x = 0 (a) and y = 0 (b).
Arrows show the in-plane velocity components. The colour code indicates the velocity component normal to
the plane shown. Green lines denote isolines wA = 0. Loci of the global extrema of vAωy,A are indicated by the
pink dots.

is so weak that it can barely be recognised on the background of the end-walls
vortices of S1. The maximum value of the magnitude of the velocity is max |uA| =
1909.3 at x = (−0.383, 0.5, 0.449)T and the average flow at the surface is 〈uA〉y=1/2 =
(−1316.1, 0, 0.371)T reflecting the broken symmetry with a net spanwise flow on the top
surface. This weak symmetry breaking is also visible by the isolines wA = 0 shown in dark
green in figure 10(a,b). In particular, the spanwise velocity on the midplane wA(z = 0) is
non-zero, but distinct cells cannot be recognised.

4.1.3. Second instability of S1
Even though the symmetric basic state is unstable for Reτ > ReP, further instabilities
are of interest, because the bifurcating solutions can significantly affect the dynamics of
supercritical chaotic flow (Loiseau et al. 2016; Lopez et al. 2017). At ReHS = 232.61, only
approximately 0.5 % above ReP a pair of complex eigenvalues with ωHS = 689.68 crosses
the imaginary axis. The index HS refers to the Hopf bifurcation point HS in figure 4. These
eigenvalues are shown as a pair of black circles in figure 6 for Reτ = 231.79 < ReHS . By
ReHS = 232.61 the real parts of these eigenvalues have overtaken the second largest purely
real eigenvalue.

The oscillating eigenmode q̂HS
is antisymmetric at any instant of time, just like the

stationary mode q̂P. The mode also consists of a single Taylor–Görtler vortex centred on
the midplane z = 0. This is demonstrated in figure 11 which shows the temporal evolution
of the structure of the mode over one half of the period in the plane y = −0.2 (the slightly
negative growth rate is disregarded in the visualisation in figure 11). Like the stationary
mode q̂P, the mode q̂HS

mainly extends along the solid wall upstream of the free surface. It
can be seen that the Taylor–Görtler vortex periodically changes its sense of rotation. The
sense of rotation also varies spatially along the apparent centreline of the Taylor–Görtler
vortex. This can be seen from the temporal evolution of the isosurfaces of û, v̂ and ŵ over
half a period shown in figure 12. From figure 12(c) the spanwise velocity ŵ in the midplane
z = 0 and near the bottom wall y = −0.5 (ŵ < 0, purple) changes its sign downstream of
the basic flow near the upstream wall x = 0.5 (ŵ > 0, yellow).

We did not find any stable limit cycle related to the secondary bifurcation form of the
basic symmetric flow. Therefore, we could not determine the character of the bifurcation
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Figure 11. Temporal evolution of the oscillatory antisymmetric eigenmode q̂HS
at ReHS = 232.59 in the

plane y = −0.2 shown at (a) t = 0, (b) t = THS/6 and (c) t = 2THS/6, where THS = 2π/ωHS . Arrows show
the velocity vectors (ûHS , ŵHS ) in the plane while the velocity component v̂HS is shown by colour. For the
visualisation the (negative) growth rate is disregarded here, as well as in all following figures displaying the
time evolution of critical modes.

being subcritical or supercritical. The realisation of a stable bifurcating limit cycle is
prevented by the much larger linear growth rate of the stationary antisymmetric mode
P near ReHS .

4.1.4. Fold bifurcation of S
To probe the further evolution of the symmetric solution S, the solution of (2.4) is
constrained to be mirror-symmetric by (2.5). This allows us to track the unstable basic
flow S to higher Reynolds numbers. Near Reτ ≈ 232 solution S exhibits a fold which is
visualised by E(Reτ ) in figure 13. The first saddle-node bifurcation point F1 associated
with the fold arises at ReF1 = 232.62 (ReF1,max = 1867.89, ReF1,avg = 1289.44). This
value is extremely close to the Hopf bifurcation point at ReHS = 232.61 on S1. Beyond
F1 the mirror-symmetric solution S turns backward (dashed curve) and is named S2. It is
unstable with respect to mirror-symmetric perturbations. At the lower Reynolds number
ReF2 = 231.60 < ReF1 (ReF1,max = 1853.90, ReF1,avg = 1280.12) a second saddle-node
bifurcation arises and the solution branch S turns forward again, now named S3. The flow
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Figure 12. Evolution of the time-dependent antisymmetric eigenmode q̂HS
at Reτ = 232.59 < ReHS . Shown

are isosurfaces of ûHS , v̂HS and ŵHS at three instants of time over half a period, (a,b,c) t = 0, (d,e,f ) t =
THS/6 and (g,h,i) t = 2THS/6. Each isosurface correspond to ±0.2 × maxx |û|. Positive and negative values
are coded by colour with yellow for >0, and purple for <0. The arrow indicates the direction of the surface
stress and grey shows the plane y = −0.2 on which the flow is illustrated in figure 11. The first movie of the
accompanying material shows the evolution of the perturbation velocity magnitude during one period: (a) ûHS ;
(b) v̂HS ; (c) ŵHS ; (d) ûHS ; (e) v̂HS ; ( f ) ŵHS ; (g) ûHS ; (h) v̂HS ; (i) ŵHS .

S3 regains stability with respect to mirror-symmetric perturbations, but remains unstable
to antisymmetric perturbations.

The fold bifurcation is associated with a pair of mirror symmetric Taylor–Görtler
vortices which can exist at this Reynolds number. We find that the intermediate state S2
is unstable to a stationary mode consisting of a pair of counter-rotating Taylor–Görtler
vortices which are mirror symmetric. The vortex pair can have two directions of rotation,
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Figure 13. Kinetic energy E = ES as a function of the Reynolds number Reτ . Full (open) symbols denote
stable (unstable) states in the symmetric subspace. The lines are guides to the eye, connecting the data points.
The short vertical dotted line marks the Hopf bifurcation point at ReHS on S1. The large open symbols represent
points for which the basic flow and the unstable mode shown in figure 14 (open square) and the growth rate of
the unstable mode in figure 16 (diamond).

0.5

0.5–0.5

0x

z z

vS2
v̂

0

0

679.8

–679.8

0.5

–0.5 0.5

0

–A

A
(b)(a)

Figure 14. (a) Unstable basic state S2 and (b) growing corotating eigenmode at Reτ = 232.06 close to its
maximum growth rate (open square in figure 15). Both flows are shown in the plane y = 0. Colour indicates
the velocity component normal to the pane displayed. Full square indicates the probing point xp.

depending on the sign of the unstable mode and characterised by û(xp) ≶ 0. Figure 14
shows the unstable basic flow S2 with u(xp) < 0 and the two-vortex Taylor–Görtler mode
with û(xp) > 0. As shown in figure 15 the growth rate (corresponding to the second largest
real eigenvalue in figure 6) as a function of Reτ exhibits a maximum and vanishes as the
saddle node points F1 and F2 are approached.

The nonlinear evolution of small symmetric perturbations of S2 at constant Reτ is such
that the amplitude of the unstable Taylor–Görtler mode grows until the flow saturates
either in S1 or in S3. Perturbations in form of Taylor–Görtler vortices with û(xp) > 0
which rotate in the same direction (in the plane y = 0) as the Bödewadt eddies saturate
in S1, while Taylor–Görtler vortices with û(xp) < 0 counter-rotating with respect to the
Bödewadt eddies saturate in S3. Since the Taylor–Görtler vortices have the same symmetry
as the underlying symmetric main overturning flow including the Bödewadt eddies, the
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Figure 15. Growth rate Re(γ ) (circles, full squares and full triangles) of symmetric Taylor–Görtler vortices
across the fold bifurcation involving section S1, S2 and S3 of the symmetric solution S (labels, symbol type)
shown as a function of Reτ . The saddle-node bifurcation points F1 and F2 are indicated by vertical dashed
lines. The open square corresponds to the growth rate of the perturbation flow shown in figure 14(b). The line
is an interpolation of the discrete data.
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Figure 16. Mirror-symmetric flow uS3 at Reτ = 232.70 shown in the plane x = 0 (a) and y = 0 (b). Arrows
show the in-plane velocity components. The colour code indicates the velocity component normal to the plane
shown. Green lines denote isolines wS3 = 0. Global extrema of vS3ωy, S3 are indicated by the pink dots.

Taylor–Görtler vortices cannot be separated from the flow states S1 and S3. From the
dynamics of the perturbations of the unstable flow S2, however, we can conclude that
the flow states S1 and S3 contain finite-amplitude Taylor–Görtler vortex contributions.
Since the Taylor–Görtler vortices included in the flow state S1 are corotating with the
Bödewadt eddies, they cannot be visually identified in the projection of the flow field.
However, within S3 the Taylor–Görtler vortex contribution can be clearly identified in
figure 16(b) for Reτ = 232.70 (ReUmax = 1863.9, ReUavg = 1287.8) by the small vortices
counter-rotating with respect to the larger Bödewadt circulation. The extrema of vωy in
the plane y = 0 (pink dots in figure 16b) are located within these Taylor–Görtler vortices.
In figure 16(b) the separated vortices near the midplane approximately occupy the region
(x, z) ∈ [0.4, 0.5] × [−0.1, 0.1]. They are not so clearly visible in figure 16(a) where the
vortices are approximately located in ( y, z) ∈ [0.4, 0.5] × [−0.1, 0.1].

Depending on the sense of rotation of the Taylor–Görtler contribution to the total
symmetric flow they are either suppressed or favoured by the Bödewadt eddies which
always have the same sense of rotation. From the dynamics near S2 we conclude that
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Taylor–Görtler vortices counter-rotating with respect to the Bödewadt eddies (û(xp) <
0) are favoured in S3 (for large Reτ ), whereas Taylor–Görtler vortices corotating with
respect to the Bödewadt eddies (û(xp) > 0) are favoured in S1 (for small Reτ ). Since the
Taylor–Görtler vortices contained in S1 and S3 have a finite amplitude the competition
between S1 and S3 leads to the observed hysteresis creating the fold of S. It is likely
that the fold originated from a cusp point in an extended parameter space in which an
additional parameter can tune (reduce) the interaction of the Taylor–Görtler vortices with
the Bödewadt flow. One such parameter could be the spanwise aspect ratio (e.g. see
Kuhlmann, Wanschura & Rath 1997; Albensoeder et al. 2001b). A computation of the
fold as a function of the aspect ratio is, however, computationally expensive and other
symmetric Taylor–Görtler modes may come into play.

4.2. Time-dependent asymmetric flow

4.2.1. Linear stability analysis of the steady asymmetric flow A
To investigate the linear stability of the steady asymmetric flow the solution branch
A is tracked using the BoostConv algorithm in combination with the second-order
time-integration scheme. The basic state for the stability analysis now refers to A. Since
the flow A has no spatial symmetries, the normal modes will likewise have no spatial
symmetries. The stability analysis yields a Hopf bifurcation at ReH1 = 236.04. The critical
frequency ωH1 = 764.16 is only approximately 10 % larger than ωHS . Correspondingly, the
solution A′ becomes unstable at the same Reynolds number with respect to the Hopf mode
H′

1 with the same frequency.
Figure 17 shows the components of the velocity field of the leading eigenmode q̂H1

at the
slightly subcritical Reynolds number Reτ = 236.01. The mode resembles the oscillatory
mode q̂HS

destabilising the symmetric basic state S1 at ReHS (figure 12). While mode q̂HS
is an antisymmetric standing wave, the mode q̂H1

travels in the negative z direction. The
propagating Taylor–Görtler vortices are oriented slightly oblique which is illustrated in
figure 18. Similarly, the mode q̂H′

1
which destabilises the asymmetric state A′ travels in the

positive z direction. The travelling direction is dictated by the particular asymmetric basic
flow state A or A′.

As for the critical modes of the symmetric basic state S1, the critical modes of the
asymmetric steady flows A and A′ arise in form of one or two (at times) Taylor–Görtler
vortices, located in the vicinity of the midplane z = 0 of the cavity. The relatively small
deviation of the steady asymmetric flows states A and A′ from the symmetric basic state S1
(compare figure 5b,c with figure 10a,b) suggests that the onset of asymmetric oscillations
is not caused by the asymmetry of the steady basic flow, but is rather an instability similar
to the one of the symmetric steady flow S1 which is destabilised by critical mode q̂HS

and
its complex conjugate mode q̂H′

S
. The asymmetric part of the three-dimensional steady

flow seems to merely make the modes propagate and suppress the onset of oscillations for
a small range of Reynolds numbers Reτ ∈ [ReHS,ReH1]. This interpretation is confirmed
by the mean energy budget later.

4.2.2. Finite amplitude oscillations of the asymmetric flow
For Reτ > ReH1 the amplitude of oscillation of the asymmetric flow saturates and
reaches the limit cycle L1. To investigate the saturation, the third-order time-integration
scheme BDF3/EXT3 has been used. Let us introduce the peak-to-peak amplitude �A
of the asymmetry measure A of the fully developed nonlinear periodic flow with
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Figure 17. Evolution of the time-dependent asymmetric eigenmode ûH1 at Reτ = 236.01 in the plane
y = −0.2 shown at t = 0 (a), t = TH1/6 (b) and t = 2TH1/6 (c). Arrows show the velocity vectors (ûH1 , ŵH1 )

in the plane while the velocity component v̂H1 is shown by colour.

constant oscillation amplitude. To determine subcritical or supercritical character of the
bifurcation the ansatz (4.7) is fitted to �A(Reτ )2 using least squares. From the fit
shown in figure 19(a) we find the critical Reynolds number ReH1 = a2 = 236.03 and the
exponent a3 = 1.0283 ≈ 1. Therefore,�A scales almost as the square root of the distance
from the critical point and the bifurcation is supercritical. The above estimate of ReH1

almost perfectly agrees with the result from the linear stability analysis Relin
H1

= 236.05.
Interpolation of ReU,max and ReU,avg give ReH1,max = 1909.83 and ReH1,avg = 1316.42,
respectively.

As the Reynolds number increases, higher temporal harmonics are generated. The
amplitudes of wH1(xp) are displayed in figure 19(b). At Reτ = 239.37, the second and
third harmonics have already grown to an appreciable amplitude of 0.65A1, and 0.18A1,
where A1 is the amplitude of the fundamental harmonic. The fundamental frequency
ωL1 = 764.5 does not vary much in range of Reynolds numbers considered and agrees
well with the frequency obtained by the linear stability analysis ωlin

L1
= 764.16. Due to the

two asymmetric steady solutions A and A′ there also exists a corresponding limit cycle L′
1

near A′.
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Figure 18. Evolution of the time-dependent asymmetric eigenmode ûH1 at Reτ = 236.01. Shown are
isosurfaces of ûH1 , v̂H1 and ŵH1 at three instants of time over half a period, t = 0 (a,b,c), t = TH1/6 (d,e,f )
and t = 2TH1/6 (g,h,i). Isosurfaces corresponding to ±20 % of the extrema of the velocity component are
shown in colour with yellow for >0, and purple for <0. The arrow indicates the direction of the surface stress
and grey indicates the plane y = −0.2 on which the flow is illustrated in figure 17. The second movie of the
accompanying material shows the evolution of the perturbation velocity magnitude during one period: (a) ûH1 ;
(b) v̂H1 ; (c) ŵH1 ; (d) ûH1 ; (e) v̂H1 ; ( f ) ŵH1 ; (g) ûH1 ; (h) v̂H1 ; (i) ŵH1 .

The bifurcation diagram from S1 to A and to H1 in terms of the asymmetry measure A is
shown in figure 20. The bifurcations to A′ and H′

1 are included by plotting sign[w(xp)] ×
A1/2. Lines are guides to the eye and line intersections do not accurately reflect the critical
Reynolds numbers.

4.2.3. Further destabilisation of the steady asymmetric flow
As one continues increasing the Reynolds number, the asymmetric solution branch A
is destabilised at ReH2 ≈ 237.07 (ReH2,max = 1921.78, ReH2,avg = 1324.33) by a second
oscillatory mode. The associated frequency is ωH2 = 82.55. It is approximatively 10
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Figure 19. (a) Peak-to-peak amplitude �A of the saturated oscillatory asymmetric flow uL1 . The straight line
is a fit according to (4.7). (b) Evolution of the spectral amplitudes A of the saturated asymmetric nonlinear
oscillations flow wL1 at the monitoring point xp.
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Figure 20. Bifurcation of solutions as function of the asymmetry parameter A. Symbols show the results of
the numerical simulations, lines have been drawn as guides to the eye, where stable (unstable) branches are
shown by full (dashed) lines. The grey shading indicates the range of peak-to-peak oscillation of A of the limit
cycles L1 and L′

1.

times smaller than the frequency ωH1 of the limit cycle L1. Again, the energy budget
of the neutral mode q̂H2

is extremely similar to the ones of all previous modes,
indicating the steady state A is destabilised by the same centrifugal mechanism. The
mode q̂H2

(respectively, q̂H′
2
) consists of three vortices which are travelling in the negative

(respectively, positive) z direction. Figures 21 and 22 illustrate the structure of the neutral
mode q̂H2

with Taylor–Görtler vortices travelling in the negative z direction. Qualitatively,
the vortices of mode q̂H2

are more aligned with the streamwise direction of the basic flow
than those of mode q̂H1

, which tend to be in a slightly more oblique. This is particularly
visible for the x-component of the perturbation velocity (compare figure 18a,d,g with
21a,d,g).
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Figure 21. Temporal evolution of the asymmetric eigenmode ûH2 at Reτ = 237.07. Shown are isosurfaces of
ûH2 , v̂H2 and ŵH2 at three instants of time over half a period, t = 0 (a,b,c), t = TH2/6 (d,e,f ) and t = 2TH2/6
(g,h,i). Yellow (positive) and purple (negative) isosurfaces correspond to ±20 % of the extrema of the velocity
component. The arrow indicates the direction of the surface stress and grey indicates the plane y = −0.2 on
which the flow is illustrated in figure 17. The third movie of the supplementary material shows the evolution
of the perturbation velocity magnitude during one period: (a) ûH2 ; (b) v̂H2 ; (c) ŵH2 ; (d) ûH2 ; (e) v̂H2 ; ( f ) ŵH2 ;
(g) ûH2 ; (h) v̂H2 ; (i) ŵH2 .

4.2.4. Instability mechanism
To better understand the instabilities mechanisms at play, we introduce the local rates of
change of perturbation kinetic energy

i1 = D−1ũ⊥ · (ũ⊥ · ∇)u0, i2 = D−1ũ‖ · (ũ⊥ · ∇)u0,

i3 = D−1ũ⊥ · (
ũ‖ · ∇)

u0, i4 = D−1ũ‖ · (
ũ‖ · ∇)

u0,

}
(4.8)

where D is the mean dissipation rate,

D = 1
T

∫ T

0

∫
V

∇ũ : ∇ũ dV dt (4.9)

u0 can be any basic state and ũ a perturbation of this basic state which has been
decomposed into the directions parallel and perpendicular to the local basic flow with

ũ‖ = (ũ · u0)u0

u0 · u0
, ũ⊥=ũ − ũ‖. (4.10a,b)
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Figure 22. Evolution of the second most unstable mode ûH2 at Reτ = 237.07 on the asymmetric solution
branch A in the plane y = −0.2, shown at t = 0 (a), t = TH2/6 (b) and t = 2TH2/6 (c) corresponding to
figure 21. Arrows show the velocity vectors (ûH2 , ŵH2 ) in the plane, while the velocity component v̂H2 is
represented by colour.

The total local energy production is i = ∑4
n=1 in. The global rates of change of kinetic

energy due to the above four local contributions is obtained by integrating over the volume
and averaging over one period T of oscillation (in case of a Hopf bifurcation). This leads
to the global change rates

I1 = 1
T

∫ T

0

∫
V

i1(x, t) dV dt, I2 = 1
T

∫ T

0

∫
V

i2(x, t) dV dt,

I3 = 1
T

∫ T

0

∫
V

i3(x, t) dV dt, I4 = 1
T

∫ T

0

∫
V

i4(x, t) dV dt.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.11)

Again, these four contributions add to the total global rate of change of kinetic perturbation
energy.

The global normalised energy budgets of several linear modes near their points of
neutral stability are displayed in table 3. It can be seen that the magnitudes of In for the
three modes P, HS and F1 discussed so far are almost the same. Therefore, these modes
are then destabilised by the same physical processes which are represented by the different
production terms. The similarity of the energy production rates is due to the similarity
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Critical pt. Reτ ReU,max ReU,avg γ I1 I2 I3 I4

P 231.30 1852.87 1279.64 0.13075 0.030 0.789 0.142 0.039
HS 232.59 1867.52 1289.07 −1.10422 ± i689.68 0.042 0.782 0.141 0.035
F1(S1) — — — −4.12442 0.061 0.763 0.119 0.053
H1 236.01 1909.35 1316.11 −0.19771 ± i764.16 0.036 0.789 0.131 0.044
H2 237.07 1921.78 1324.33 0.26699 ± i82.559 0.040 0.781 0.128 0.052

Table 3. Global energy production rates In, n = 1 . . . 4, due to different physical processes at Reynolds
numbers Reτ close to several critical points as indicated. In addition, the eigenvalue γ whose real part crosses
zero at the critical point, and velocity based Reynolds numbers are specified.

of the basic flows and the perturbation modes. Since the contribution I2 dominates, all
these modes are destabilised primarily through to the lift-up mechanism by which the
streamwise perturbation flow u‖ is amplified by transport of basic state momentum in the
cross-stream direction due to u⊥. In a similar context of the lid-driven cavity this lift-up
mechanism has been linked to a centrifugal mechanism by Albensoeder et al. (2001b).
Briefly, a centrifugal instability results from the exchange of high-angular-momentum fluid
at small streamline radii with low-angular-momentum fluid at larger radii (Rayleigh 1920;
Bayly 1988).

The angular momentum exchange process involves a transport of momentum
perpendicular to the basic-state streamlines, represented as u⊥ · ∇u0. Therefore, the
cross-streamline transport u⊥ · ∇u0 of streamwise momentum u‖ quantified by i2 in the
presence of significant streamlines curvature represents a centrifugal exchange process. If
this process dominates, as in the present case, the instability may be called centrifugal.

Furthermore, the spatial distributions of the corresponding energy production densities,
shown in figure 23, as well as the vortical structures of the perturbation flow are very
similar as those for periodic Taylor–Görtler vortices in an extended lid-driven square cavity
(figures 11 to 13 in Albensoeder et al. (2001b)) which corroborates the interpretation of
the three modes as stationary and time-dependent Taylor–Görtler vortices. Similarly as
in Albensoeder et al. (2001b), the local production rate of perturbation kinetic energy
takes its maxima around the main vortex figure 23(a) for the antisymmetric mode P, and
between two vortices for the symmetric mode F figure 23(b). The local rate perturbation
production for modes destabilising through Hopf bifurcations are shown in the additional
material online.

The first modes bifurcating from S at P very much resembles the leading eigenmode
in the cubic lid-driven cavity problem which arises at ReU

c = 1919.51. (Kuhlmann &
Albensoeder 2014), in particular, the banana-like shapes of the isosurfaces of the velocity
perturbation (see, e.g. figure 11 in Feldman & Gelfgat (2010) or figure 7 in Kuhlmann &
Albensoeder (2014) and the associated movie). Yet, in the lid-driven cavity, the critical
mode arises in form of time-periodic counter-rotating vortices, while at P the critical
mode consists of a single stationary vortex only. The unstable mode in the lid-driven
case does, however, graphically resemble the mode becoming unstable at HS, although
its eigenfrequency is nearly twice as large (ωc,U ≈ 1125, ωHS ≈ 690). Moreover, for
ReHS = 232.61 on S1 both values ReUmax,HS = 1867.72 and ReUavg,HS = 1289.44 are lower
than ReU

c = 1919.51 by 3 % and 33 %, respectively.
While ReUmax,HS of the shear-driven cavity compares well with ReU

c of the lid-driven
cavity, one might have expected that ReUavg,HS should compare better with ReU

c . The
fact that ReUavg,HS is 33 % less than ReU

c seems to be related to the different boundary
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Figure 23. Isocontours of the energy production densities i = i1 + i2 + i3 + i4 in the vicinity of the pitchfork
bifurcation and the fold bifurcations at the Reynolds numbers indicated in table 3, at isovalue 0.5 max i. Movies
of the isosurfaces of the energy production density i near the Hopf bifurcation points HS, H1 and H2 are
available in the supplemental online material available at https://doi.org/10.1017/jfm.2023.946. Here (a) i(q̂P)

and (b) i(q̂F1
).

conditions for the perturbation flow u′ in both systems: In the shear-driven cavity the
perturbation flow can slip freely in the y and z direction on y = 0.5 (homogeneous
Neumann conditions: ∂u′/∂y = ∂w′/∂y = 0), whereas the perturbation flow in the
lid-driven cavity must satisfy no-slip conditions on the lid (u′ = 0). As a result the
perturbation flow in the shear-driven cavity will experience less dissipation, quantified
by ∇u′ : ∇u′, near the moving boundary than the perturbation flow in the lid-driven
cavity. Nevertheless, the perturbation flow in the shear-driven cavity can still extract kinetic
energy from the velocity gradients of the basic flow in the x- and z-directions, ∂u0/∂y and
∂w0/∂y, near the moving boundary. These arguments may explain the significantly lower
value of ReUavg,HS as compared with ReU

c . This difference thus does not contradict the
analogy between both systems.

4.3. Destabilisation of the limit cycle L1

For even higher Reynolds numbers the limit cycles L1 and L′
1 become unstable within

Reτ ∈ [238.75, 240.83]. Long durations of almost periodic oscillations with constant
amplitude are interrupted by nonlinear bursts in an intermittent fashion leading to a
complex dynamics. Even though the onset Reynolds numbers of these bursts cannot
accurately be pinpointed, this is marked as I in figure 4.

The dynamics is illustrated by the evolution of w(xp, t) shown in figure 24(b). If the
oscillations near L1 are followed by a burst, the dynamical system may return either to the
same limit cycle (L1) or to the limit cycle L′

1 which is the asymmetric counterpart of L1.
From figure 24(b) one can recognise the switch from the limit cycle L1 to L′

1 during a burst
event at approximately t = 8.5. The two limit cycles L1 and L′

1 can also be distinguished
by the mean value w̄(xp, t) (white dashed lines in figure 24) during the phases of regular
oscillations. These mean values have a different sign, depending on the limit cycle. The
durations of the bursts as well as the time spans of regular oscillations vary.
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Figure 24. Time evolution of (a) A(t) and of (b) w(xp, t) at Reτ = 239.37. The mean values of w(xp, t)
corresponding to L1 and L′

1 are indicated by white horizontal dashed lines. (c) Short-time Fourier transform
of w(xp, t) with a sliding time window of width �t = 0.6, roughly corresponding to 75 periods of oscillation.
The grey level indicates the spectral amplitude of the signal; only amplitudes larger than 10−4 are displayed.

When the system is locked on one of the limit cycles its spectrum contains only
harmonics of the fundamental frequency (figure 24c). During a burst event, however, the
power density spreads over a broader bandwidth. The spectrum is broadened in the form
of peaks which are almost regularly spaced around the harmonics of the limit cycle. The
velocity field in the midplane y = 0 is shown in the supplementary movie 7 for both the
limit cycle and a burst event.

The bursting events can be subdivided in three distinct phases. In the first phase, the
oscillation frequency of the limit cycle decreases, and a continuous band frequency below
the harmonic frequencies starts invading the spectrum. Along with it the peak-to-peak
amplitude of w(xp) shrinks. In the second phase, the flow undergoes strong oscillations.
The beat frequency is approximately ωbeat,1 = 50 ± 5. Due to the strong nonlinear
interactions, the beating is strongly anharmonic which results in multiple peaks at
frequencies ω = nωL1 ± mωbeat,1 in the short-time spectrum in figure 24(c). During this
second phase, the symmetry of the flow varies significantly. For instance A varies from
10−6 to 10−2 in the last burst of figure 24. This indicates that the flow repeatedly returns to
a mirror symmetric flow with w(xp) ≈ 0. In the last phase, the beat frequency of the signal
during the return to regular oscillations is ωbeat,2 ≈ 75 ± 5 which is close to the frequency
ωH2 ≈ 82 of the unstable low-frequency limit cycle which is created by the secondary
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bifurcation H2 from the unstable asymmetric steady solution A. This scenario suggests the
limit cycles L1 and L′

1 have turned into saddle limit cycles which are repelling in at least
one phase space direction.

To probe the existence of another unstable limit cycle with a frequency comparable to
the beat frequencies found, one may take advantage of the frequency of L1 being 10 times
higher than the hypothesised limit cycle at this Reynolds number. This allows us to design
a low pass filter in order to obtain only the dynamics associated with the slowly evolving
mode. To that end selective frequency damping (SFD) is used, not to seek the basic
flow as usual (Åkervik et al. 2006), but to eventually find the low-frequency limit cycle.
Following the notation of Åkervik et al. (2006) the parameters χ = 3000 andΔ = 0.0007
are selected, corresponding to a cut-off frequency ωc = 227 which is less than one half
of ωH1 (comparable to the frequency of the limit cycle L1), but still large enough not to
damp oscillations with frequencies ω ≈ 50 and its second harmonic. Due to a relatively
long period of the hypothetical limit cycle this approach is computationally much more
economical than other methods to find unstable manifolds, e.g. the tracking of edge states
(Itano & Toh 2001; Schneider et al. 2008; Lopez et al. 2017). While the results of a SFD
can help understanding the behaviour of the dynamical system, the filtered flow variables
do not satisfy the Navier–Stokes equations, but only the filtered Navier–Stokes equations.

Initiating the filtered flow with q = qA + εq̂H2
, where qA is the steady asymmetric flow

and q̂H2
the eigenmode H2 which is multiplied by a small constant ε, the flow initially

oscillates with a low frequency of ω ≈ 30 and exhibits a growing amplitude (figure 25a).
At approximately t = 1.2 higher-frequency oscillations of low amplitude develop on the
low-frequency signal until the signal w(xp, t) settles, for t > 1.8, on a periodic flow with
fundamental frequency ω ≈ 10 and higher harmonics. These frequencies do not match the
beat frequencies or any of the original flow frequencies. Apparently, the low pass filter
has further slowed down the existing slow dynamics, an effect which may depend on the
strength of the damping parameter χ .

From figure 25 one can see, however, that the dynamics is similar, except from
the different underlying frequencies. In both the filtered and the unfiltered cases, the
system passes by an almost symmetric flow state with A ∈ [10−5, 10−4] after which
the asymmetry measure A increases in an exponential fashion before oscillations with
a frequency close to ωL1 appear. Eventually the oscillations are damped before the system
settles again on a nearly symmetric state. It is also seen from figure 25(aii,bii) that the
direction in which the symmetry is breaking alternates. To understand the flow states
during these periodic patterns, the low-pass filtered velocity field is shown in figure 26
for the instants of time marked by red dots in figure 25(ai,ii,bi,ii). From figure 26(a,b)
corresponding to t = 3.427 the flow is nearly symmetric and resembles the basic flow S1
(compare with figure 5b,c). In particular, the extrema of vωy (pink dots) are located near
the end walls as for the basic state S1. At t = 3.567 (figure 26c,d) two nearly symmetric
Taylor–Görtler vortices have grown close to the plane z = 0 and within x ∈ [0.4, 0.5] near
the upstream wall. These vortices are very similar as in the symmetric flow state S3 which
bifurcates from F2 (compare with figure 16a,b). Similarly, the extrema of vωy are now
located inside of the Taylor–Görtler vortices. In the meantime, symmetry-breaking modes
are growing exponentially and the two centred Taylor–Görtler vortices are transported
spanwise in the negative z direction, as shown in figure 26(e, f ). This shift is also signalled
by the asymmetric displacement of the extrema of vωy. In the following evolution of the
filtered flow, five Taylor–Görtler vortices are created (not shown) which decay again such
that the flow returns to a nearly symmetric state which completes a half-cycle. In the
following half-cycle the Taylor–Görtler vortices are displaced in the positive z direction.

978 A28-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.946


Bifurcations in a cubic constant shear stress driven cavity

−20

0

20

−20

0

20

10–5

10–4

10–3
(i)

0 1 2

t t
3 4 8.0 8.5 9.0 9.5

3.1 3.2 3.3 3.4 3.5 3.6 3.7 8.45 8.50 8.55 8.60

3.1 3.2 3.3 3.4 3.5 3.6 3.7 8.45 8.50 8.55 8.60

–20

0

20

–20

0

20

10–5

10–4

10–3
w

(x
p)

w
(x

p)
(a) (b)

(i)

(ii) (ii)

(iii) (iii)

A

Figure 25. Temporal evolution of A and w(xp, t) at Reτ = 239.37 (a) with and (b) without application of the
low-pass filter. Panels (ai), (bi) and (aii), (bii) with a grey background show zooms into the signals as indicated
by the grey shading in (aiii), (biii). The red dots in panels (ai) and (aii) indicate the instants of times for which
the total flow is shown in figure 26.

To further quantify the distance in the phase space of the filtered flow from the flow S3,
we show the ratio of kinetic energies E(u − uS3)/E(uS3) in figure 27. The second red dot
is close the local minimum of the ratio of kinetic energies, indicating the instant of closest
approach of the filtered flow field to the symmetric flow state S3. The symmetric flow state
S1 no longer exists at Re = 239.37.

From these observations we conclude the evolution of the shear-driven cavity exhibits
a Pomeau–Manneville scenario (Pomeau & Manneville 1980) where the limit cycle L1
and its mirror symmetric counterpart become unstable in only a single direction in phase
space. The departure of the system from L1 in this direction initiates the burst. After a short
exploration of the phase space, potentially visiting neighbouring saddle S3 and the remnant
of the saddle S1, the system may again settle either on L1 or L′

1 before the next burst event.
Further increasing the Reynolds number, the duration of the oscillations near L1 and L2
get shorter and shorter and the system becomes more chaotic. The flow dynamics is still
characterised by the shedding of Taylor–Görtler vortices, but their structure and spanwise
direction of propagation becomes irregular.

5. Discussion and conclusion

The transition scenario of the flow in a cube, driven by a constant shear stress parallel to
the edges, has been investigated numerically. This system is very similar to the flow in an
open liquid-filled cube driven by an external laminar gas stream over a non-deformable
liquid–gas interface which has been considered by Kalaev (2012). In fact, he found a
similar vortex dynamics with the flow becoming time-dependent at Reτ = 235.70, (Re2

τ =
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Figure 26. Snapshots of the filtered velocity field for Reτ = 239.37 at the times indicated by the red dots in
figure 25(a): t = 3.427 (a,b); at t = 3.567 (c,d); and at t = 3.607 (e, f ). Thew flow is shown in the x = 0 plane
(a,c,e) and in the y = 0 plane (b,d, f ). Arrows show the in-plane components of the velocity field, while colour
indicates the velocity component normal to the plane shown. Dark green lines show the w = 0 isolines.

55 555), and turbulent at Reτ = 316.23 (Re2
τ = 105). The constant shear-driven cube also

shares common characteristics with its lid-driven and open cavity counterparts. In these
systems the basic flow becomes unstable to spanwise periodic Taylor–Görtler vortices with
a high wavenumber, in both spanwise infinitely extended (Albensoeder et al. 2001b; Brés
& Colonius 2008) and finite-size cavities (Faure et al. 2007; Feldman & Gelfgat 2010).
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Figure 27. Evolution of the kinetic energy ratio E(u − uS3 )/E(uS3 ) as a function of time for Reτ = 239.37,
where u is the filtered velocity field. The three red dots correspond to the ones in figure 25 for which the filtered
flow fields are shown in figure 26.

All instabilities found arise in the form of slender vortices in the close vicinity of the
solid walls. The vortices are approximately aligned parallel to the streamlines of the basic
flow. Their location, size and shape resemble the stationary Taylor–Görtler vortices in
the lid-driven square cavity (Albensoeder et al. 2001b). Therefore, the vortices in the
present shear-driven cavity are known as Taylor–Görtler vortices. The Taylor–Görtler
nature of vortices is also suggested by the mean global kinetic energy transfer rate
I2 = −T−1 ∫ T

0

∫
V û‖ · (û⊥ · ∇u0) dV dt always ranging between 76 % and 79 % of the

total mean energy production rate. This is consistent with the value of I2 = 81 % found
by Loiseau et al. (2016) for the cubic lid-driven cavity at slightly supercritical driving. The
physical process described by I2 is an amplification of streamwise perturbation flow û‖ by
the transport of basic state momentum u0 perpendicular to the direction of the basic flow
(û⊥ · ∇), similar to the lift-up effect in plane shear flows. The transport perpendicular to
the direction of the basic flow is accomplished by the counter-rotating streamwise vortices
of the perturbation flow, while the amplified streamwise perturbation flow corresponds
to streaks (Loiseau et al. 2016). Albensoeder et al. (2001b) drew the complementary
conclusion that I2, amounting to 68 % in the spanwise periodic system, was also indicative
of a centrifugal instability. More elaborated criteria of, for example, Bayly, Orszag &
Herbert (1988) and Sipp & Jacquin (2000) cannot be used here as indicators for a
centrifugal instability, because they were derived for inviscid two-dimensional flow. In
the present shear-driven cube, however, the basic flow is viscous and three-dimensional.

In the present shear-driven cube we find the primary instability is symmetry breaking.
Open cavity flow also exhibits symmetry-breaking instabilities (Picella et al. 2018).
However, these instabilities are secondary and were not found to be triggered in the
transient simulations carried out by Picella et al. (2018). Similarly, symmetry-breaking
modes were found in the lid-driven cavity flow, but they may only grow at higher Reynolds
numbers (Loiseau 2014).

Since the constant shear-driven cavity corresponds to a thermocapillary cavity in the
limit of vanishing Prandtl number, it is interesting to note that the scenario found is similar
to the one in axisymmetric thermocapillary liquid bridges in the low-Prandtl-number
limit. In this system the flow is exclusively driven by a constant axial shear stress.
In the first step of destabilisation the axisymmetry is lost at Reτ = 42.34 (Re2

τ =
1793) (Wanschura et al. 1995) and the flow becomes three-dimensional (see also
Levenstam, Amberg & Winkler 2001). Upon a further increase of the Reynolds number
to Reτ = 77.20 (Re2

τ = 5960), the asymmetric three-dimensional flow becomes unstable
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to three-dimensional oscillatory perturbations (Leypoldt, Kuhlmann & Rath 2000). To
the best of our knowledge, no experimental or numerical study on low-Prandtl-number
thermocapillary-driven flow in a cubic cavity has ever been carried out for Reynolds
numbers of comparable magnitude. However, during test calculations with a similar
code we recovered the same symmetry breaking for the thermocapillary-driven flow in
a differentially heated cube for Pr = 0.01, albeit at a higher Reynolds number ReP ∈
[260.77, 264.57] (Re2

P ∈ [68 000, 70 000]), followed by the onset of oscillations at ReH1 ∈
[273.86, 282, 84] (Re2

H1
∈ [75 000, 80 000]).

In previous studies of the lid-driven cavity flow in a cube (Feldman & Gelfgat 2010;
Kuhlmann & Albensoeder 2014; Loiseau et al. 2016; Lopez et al. 2017; Gelfgat 2019), the
flow loses its time invariance first through a slightly subcritical Hopf bifurcation leading to
a limit cycle. Loiseau et al. (2016) and Lopez et al. (2017) noted the presence of a second
limit cycle and explained the bursts observed by Kuhlmann & Albensoeder (2014) by the
system repeatedly visiting this second limit cycle. Here the situation is different: the two
limit cycles are antisymmetric to each other and through bursts and exploration of the
phase space the system can temporarily settle on either of the limit cycles. Furthermore,
the bursts in the shear-driven cube may be affected by the presence of unstable limit cycles
emerging from the Hopf bifurcation points HS and H2. In contrast to the lid-driven cavity
such additional unstable limit cycles are not mandatory for the chaotic dynamics in the
shear-driven cavity: the existence of the unstable limit cycles L1 and L′

1 together with
the unstable basic state S are sufficient. These three unstable manifolds would make a
close, if not perfect, analogy to the chaotic dynamics on the Lorenz attractor (Lorenz 1963;
Guckenheimer & Holmes 1983) which also evolves between two unstable limit cycles and
an unstable fixed point. Therefore, it appears worthwhile to further explore the relation of
the present chaotic dynamics to the paradigmatic Lorenz attractor.

In fact, the collision of limit cycles with hyperbolic points can be found in many fluid
dynamical systems with Z2 reflection symmetry like, for example, pipe flow (Mellibovsky
& Eckhardt 2012). The possible bifurcation scenarios of codimension-two saddle-node
bifurcations in discrete dynamical systems with Z2 symmetry have been explored by
Marques, Mellibovsky & Meseguer (2013) in a two-dimensional parameter space. Thus, it
would be interesting to extend the present one-dimensional exploration of the parameter
space by variation of Reτ to a higher-dimensional parameter space in the presence of
a reflection symmetry. Obvious additional parameters are the streamwise and spanwise
aspect ratios. In the extended parameter space the connection between the solutions and
bifurcation points could be further clarified. For instance, it is likely that the fold of S
with saddle-node points F1 and F2 originates from a cusp point in the extended parameter
space, similar as in the lid-driven cavity (Kuhlmann et al. 1997; Albensoeder, Kuhlmann
& Rath 2001a). The vicinity of the Hopf bifurcation point HS on S and the saddle node
F1 suggests the possibility of a fold–pitchfork bifurcation (Marques et al. 2013) in the
extended parameter space. Another interesting option concerns the relation of the present
shear-driven cube to the scenario found in the lid-driven cube (Kuhlmann & Albensoeder
2014; Loiseau et al. 2016; Lopez et al. 2017): a homotopy approach could be employed
to transform the present shear-stress boundary condition to a prescribed constant velocity
condition on the boundary driving the flow by variation of an additional parameter.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.946.
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